LDPE Transformation by Exposure to Sequential Low-Pressure Plasma and TiO2/UV Photocatalysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Initial LDPE Sheet Characterization
2.2. Plasma Discharge on LDPE Sheets–Static Contact Angle
2.3. Other Response Variable Associated with Plasma Discharge
2.4. TiO2/UV Photocatalysis
2.4.1. Commercial TiO2 Characteristics
2.4.2. 22 Factorial Design and Photocatalysis at 300 h
2.4.3. Photocatalytic Transformation Curve at 400 h
2.4.4. Fourier-Transform Infrared Spectroscopy (FTIR)
3. Materials and Methods
3.1. LDPE Sheets
3.2. Direct-Current Low-Pressure Plasma (DC-LLP) and Plasma Discharge
3.3. Ablation Curve and Hydrophobic Recovery
3.4. TiO2/UV Photocatalysis
3.5. Variables and Analytical Techniques Associated with LDPE Sheet Changes
3.5.1. Static Contact Angle
3.5.2. Viscoelastic Properties
3.5.3. Microscopy
3.5.4. Computational Image Processing
3.5.5. Fourier-Transform Infrared Spectroscopy (FTIR)
3.5.6. Total Organic Carbon (TOC) and pH for the TiO2 Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roy, P.K.; Surekha, P.; Rajagopal, C.; Choudhary, V. Effect of cobalt carboxylates on the photo-oxidative degradation of low-density polyethylene. Part-I. Polym. Degrad. Stab. 2006, 91, 1980–1988. [Google Scholar] [CrossRef]
- Kikani, P.; Desai, B.; Prajapati, S.; Arun, P.; Chauhan, N.; Nema, K. Comparison of low and atmospheric pressure air plasma treatment of polyethylene. J. Surf. Eng. 2013, 29, 211–221. [Google Scholar] [CrossRef]
- Shikova, T.G.; Rybkin, V.V.; Titov, V.A.; Shutov, D.A.; Kuvaldina, E.V. Modification and degradation of polyehtylene under the action of oxygen plasma. High Energ. Chem. 2005, 39, 337–341. [Google Scholar] [CrossRef]
- Hegemann, D.; Brunner, H.; Oehr, C. Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instr. Met. Phys. Res. B 2003, 208, 281–286. [Google Scholar] [CrossRef]
- Martínez-Romo, A.; González-Mota, R.; Soto-Bernal, J.J.; Rosales-Candelas, I. Investigating the Degradability of HDPE, LDPE, PE-BIO and PE-OXO Films under UV-B Radiation. J. Spectrosc. 2015, 2015, 586514. [Google Scholar] [CrossRef]
- Chen-Yang, Y.W.; Liao, J.D.; Kau, J.Y.; Huang, J.; Chang, W.T.; Chen, C.W. Surface modifications of expanded poly(tetrafluoroethylene) sheets assisted by CO2 antenna coupling microwave plasma. Macromolecules 2000, 33, 5638–5643. [Google Scholar] [CrossRef]
- Li, Y.P.; Li, S.Y.; Shi, W.; Lei, M.K. Hydrophobic over-recovery during aging of polethylene modified by oxygen capacitively coupled radio frecuency plasma: A new approach for stable superhydrophobic surface with high water adhesion. Surf. Coat. Technol. 2012, 206, 4952–4958. [Google Scholar] [CrossRef]
- Øiseth, S.K.; Krozer, A.; Kasemo, B.; Lausmaa, J. Surface modification of spin-coated high-density polyethylene films by argon and oxygen glow discharge plasma treatments. Appl. Surf. Sci. 2002, 202, 92–103. [Google Scholar] [CrossRef]
- Liu, H.; Pei, X.; Xie, D.; Deng, X.; Leng, Y.; Jin, Y.; Huang, N. Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma. Appl. Surf. Sci. 2010, 256, 3741–3945. [Google Scholar] [CrossRef]
- Švorčík, V.; Kotál, V.; Siegel, J.; Sajdl, P.; Macková, A.; Hnatowicz, V. Ablation and water etching of poly (ethylene) modified by argon plasma. Polym. Degrad. Stab. 2007, 92, 1645–1649. [Google Scholar] [CrossRef]
- Ataeefard, M.; Moradian, S.; Mirabedini, M.; Ebrahimi, M.; Asiaban, S. Surface properties of low density polyethylene upon low-temperature plasma treatment with various gases. Plasma Chem. Plasma Process. 2008, 28, 377–390. [Google Scholar] [CrossRef]
- Mortazavi, M.; Nosonovsky, M. A model for diffusion-driven hydrophobic recovery in plasma treated polymers. Appl. Surf. Sci. 2012, 258, 6876–6883. [Google Scholar] [CrossRef]
- Van Deynse, A.; Cools, P.; Leys, C.; De Geyter, N.; Morent, R. Surface activation of polyethylene with argon atmospheric pressure plasma jet: Influence of applied power and flow rate. Appl. Surf. Sci. 2015, 328, 269–278. [Google Scholar] [CrossRef]
- Reznícková, A.; Kolská, Z.; Hnatowicz, P.; Stopka, P.; Švorčík, V. Comparison of glow argon plasma-induced surface changes of thermplastic polymers. Nucl. Instr. Met. Phys. Res. B 2011, 209, 83–88. [Google Scholar] [CrossRef]
- Kadnikov, D.; Smirnov, S.; Rybkin, V.V. Mutual effect of plasma oxygen and oxidative degradation of a polyethylene film. High Temp. 2014, 53, 459–462. [Google Scholar] [CrossRef]
- Kuvaldina, E.V.; Shikova, T.G.; Smirnov, S.A.; Rybkin, V.V. Surface oxidation and degradation of polyethylene in a mixed argon-oxygen plasma. High Energ. Chem. 2007, 41, 284–287. [Google Scholar] [CrossRef]
- Sanchis, M.R.; Blanes, V.; Blanes, M.; Garcia, D.; Balart, R. Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. Eur. Polym. J. 2006, 42, 1558–1568. [Google Scholar] [CrossRef]
- Mix, R.; Friedrich, J.F.; Neubert, D.; Inagaki, N. Response of linear, branched or crosslinked polyethylene structures on the attack of oxygen plasma. Plasma Chem. Plasma Proc. 2014, 34, 1199–1218. [Google Scholar] [CrossRef]
- Drnovská, H.; Lapčík, L.; Buršíková, V.; Zemek, J.; Barros-Timmons, A.M. Surface properties of polyethylene after low-temperature plasma treatment. Colloid. Polym. Sci. 2003, 281, 1025–1033. [Google Scholar] [CrossRef]
- Lehocký, M.; Drnovská, H.; Lapčíková, B.; Barros-Timmons, A.M.; Trindade, T.; Zembala, M.; Lapčík, L., Jr. Plasma surface modification of polyethylene. Colloids Surf. A 2003, 222, 125–131. [Google Scholar] [CrossRef]
- Ortiz-Magán, A.B.; Pastor-Blas, M.M.; Ferrándiz-Gómez, T.P.; Morant-Zacarés, C.; Martín-Martínez, J.M. Surface modifications produced by N2 and O2 RF plasma treatment on a synthetic vulcanized styrene-butadiene rubber. Plasmas Polym. 2001, 6, 81–105. [Google Scholar] [CrossRef]
- Henao-Jaramillo, L.M.; Fernández-González, J.A.; Quevedo-Hidalgo, B.; Florido-Cuellar, A.E.; Pedroza-Rodríguez, A.M. Use of a non-conventional biological system and advance oxidation process with TiO2/UV to the discoloration od reactive black 5. Int. Biotechnol. Color J. 2011, 1, 9–19. [Google Scholar]
- Liu, G.; Liao, S.; Zhu, D.; Hua, Y.; Zhou, W. Innovative photocatalytic degradation of polyethylene film with boron-doped cryptomelane under UV and visible light irradiation. Chem. Eng. J. 2012, 213, 286–294. [Google Scholar] [CrossRef]
- Xin, B.; Wang, P.; Ding, D.; Liu, J.; Ren, Z.; Fu, H. Effect of surface species on Cu-TiO2 photocatalytic activity. Appl. Surf. Sci. 2008, 254, 2569–2574. [Google Scholar] [CrossRef]
- Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl. Catal. A 2013, 462, 178–195. [Google Scholar] [CrossRef]
- Diebold, U.; Ruzycki, N.; Herman, G.S.; Selloni, A. One step towards bridging the materials gap: Surface studies of TiO2 anatase. Catal. Today 2003, 85, 93–100. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Rajandas, H.; Parimannan, S.; Sathasivam, K.; Ravichandran, M.; Yin, L.S. A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polym. Test. 2012, 31, 1094–1099. [Google Scholar] [CrossRef]
- Gómez-Méndez, L.D.; Moreno-Bayona, D.A.; Poutou-Piñales, R.A.; Salcedo-Reyes, J.C.; Pedroza-Rodríguez, A.M.; Vargas, A.; Bogoya, J.M. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS ONE 2018, 13, e0203786. [Google Scholar] [CrossRef]
- Abou Rich, S.; Dufour, T.; Leroy, P.; Nittler, L.; Pireaux, J.J.; Reniers, F. Low-density polyethylene films treated by an atmospheric Ar-O2 post-discharge: Functionalization, etching, degradation and partial recovery of the native wettability. J. Phys. D Appl. Phys. 2014, 47, 065203. [Google Scholar]
- Kim, B.K.; Kim, K.S.; Park, C.E.; Ryu, C.M. Improvement of wettability and reduction of aging effect by plasma treatment of low-density polyethylene with argon and oxygen mixtures. J. Adhes. Sci. Technol. 2002, 16, 509–521. [Google Scholar] [CrossRef]
- Švorčík, V.; Kolářová, K.; Slepička, P.; Macková, A.; Novotná, M.; Hnatowicz, V. Modification of surface properties of high and low-density polyethylene by Ar plasma discharge. Polym. Degrad. Stab. 2006, 91, 1219–1225. [Google Scholar] [CrossRef]
- Pandiyaraj, K.N.; Deshmukh, R.R.; Ruzybayev, I.; Shah, S.I.; Su, P.-G.; Halleluyah, J.m.; Halim, A.S. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE). Appl. Surf. Sci. 2014, 307, 109–119. [Google Scholar] [CrossRef]
- Kim, K.S.; Ryu, C.M.; Park, C.S.; Sur, G.S.; Park, C.E. Investigation of crystallinity effects on the surface of oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer 2003, 44, 6287–6295. [Google Scholar] [CrossRef]
- Briggs, D.; Rance, D.G.; Kendall, C.R.; Blythe, A.R. Surface modification of poly (ethylene terephthalate) by electrical discharge treatment. Polymer 1980, 21, 895–900. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Lü, L.X.; Shi, J.C.; Wang, H.F.; Xiao, Z.D.; Huang, N.P. Introducing RGD peptides on PHBV films through PEG-containing cross-linkers to improve the biocompatibility. Biomacromolecules 2011, 12, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, A.; Neyts, E.; Gijbels, R.; van der Mullen, J. Gas discharge plasmas and their applications. Spectrochim. Acta Part B 2002, 57, 609–658. [Google Scholar] [CrossRef]
- Guruvenket, S.; Rao, G.M.; Komath, M.; Raichur, A. Plasma Surface modification of polystyrene and polyethylene. Appl. Surf. Sci. 2004, 236, 278–284. [Google Scholar] [CrossRef]
- Macosko, C.W. Rheology: Principles, Measurements and Applications; Wiley-VCH, Inc.: Weinheim, Germany, 1994; p. 568. [Google Scholar]
- Guimond, S.; Wertheimer, M.R. Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. J. Appl. Polym. Sci. 2004, 94, 1291–1303. [Google Scholar] [CrossRef]
- Nakamatsu, J.; Delgado-Aparicio, L.F.; Da Silva, R.; Soberon, F. Ageing of plasma-treated poly(tetrafluoroethylene) surfaces. J. Adhes. Sci. Technol. 1999, 13, 753–761. [Google Scholar] [CrossRef]
- Ataeefard, M.; Moradian, S.; Mirabedini, M.; Ebrahimi, M.; Asiaban, S. Investigating the effect of power/time in the wettability of Ar and O2 gasplasma-treated low-density polyethylene. Prog. Org. Coat. 2009, 64, 482–488. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Leys, C.; Gengembre, L.; Payen, E. Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf. Coat. Technol. 2007, 201, 7847–7854. [Google Scholar] [CrossRef]
- Shi, L.; Wang, L.; Wang, Y. The investigation of argon plasma surface modification to polyethylene: Quantitative ATR-FTIR spectroscopic analysis. Eur. Polym. J. 2006, 42, 1625–1633. [Google Scholar] [CrossRef]
- Silverstein, M.; Webster, F. Spectrometric Identification of Organic Compounds, 6th ed.; JohnWiley & Sons Inc.: Hoboken, NJ, USA, 2005; pp. 87–96. [Google Scholar]
- Puentes-Cárdenas, I.J.; Chávez-Camarillo, G.M.; Flores-Ortiz, C.M.; Cristiani-Urbina, M.d.C.; Netzahuatl-Muñoz, A.R.; Salcedo-Reyes, J.C.; Pedroza-Rodríguez, A.M.; Cristiani-Urbina, E. Adsorptive removal of acid blue 80 dye from aqueous solutions by Cu-TiO2. J. Nanomat. 2016, 2016, 3542359. [Google Scholar] [CrossRef]
- Blanco-Vargas, A.; Ramírez-Sierra, C.F.; Duarte-Castañeda, M.; Beltrán-Villarraga, M.; Medina, L.K.; Florido-Cuellar, A.-E.; Cardona-Bedoya, J.A.; Campos-Pinilla, C.; Pedroza-Rodríguez, A.M. A novel textile wastewater treatment using ligninolytic co-culture and photocatalysis with TiO2. Univ. Sci. 2018, 23, 437–464. [Google Scholar] [CrossRef]
- Cohen-Yaniv, V.; Narkis, N.; Armon, R. Photocatalytic inactivation of Flavobacterium and E. coli in water by a continuous stirred tank reactor (CSTR) fed with suspended/immobilized TiO2 medium. Water Sci. Technol. 2008, 58, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Laoufi, N.; Tassalit, D.; Bentahar, F. The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. Glob. NEST J. 2008, 10, 404–418. [Google Scholar]
- Fernández, J.A.; Cardozo, M.G.; Carrascal, A.K.; Salcedo, J.C.; Pedroza, A.M.; Daza, C.E. Microbiology cell-staining wastewater treatment using TiO2 thin films. Ing. Compet. 2015, 17, 35–48. [Google Scholar]
- Velásquez, J.; Valencia, S.; Ríos, L.; Restrepo, G.; Marín, J.P. Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method. Chem. Eng. J. 2012, 203, 398–405. [Google Scholar] [CrossRef]
- Bouna, L.; Rhouta, B.; Amjoud, M.; Maury, F.; Lafont, M. Synthesis, characterization and photocatalytic of TiO2 supported natural palygorskite microfibers. Appl. Clay Sci. 2011, 52, 301–311. [Google Scholar] [CrossRef]
- Wang, S.; Meng, K.K.; Zhao, L.; Jiang, Q.; Lian, J. Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceram. Int. 2014, 40, 5107–5110. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J. Catal. 2001, 203, 82–86. [Google Scholar] [CrossRef]
- Bacsa, R.R.; Kiwi, J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl. Catal. B 1998, 16, 19–29. [Google Scholar] [CrossRef]
- Sattler, M.L.; Liljestrand, H.M. Method for Predicting Photocatalytic Oxidation Rates of Organic Compounds. J. Air Waste Manag. Assoc. 2003, 53, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, Z.; Chen, Y.; Shi, L.; Zhu, Y. Solid-phase photocatalytic degradation of polyethyleneplastic under UV and solar light irradiation. J. Mol. Catal. A Chem. 2007, 268, 101–106. [Google Scholar] [CrossRef]
- Thomas, R.T.; Nair, V.; Sandhyarani, N. TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: A mechanistic investigation. Colloids Surf. A 2013, 422, 1–9. [Google Scholar] [CrossRef]
- Liu, G.; Liao, S.; Zhu, D.; Cio, J.; Zhou, W. Solid-phase prhotocatalytic degradation of polyethylenefilm with manganese oxide OMS-2. Solid State Sci. 2011, 13, 88–94. [Google Scholar] [CrossRef]
- Van Deynse, A.; Cools, P.; Leys, C.; Morent, R.; De Geyter, N. Influence of ambient conditions on the aging behavior of plasma-treated polyethylene surfaces. Appl. Surf. Sci. 2014, 258, 359–367. [Google Scholar] [CrossRef]
- Pizem, H.; Sukenik, C.N. Effects of Substrate Surface Functionality on Solution-Deposited Titania Films. Chem. Mater. 2002, 14, 2476–2485. [Google Scholar] [CrossRef]
- Pedroza, A.M.; Mosqueda, R.; Alonso-Vante, N.; Rodríguez-Vázquez, R. Sequential treatment via Trametes versicolor and UV/TiO2/RuxSey to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere 2007, 67, 739–801. [Google Scholar] [CrossRef]
- Zahra, S.; Abbas, S.; Mahsa, M.; Mohsen, N. Biodegradation of low-density polyethylene by isolated fungi in solid waste médium. Waste Manag. 2010, 30, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Moreno, J.A.; Ávila-Ortega, A.; Oliva, A.I.; Avilés, F.; Cauich-Rodríguez, J.V. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Appl. Surf. Sci. 2015, 349, 763–773. [Google Scholar] [CrossRef]
- Kwok, D.Y.; Neumann, A.W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Bower, D.I. An Introduction to Polymer Physics; Cambridge University Press: New York, NY, USA, 2000; pp. 220–246. [Google Scholar]
- Pandiyaraj, K.N.; Ferraria, A.M.; Botelo do Rego, A.M.; Deshmukh, R.R.; Pi-Guey, S.; Halleluyah, J.M.; Halim, A.S. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications. Appl. Surf. Sci. 2015, 328, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Su, C.; Ren, X.; Fan, C.; Zhou, W.; Wang, F.; Ding, W. Experimental study on surface modification of PET films under bipolar nanosecond-pulse dielectric barrier discharge. Appl. Surf. Sci. 2014, 313, 53–59. [Google Scholar] [CrossRef]
- Tajima, S.; Komvopoulos, K. Effect of ion energy fluence on the topography and wettability og low-density polyethylene exposed to inductively coupled argo plasma. J. Phys. D Appl. Phys. 2006, 39, 1084–1094. [Google Scholar] [CrossRef]
- Malladi, R.; Sethian, J.A. Level Set Methods for Curvature Flow, Image Enhancement, and Shape Recovery in Medical Images. In Visualization and Mathematics; Hege, H.C., Polthier, K., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 329–345. [Google Scholar]
- Woods, R.E.; Gonzales, R.C. Digital Image Processing, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008; p. 943. [Google Scholar]
Response Variables | Value | References |
---|---|---|
Weight (mg) | 4.3 ± 0.5 | Present work |
Static contact angle (°) | 87 ± 1 | Present work |
Roughness (nm) | 6 ± 2 | Present work |
Young’s modulus (MPa) | 34 ± 1 | Present work |
Yield strength (MPa) | 10 ± 2 | Present work |
Spectra and vibrational band structure (FTIR) | 729 cm−1 CH2 rocking and deformation | [27,28] |
1460 cm−1 CH2 bending and deformation | [27,28] | |
2921 cm−1 CH2 asymmetric stretching | [27,28] | |
2843 cm−1 CH2 symmetric stretching | [27,28] |
Response Variables | Pristine | Plasma | Photocatalysis |
---|---|---|---|
Weight (mg) | 4.3 ± 0.5 | 4.2 ± 0.1 | 4.0 ± 0.1 |
Static contact angle (°) | 87 ± 1 | 21 ± 3 | 16 ± 3 |
Young’s modulus (MPa) | 34 ± 1 | 41 ± 6 | 46 ± 5 |
Yield strength (MPa) | 10 ± 2 | 11 ± 2 | 9 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Méndez, L.D.; Jiménez-Borrego, L.C.; Pérez-Flórez, A.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Salcedo-Reyes, J.C.; Vargas, A.; Bogoya, J.M. LDPE Transformation by Exposure to Sequential Low-Pressure Plasma and TiO2/UV Photocatalysis. Molecules 2021, 26, 2513. https://doi.org/10.3390/molecules26092513
Gómez-Méndez LD, Jiménez-Borrego LC, Pérez-Flórez A, Poutou-Piñales RA, Pedroza-Rodríguez AM, Salcedo-Reyes JC, Vargas A, Bogoya JM. LDPE Transformation by Exposure to Sequential Low-Pressure Plasma and TiO2/UV Photocatalysis. Molecules. 2021; 26(9):2513. https://doi.org/10.3390/molecules26092513
Chicago/Turabian StyleGómez-Méndez, Luis D., Luis C. Jiménez-Borrego, Alejandro Pérez-Flórez, Raúl A. Poutou-Piñales, Aura M. Pedroza-Rodríguez, Juan C. Salcedo-Reyes, Andrés Vargas, and Johan M. Bogoya. 2021. "LDPE Transformation by Exposure to Sequential Low-Pressure Plasma and TiO2/UV Photocatalysis" Molecules 26, no. 9: 2513. https://doi.org/10.3390/molecules26092513
APA StyleGómez-Méndez, L. D., Jiménez-Borrego, L. C., Pérez-Flórez, A., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., Salcedo-Reyes, J. C., Vargas, A., & Bogoya, J. M. (2021). LDPE Transformation by Exposure to Sequential Low-Pressure Plasma and TiO2/UV Photocatalysis. Molecules, 26(9), 2513. https://doi.org/10.3390/molecules26092513