# Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Simulation Method and Process

#### 2.1. Main Variables

^{3}. The number of grains varied from 10 to 30 in five models, see Figure 1. Through approximating grains as spheres, the corresponding averaged diameter $\overline{d}$ can be calculated by $\overline{d}=\sqrt[3]{3V/\left(4\pi N\right)}$, in which V and N are the volume of the model and the number of grains in the model, respectively. Table 2 shows the grain size of each model.

#### 2.2. Main Process of Simulations

## 3. Results and Analysis of Simulations

#### 3.1. Nano-Tensile Test Simulations

#### 3.2. Nano-Creep Simulations

#### 3.3. Thermally Activated Mechanisms

## 4. Discussion on Creep Mechanisms

#### 4.1. Deformation Diagram for NC Ni

#### 4.2. Creep through Dislocations

#### 4.3. Creep Through Grain Boundary Sliding

#### 4.4. Grain Size Effect

## 5. Summary

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hahn, E.N.; Meyers, M.A. Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng. A
**2015**, 646, 101–134. [Google Scholar] [CrossRef] [Green Version] - Wu, Z.; Sandlöbes, S.; Wang, Y.; Gibson, J.S.L.; Korte-Kerzel, S. Creep behaviour of eutectic Zn-Al-Cu-Mg alloys. Mater. Sci. Eng. A
**2018**, 724, 80–94. [Google Scholar] [CrossRef] - Wu, J.; Tsai, W.; Huang, J.; Hsieh, C.; Huang, G.R. Sample size and orientation effects of single crystal aluminum. Mater. Sci. Eng. A
**2016**, 662, 296–302. [Google Scholar] [CrossRef] - Carlton, C.; Ferreira, P. What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater.
**2007**, 55, 3749–3756. [Google Scholar] [CrossRef] - Mukherjee, A.K.; Bird, J.E.; Dorn, J.E. Experimental Correlations for High-Temperature Creep; Technical Report; University of California: Berkeley, CA, USA, 1968. [Google Scholar]
- Coble, R. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys.
**1963**, 34, 1679–1682. [Google Scholar] [CrossRef] - Cahn, R.; Haasen, P.; Kramer, E. Plastic Deformation and Fracture of Materials. In Materials Science and Technology; Mughrabi, H., Ed.; WILEY–VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 1993; Volume 6. [Google Scholar]
- Ashby, M. Boundary defects, and atomistic aspects of boundary sliding and diffusional creep. Surf. Sci.
**1972**, 31, 498–542. [Google Scholar] [CrossRef] - Keblinski, P.; Wolf, D.; Gleiter, H. Molecular-dynamics simulation of grain-boundary diffusion creep. Interface Sci.
**1998**, 6, 205–212. [Google Scholar] [CrossRef] - Herring, C. Diffusional viscosity of a polycrystalline solid. J. Appl. Phys.
**1950**, 21, 437–445. [Google Scholar] [CrossRef] - Berry, J.; Rottler, J.; Sinclair, C.W.; Provatas, N. Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods. Phys. Rev. B
**2015**, 92, 134103. [Google Scholar] [CrossRef] [Green Version] - Nie, K.; Wu, W.P.; Zhang, X.L.; Yang, S.M. Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel. J. Mater. Sci.
**2017**, 52, 2180–2191. [Google Scholar] [CrossRef] - Jiao, S.; Kulkarni, Y. Molecular dynamics study of creep mechanisms in nanotwinned metals. Comput. Mater. Sci.
**2015**, 110, 254–260. [Google Scholar] [CrossRef] - Wang, Y.J.; Ishii, A.; Ogata, S. Transition of creep mechanism in nanocrystalline metals. Phys. Rev. B
**2011**, 84, 224102. [Google Scholar] [CrossRef] - Wang, Y.J.; Ishii, A.; Ogata, S. Grain size dependence of creep in nanocrystalline copper by molecular dynamics. Mater. Trans.
**2012**, 53, 1110171491. [Google Scholar] [CrossRef] [Green Version] - Ashby, M.F. A first report on deformation-mechanism maps. Acta Metall.
**1972**, 20, 887–897. [Google Scholar] [CrossRef] - Van Swygenhoven, H.; Caro, A. Plastic behavior of nanophase Ni: A molecular dynamics computer simulation. Appl. Phys. Lett.
**1997**, 71, 1652–1654. [Google Scholar] [CrossRef] - Van Swygenhoven, H.; Caro, A. Plastic behavior of nanophase metals studied by molecular dynamics. Phys. Rev. B
**1998**, 58, 11246. [Google Scholar] [CrossRef] - Reddy, K.V.; Meraj, M.; Pal, S. Mechanistic study of bending creep behaviour of bicrystal nanobeam. Comput. Mater. Sci.
**2017**, 136, 36–43. [Google Scholar] [CrossRef] - Meraj, M.; Yedla, N.; Pal, S. The effect of porosity and void on creep behavior of ultra-fine grained nano crystalline nickel. Mater. Lett.
**2016**, 169, 265–268. [Google Scholar] [CrossRef] - Yamakov, V.; Wolf, D.; Phillpot, S.; Mukherjee, A.; Gleiter, H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater.
**2004**, 3, 43–47. [Google Scholar] [CrossRef] - Yamakov, V.; Wolf, D.; Salazar, M.; Phillpot, S.; Gleiter, H. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater.
**2001**, 49, 2713–2722. [Google Scholar] [CrossRef] - Yamakov, V.; Wolf, D.; Phillpot, S.R.; Mukherjee, A.K.; Gleiter, H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater.
**2002**, 1, 45–49. [Google Scholar] [CrossRef] [PubMed] - Yamakov, V.; Wolf, D.; Phillpot, S.; Gleiter, H. Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater.
**2002**, 50, 61–73. [Google Scholar] [CrossRef] - Haslam, A.; Yamakov, V.; Moldovan, D.; Wolf, D.; Phillpot, S.; Gleiter, H. Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation. Acta Mater.
**2004**, 52, 1971–1987. [Google Scholar] [CrossRef] - Pal, S.; Meraj, M.; Deng, C. Effect of Zr addition on creep properties of ultra-fine grained nanocrystalline Ni studied by molecular dynamics simulations. Comput. Mater. Sci.
**2017**, 126, 382–392. [Google Scholar] [CrossRef] - Pinky, S.K. Molecular Dynamics Study of Creep Deformation in Nickel-Based Superalloy. Master’s Thesis, Missouri State University, Springfield, MO, USA, 2019. [Google Scholar]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun.
**2015**, 197, 212–219. [Google Scholar] [CrossRef] - Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
**1995**, 117, 1–19. [Google Scholar] [CrossRef] [Green Version] - Bonny, G.; Pasianot, R.C.; Castin, N.; Malerba, L. Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing. Philos. Mag.
**2009**, 89, 3531–3546. [Google Scholar] [CrossRef] - Voter, A.F.; Chen, S.P. Accurate interatomic potentials for Ni, Al and Ni3Al. MRS Online Proc. Libr. OPL
**1986**, 82, 175. [Google Scholar] [CrossRef] - Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng.
**2009**, 18, 015012. [Google Scholar] [CrossRef] - Larsen, P.M.; Schmidt, S.; Schiøtz, J. Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sci. Eng.
**2016**, 24, 055007. [Google Scholar] [CrossRef] - Aidhy, D.S.; Lu, C.; Jin, K.; Bei, H.; Zhang, Y.; Wang, L.; Weber, W.J. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater.
**2015**, 99, 69–76. [Google Scholar] [CrossRef] [Green Version] - Anand, T.J.S. Nickel as an alternative automotive body material. J. Mech. Eng.
**2012**, 2, 187–197. [Google Scholar] - Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng.
**2012**, 20, 085007. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**–

**e**) Five models with different numbers of grains, named M1 to M5 for model 1 to model 5. These pictures are visualized by a polyhedral template matching (PTM) method [33] in OVITO (green: FCC; red: others as grain boundary). (

**a**) M1: 30 grains, (

**b**) M2: 25 grains, (

**c**) M3: 20 grains, (

**d**) M4: 15 grains, (

**e**) M5: 10 grains.

**Figure 2.**The results of nano-tensile simulations. (

**a**) Stress–strain curves at the corresponding temperatures for M1. (

**b**) The temperature dependence of the tensile strength ${R}_{\mathrm{m}}$. (

**c**) The influence of the grain size on the tensile strength ${R}_{\mathrm{m}}$.

**Figure 3.**(

**a**) Creep curves of model M1 for different stresses at 1000 K. (

**b**) The log–log scaling plot of creep rates $\dot{\epsilon}$ over $\sigma $ at different temperatures. The data are split up into a low $\sigma $ region and a high $\sigma $ region and were fitted with different exponents n. (

**c**) The relationship between the stress exponent n and temperature.

**Figure 4.**(

**a**) The plot of $ln\dot{\epsilon}$ versus $1/\left({k}_{B}T\right)$, which is derived from the Arrhenius equation. (

**b**) Corresponding activation energies.

**Figure 5.**The schematic plastic deformation map created in this work. The applied stress was normalized to the tensile strength. The coupled mechanism means the creep mechanism is coupled by dislocation creep and grain boundary creep.

**Figure 7.**(

**a**–

**d**) Snapshots of atomic-scale crystalline structures of model M1 at 100 ps in different creep processes. (Green: FCC; red: stacking fault; gray: other.) (

**a**) 500 K–0.4 ${R}_{\mathrm{m}}$–100 ps, (

**b**) 500 K–0.8 ${R}_{\mathrm{m}}$–100 ps, (

**c**) 1200 K–0.4 ${R}_{\mathrm{m}}$–100 ps, (

**d**) 1200 K–0.65 ${R}_{\mathrm{m}}$–100 ps.

**Figure 8.**Dislocation activities observed in dislocation creep regime. (

**a**) A dislocation jog as a dislocation moves through a stacking fault. (

**b**) The half plane of the dislocation line has jumped into a vacancy. (Red atoms: stacking faults; gray atoms: other; green lines: Shockley partial dislocations.)

**Figure 9.**(

**a**–

**c**) Snapshots of atomic-scale crystalline structures of model M1 at 1200 K and $0.4{R}_{\mathrm{m}}$ at different times in the creep process. The grain depicted in the half circle was moving out of sight during the creep process from 100 to 200 ps. (

**d**) The nearest neighbor atoms of two vacancies that are enlarged from (

**c**). For a clear illustration, the FCC atoms are deleted in (

**d**). (Green: FCC; red: stacking fault; gray: others.) (

**a**) 100 ps; (

**b**) 150 ps; (

**c**) 200 ps; (

**d**) two vacancies.

**Figure 10.**Log–log scaling plot of creep rate $\dot{\epsilon}$ over grain size d and the fit-curve at 800 K. The grain size exponents are $p=2.57$ at 0.7 ${R}_{\mathrm{m}}$ and $p=2.04$ at 0.8 ${R}_{\mathrm{m}}$, respectively.

Temperature | Bulk Modulus | Poisson’s Ratio | Young’s Modulus | Shear Modulus |
---|---|---|---|---|

T [K] | K [GPa] | $\mathsf{\mu}$ [-] | E [GPa] | G [GPa] |

500 | 162.754 | 0.379 | 223.330 | 95.427 |

800 | 150.985 | 0.379 | 207.814 | 88.310 |

1200 | 135.164 | 0.381 | 189.529 | 77.88 |

Model | Number of Grains N | Averaged Grain Size d [nm] |
---|---|---|

M1 | 30 | 19.96 |

M2 | 25 | 21.22 |

M3 | 20 | 22.85 |

M4 | 15 | 25.15 |

M5 | 10 | 28.79 |

500 K | 600 K | 700 K | 800 K | 900 K | 1000 K | 1100 K | 1200 K | |
---|---|---|---|---|---|---|---|---|

low $\sigma $ | 2.6 | 2.3 | 3.0 | 3.3 | 3.6 | 3.1 | 1.5 | 4.8 |

high $\sigma $ | 13.8 | 13.2 | 13.0 | 10.0 | 8.3 | 8.4 | 7.5 | 6.8 |

**Table 4.**Comparison of two creep processes. The stacking fault ratio represents how many are atoms with an HCP structure compared with the total number of atoms in the model.

Temperature [K] | 800 | 1200 |

stress level | 0.65 ${R}_{\mathrm{m}}$ | 0.4 ${R}_{\mathrm{m}}$ |

stress [GPa] | 1.76 | 0.90 |

creep rate [$1/s$] | $3.98\times {10}^{7}$ | $2.26\times {10}^{7}$ |

stress exponent n | 10.0 | 4.8 |

stacking fault ratio at 100 ps | $4.3\%$ | $2.4\%$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xu, X.; Binkele, P.; Verestek, W.; Schmauder, S.
Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars. *Molecules* **2021**, *26*, 2606.
https://doi.org/10.3390/molecules26092606

**AMA Style**

Xu X, Binkele P, Verestek W, Schmauder S.
Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars. *Molecules*. 2021; 26(9):2606.
https://doi.org/10.3390/molecules26092606

**Chicago/Turabian Style**

Xu, Xiang, Peter Binkele, Wolfgang Verestek, and Siegfried Schmauder.
2021. "Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars" *Molecules* 26, no. 9: 2606.
https://doi.org/10.3390/molecules26092606