Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Intrinsic Tryptophan Fluorescence Spectroscopy
4.3. Near-Ultraviolet Circular Dichroism Spectroscopy
4.4. Nuclear Magnetic Resonance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HOS | Higher-order structure |
HOS by NMR | higher-order structure by nuclear magnetic resonance |
FTIR | Fourier transform infrared |
NUV-CD | near-ultraviolet circular dichroism |
FLD | intrinsic fluorescence spectroscopy |
NMR | nuclear magnetic resonance |
ppm | parts per million |
mAb | monoclonal antibody |
References
- Berkowitz, S.A.; Engen, J.R.; Mazzeo, J.R.; Jones, G.B. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nature reviews. Drug Discov. 2012, 11, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Gabrielson, J.P.; Weiss, W.F., 4th. Technical Decision-Making with Higher Order Structure Data: Starting a New Dialogue. J. Pharm. Sci. 2015, 104, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Batabyal, D.; Knutson, N.; Lord, H.; Wikström, M. A Comparison Between Emerging and Current Biophysical Methods for the Assessment of Higher-Order Structure of Biopharmaceuticals. J. Pharm. Sci. 2020, 109, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Poppe, L.; Jordan, J.B.; Lawson, K.; Jerums, M.; Apostol, I.; Schnier, P.D. Profiling Formulated Monoclonal Antibodies by 1H NMR Spectroscopy. Anal. Chem. 2013, 85, 9623–9629. [Google Scholar] [CrossRef] [PubMed]
- Poppe, L.; Jordan, J.B.; Rogers, G.; Schnier, P.D. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods. Anal. Chem. 2015, 87, 5539–5545. [Google Scholar] [CrossRef] [PubMed]
- Arbogast, L.W.; Brinson, R.G.; Marino, J.P. Mapping monoclonal antibody structure by 2D 13C NMR at natural abundance. Anal. Chem. 2015, 87, 3556–3561. [Google Scholar] [CrossRef] [PubMed]
- Brinson, R.G.; Marino, J.P.; Delaglio, F.; Arbogast, L.W.; Evans, R.M.; Kearsley, A.; Gingras, G.; Ghasriani, H.; Aubin, Y.; Pierens, G.K.; et al. Enabling adoption of 2D-NMR for the higher order structure assessment of monoclonal antibody therapeutics. mAbs 2019, 11, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Smith, D.L. Determination of amide hydrogen exchange by mass spectrometry: A new tool for protein structure elucidation. Protein Sci. 1993, 2, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Goswami, D.; Zhang, J.; Bondarenko, P.; Zhang, Z. MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals. Methods 2018, 144, 134–151. [Google Scholar] [CrossRef] [PubMed]
- Ramachander, R.; Jiang, Y.; Li, C.; Eris, T.; Young, M.; Dimitrova, M.; Narhi, L. Solid state fluorescence of lyophilized proteins. Anal. Biochem. 2008, 376, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Wishart, D.S.; Bigam, C.G.; Holm, A.; Hodges, R.S.; Sykes, B.D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J. Biomol. NMR 1995, 5, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Dillon, T.M.; Ricci, M.S.; Vezina, C.; Flynn, G.C.; Liu, Y.D.; Rehder, D.S.; Plant, M.; Henkle, B.; Li, Y.; Deechongkit, S.; et al. Structural and Functional Characterization of Disulfide Isoforms of the Human IgG2 Subclass. J. Biol. Chem. 2008, 23, 16206–16215. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.; Schmidt, P.; Schedletzky, O.; Glaser, S.J.; Sørensen, O.W.; Griesinger., C. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 1994, 4, 301–306. [Google Scholar]
- Smallcombe, S.H.; Patt, S.L.; Keifer, P.A. WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. J. Magn. Reson. A. 1995, 117, 295–303. [Google Scholar] [CrossRef]
- Hwang, T.-L.; van Zijl, P.C.M.; Garwood, M. Asymmetric adiabatic pulses for NH selection. J. Magn. Reson. 1999, 138, 173–177. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, T.-L.; Batabyal, D.; Knutson, N.; Wikström, M. Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals. Molecules 2021, 26, 2714. https://doi.org/10.3390/molecules26092714
Hwang T-L, Batabyal D, Knutson N, Wikström M. Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals. Molecules. 2021; 26(9):2714. https://doi.org/10.3390/molecules26092714
Chicago/Turabian StyleHwang, Tsang-Lin, Dipanwita Batabyal, Nicholas Knutson, and Mats Wikström. 2021. "Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals" Molecules 26, no. 9: 2714. https://doi.org/10.3390/molecules26092714
APA StyleHwang, T.-L., Batabyal, D., Knutson, N., & Wikström, M. (2021). Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals. Molecules, 26(9), 2714. https://doi.org/10.3390/molecules26092714