Interaction of Squid (Dosidicus giga) Mantle Protein with a Mixtures of Potato and Corn Starch in an Extruded Snack, as Characterized by FTIR and DSC
Abstract
:1. Introduction
2. Results
2.1. Proximal Analysis
2.2. In Vitro Protein Digestibility (IVPD)
2.3. Calorimetric Properties
2.4. Molecular Identity
2.5. Deconvolution of FTIR Spectra
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Sample
3.3. Preparation of the SEE
3.4. Proximal Analysis and Mineral Content
3.5. In Vitro Protein Digestibility (IVPD)
3.6. Calorimetric Properties
3.7. Molecular Identity
3.8. Deconvolution of FTIR Spectra
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rhee, K.S.; Cho, S.H.; Pradahn, A.M. Composition, storage stability and sensory properties of expanded extrudates from blends of corn starch and goat meat, lamb, mutton, spent fowl meat, or beef. Meat Sci. 1999, 52, 135–141. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO Species Catalogue Vol. 3. Cephalopods of The World An Annotated and Illustrated Catalogue of Species of Interest to Fisheries; FAO Fisheries Synopsis No. 125; Clyde, F.E., Roper, M.J.S., Nauen, C.E., Eds.; FAO: Rome, Italy, 2015; Volume 3. [Google Scholar]
- CONAPESCA. Anuario Estadístico de Pesca; Comisión Nacional de Acuacultura y Pesca (CONAPESCA): Mazatlán, Mexico, 2015.
- Valenzuela-Lagarda, J.; Gutiérrez-Dorado, R.; Pacheco-Aguilar, R.; Lugo-Sánchez, M.; Valdez-Torres, J.; Reyes-Moreno, C.; Mazorra-Manzano, M.A.; Rangel, M. Botanas expandidas a base de mezclas de harinas de calamar, maíz y papa: Efecto de las variables del proceso sobre propiedades fisicoquímicas. Cyta J. Food 2016, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Widjanarko, S.B.; Nugroho, A.; Estiasih, T. Functional interaction components of protein isolates and glucomannan in food bars by FTIR and SEM studies. Afr. J. Food Sci. 2011, 1, 1–21. [Google Scholar]
- Choudhury, G.; Gautam, A. Hydrolyzed Fish Muscle as a Modifier of Rice Flour Extrudate Characteristics. J. Food Sci. 2003, 68, 1713–1721. [Google Scholar] [CrossRef]
- Shahmohammadi, H.R.; Bakar, J.; Rahman, R.A.; Adzhan, N.M. Studying the Effects of Nucleating Agents on Texture Modification of Puffed Corn-Fish Snack. J. Food Sci. 2014, 79, 78–183. [Google Scholar] [CrossRef]
- Murphy, M.G.; Skonberg, D.I.; Camire, M.E.; Dougherty, M.P.; Bayer, R.C.; Briggs, J.L. Chemical composition and physical properties of extruded snacks containing crab-processing by-product. J. Sci. Food Agric. 2003, 83, 1163–1167. [Google Scholar] [CrossRef]
- Netto, J.D.P.C.; Filho, P.R.C.D.O.; Lapa-Guimarães, J.; Viegas, E.M.M. Physicochemical and sensory characteristics of snack made with minced Nile tilapia. Food Sci. Technol. 2014, 34, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Noorakmar, A.; Cheow, C.; Norizzah, R.; Mohd-Zahid, A.; Ruzaina, I. Effect of orange sweet potato (Ipomoea batatas) flour on the physical properties of fried extruded fish cracker. Int. Food Res. J. 2012, 19, 657–664. [Google Scholar]
- Choudhury, H.; Chakraborty, R.; Chaudhuri, U. Thermal and microstructural property of extruded snack: An overview. Int. J. Eng. Res. Applic. 2014, 4, 9–18. [Google Scholar]
- Wianecki, M. Evaluation of fish and squid meat applicability for snack food manufacture by indirect extrusion cooking. Acta Sci. Pol. Technol. Aliment. 2007, 6, 29–44. [Google Scholar]
- Sun, Q.; Rizvi, G.M.; Bellehumeur, C.T.; Gu, P. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Limón-Valenzuela, V.; Martínez-Bustos, F.; Aguilar-Palazuelos, E.; Caro-Corrales, J.J.; Zazueta-Morales, J.J. Physicochemical Evaluation and Optimization of Enriched Expanded Pellets with Milk Protein Concentrate. Cereal Chem. 2010, 87, 612–618. [Google Scholar] [CrossRef]
- Teoh, H.; Schmidt, S.; Day, G.; Faller, J. Investigation of Cornmeal Components Using Dynamic Vapor Sorption and Differential Scanning Calorimetry. J. Food Sci. 2001, 66, 434–440. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, Z.; Zhao, Y.; Liu, C.; Xu, Y.; Bai, J. Effect of extrusion treatment with different emulsifiers on the thermal stability and structure of corn starch. Czech J. Food Sci 2015, 33, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Hasjim, J.; Xie, F.; Halley, P.J.; Gilbert, R.G. Shear degradation of molecular, crystalline, and granular structures of starch during extrusion. Starch Stärke 2014, 66, 595–605. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Singh, N.; Malhi, N.S. Physicochemical and thermal properties of starches separated from corn produced from crosses of two germ pools. Food Chem. 2005, 89, 541–548. [Google Scholar] [CrossRef]
- Onwulata, C.; Konstance, R.; Smith, P.; Holsinger, V. Co-extrusion of Dietary Fiber and Milk Proteins in Expanded Corn Products. Lwt Food Sci. Technol. 2001, 34, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Colonna, P.; Tayeb, J.; Mercier, C. Extrusion cooking of starch and starchy products. In Extrusion Cooking; Mercier, P.L., Harper, J.M., Eds.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1989; pp. 247–319. [Google Scholar]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Rathod, R.; Annapure, U. Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT Food Sci. Technol. 2016, 66, 114–123. [Google Scholar] [CrossRef]
- Heertje, I. Structure and Function of food Products: A Review. Food Struct. 1993, 12, 343–364. [Google Scholar] [CrossRef] [Green Version]
- Latza, V.; Guerette, P.A.; Ding, D.; Amini, S.; Kumar, A.; Schmidt, I.; Keating, S.J.; Oxman, N.; Weaver, J.C.; Fratzl, P.; et al. Multi-scale thermal stability of a hard thermoplastic protein-based material. Nat. Commun. 2015, 6, 8313. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Hanna, M.A. Amylose-lipid complex formation during single-screw extrusion of various corn starches. Cereal Chem. 1994, 71, 582–586. [Google Scholar]
- Hu, A.; Li, L.; Zheng, J.; Lu, J.; Meng, X.; Liu, Y.; Rehman, R.-U. Different-frequency ultrasonic effects on properties and structure of corn starch. J. Sci. Food Agric. 2014, 94, 2929–2934. [Google Scholar] [CrossRef]
- Luo, Z.; He, X.; Fu, X.; Luo, F.; Gao, Q. Effect of Microwave Radiation on the Physicochemical Properties of Normal Maize, Waxy Maize and Amylomaize V Starches. Starch Stärke 2006, 58, 468–474. [Google Scholar] [CrossRef]
- Zavareze, E.D.R.; Dias, A.R.G. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydr. Polym. 2011, 83, 317–328. [Google Scholar] [CrossRef]
- Arêas, J.A.G. Extrusion of food proteins. Crit. Rev. Food Sci. Nutr. 1992, 32, 365–392. [Google Scholar] [CrossRef]
- Warren, F.J.; Perston, B.B.; Royall, P.G.; Butterworth, P.J.; Ellis, P.R. Infrared Spectroscopy with Heated Attenuated Total Internal Reflectance Enabling Precise Measurement of Thermally Induced Transitions in Complex Biological Polymers. Anal. Chem. 2013, 85, 3999–4006. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, P.; Kerry, J.P.; de la Caba, K. FTIR characterization of protein–polysaccharide interactions in extruded blends. Carbohydr. Polym. 2014, 111, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Mantsch, H.H.; Jackson, M. Halogenated alcohols as solvents for protein: FTIR spectroscopic study. Biochim. Biophys. Acta 1992, 1118, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Hashimoto, J.M.; Moura-Alcioli, R.; Martínez-Bustos, F. Twin-screw extrusion of cassava starch and isolated soybean protein blends. Food Nahr. 2001, 45, 234–240. [Google Scholar] [CrossRef]
- Wilson, R.H.; Kalichevsky, M.T.; Ring, S.G.; Belton, P.S. A Fourier-transform infrared study of the gelation and retrogradation of waxy-maize starch. Carbohydr. Res. 1987, 166, 162–165. [Google Scholar] [CrossRef]
- Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the external region of the starch granule as determined by infrared spectroscopy O. Int. J. Biol. Macromol. 2002, 31, 79–85. [Google Scholar] [CrossRef]
- Goormaghtigh, E.; Gasper, R.; Bénard, A.; Goldsztein, A.; Raussens, V. Protein secondary structure content in solution, films and tissues: Redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. Biochim. Biophys. Acta BBA Proteins Proteom. 2009, 1794, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Dorado, R.; Cárdenas-Valenzuela, O.G.; Alarcón-Valdéz, C.; Garzón-Tiznado, J.A.; Milán-Carrillo, J.; Armienta-Aldana, E.; Reyes-Moreno, C. Alimento infantil preparado con harinas de maíz de calidad proteínica y garbanzo extrudidos. Interciencia 2008, 33, 1–7. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Seattle, WA, USA, 1999. [Google Scholar]
- Zeng, Z.; Zhang, H.; Xue, W.; Zhu, W.; Xiao, X.; Sun, Y.; Li, Z. Cinética de cristalización isotérmica del copolímero de poli (tereftalato de butileno-co-sebacato). J. Appl. Polym. Sci. 2011, 121, 735–742. [Google Scholar] [CrossRef]
- Montgomery, D. Statistical Quality Control. A Modern Introduction, 6th ed.; John Wiley and Sons: New York, NY, USA.
Compound | Squid (%) | |||||
---|---|---|---|---|---|---|
01 * | 02 * | 40 | 60 | 80 | 100 | |
Moisture (%) | 5.9 ± 0.2 b** | 6.52 ± 0.3 a | 4.32 ± 0.36 c | 4.82 ± 0.26 c | 5.68 ± 0.2 b | 5.27 ± 0.7 b,c |
Protein (%) | 17.2 ± 0.7 e | 16.5 ± 0.4 e | 40.6 ± 1.52 d | 62.8 ± 1.7 c | 69.9 ± 1.1 b | 85.8 ± 1.5 a |
Lipids (%) | 1.34 ± 0.3 b | 1.19 ± 0.4 b | 1.74 ± 0.4 b | 2.82 ± 0.6 a | 2.54 ± 0.5 a,b | 2.68 ± 0.2 a |
Carbohydrates (%) | 65.8 ± 2.3 a | 66.2 ± 2.8 a | 42.3 ± 2.93 b | 20.16 ± 2.1 c | 10.9 ± 0.9 d | 5.64 ± 0.9 e |
Dietary fiber (%) | 8.29 ± 2.0 a | 8.78 ± 1.8 a | 7.29 ± 1.24 a | 5.29 ± 1.8 a | 6.72 ± 0.6 a | 0.00 b |
Ashes (%) | 2.89 ± 0.3 c | 1.21 ± 0.35 d | 3.63 ± 0.16 b | 4.09 ± 0.3 a,b | 4.23 ± 0.1 a | 3.73 ± 0.2 b |
Fe (mg/100g) | 1.78 ± 0.4 a,b | 2.56 ± 0.78 a | 1.66 ± 0.12 a,b | 1.59 ± 0.2 b | 1.73 ± 0.2 a,b | 1.79 ± 0.3 a,b |
Mn (mg/100g) | 0.46 ± 0.02 a | 0.26 ± 0.02 b | 0.22 ± 0.01 c | 0.20 ± 0.02 c | 0.27 ± 0.02 b | 0.29 ± 0.03 b |
Zn (mg/100g) | 0.81 ± 0.01 e | 1.38 ± 0.01 d | 4.15 ± 0.05 c | 4.36 ± 0.1 b | 5.11 ± 0.3 a | 4.11 ± 0.04 c |
Cu (mg/100g) | 0.29 ± 0.01 b,c | 0.28 ± 0.01 c | 0.34 ± 0.04 b | 0.39 ± 0.05 a,b | 0.42 ± 0.04 a | 0.45 ± 0.05 a |
Na (mg/100g) | 92.2 ± 2.5 c | 92.45 ± 1.26 c | 268.7 ± 10.6 a,b | 265.9 ± 11.5 a,b | 250.9 ± 3.7 b | 273.7 ± 10.6 a |
K (mg/100g) | 1087.5 ± 23.1 a | 1098.6 ± 17.4 a | 1006.1 ± 46.7 b | 1082.5 ± 56.3 a,b | 1078.0 ± 24.3 a | 1038.3 ± 32.9 a,b |
Ca (mg/100g) | 53.6 ± 10.4 a,b | 53.8 ± 6.6 a | 46.5 ± 1.3 a | 46.5 ± 2.3 a | 52.19 ± 0.7 a | 42.87 ± 1.5 b |
Mg (mg/100g) | 98.7 ± 2.8 d | 98.8 ± 1.5 d | 111.7 ± 0.7 c | 150.9 ± 1.4 a | 107.38 ± 2.7 c | 115.39 ± 0.6 b |
P (mg/100g) | 758.2 ± 12.9 a | 662.6 ± 7.1 b | 608.3 ± 4.8 c | 623.8 ± 4.7 c | 628.7 ± 26.4 b,c | 616.28 ± 5.3 c |
Sample | 995 cm−1 | 1022 cm−1 | 1047 cm−1 | Rate 995/1022 cm−1 | Rate 1047/1022 cm−1 |
---|---|---|---|---|---|
40% Squid NE | 0.144 | 0.103 | 0.161 | 1.402 | 1.566 |
60% Squid NE | 0.091 | 0.061 | 0.135 | 1.502 | 2.235 |
80% Squid NE | -- | -- | -- | -- | -- |
100% Squid NE | -- | -- | -- | -- | -- |
100% Potato NE | 0.367 | 0.377 | 0.167 | 0.975 | 0.443 |
100% Corn NE | 0.503 | 0.345 | 0.212 | 1.457 | 0.614 |
40% Squid E | 0.218 | 0.270 | 0.126 | 0.808 | 0.466 |
60% Squid E | 0.258 | 0.283 | 0.134 | 0.911 | 0.473 |
80% Squid E | 0.0643 | 0.289 | 0.094 | 0.223 | 0.326 |
100% Squid E | -- | -- | -- | -- | -- |
100% Potato E | 0.205 | 0.177 | 0.065 | 1.155 | 0.368 |
100% Corn E | 0.417 | 0.395 | 0.177 | 1.054 | 0.447 |
Sample | 1624 cm−1 | 1650 cm−1 | 1680 cm−1 | 1520 cm−1 | 1540 cm−1 |
---|---|---|---|---|---|
40% Squit NE | 0.24799 | 0.29648 | 0.09178 | 0.10836 | 0.10172 |
60% Squit NE | 0.26763 | 0.33159 | 0.09936 | 0.13769 | 0.12993 |
80% Squit NE | 0.33556 | 0.37597 | 0.11486 | 0.18532 | 0.16496 |
100% Squit NE | 0.32455 | 0.37964 | 0.11224 | 0.18954 | 0.15614 |
100% Potato NE | -- | -- | -- | -- | -- |
100% Corn NE | 0.02584 | 0.15281 | 0.00439 | 0.01304 | 0.03574 |
40% Squit E | 0.21708 | 0.18144 | 0.07765 | 0.0581 | 0.04407 |
60% Squit E | 0.17454 | 0.10176 | 0.05827 | 0.00798 | 0.02526 |
80% Squit E | 0.32227 | 0.26504 | 0.1026 | 0.11926 | 0.07978 |
100% Squit E | 0.3154 | 0.32603 | 0.11334 | 0.1819 | 0.12079 |
100% Potato E | -- | -- | -- | -- | -- |
100% Corn E | -- | -- | -- | 0.01105 | 0.01591 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela-Lagarda, J.L.; Pacheco-Aguilar, R.; Gutiérrez-Dorado, R.; Mendoza, J.L.; López-Valenzuela, J.Á.; Mazorra-Manzano, M.Á.; Muy-Rangel, M.D. Interaction of Squid (Dosidicus giga) Mantle Protein with a Mixtures of Potato and Corn Starch in an Extruded Snack, as Characterized by FTIR and DSC. Molecules 2021, 26, 2103. https://doi.org/10.3390/molecules26072103
Valenzuela-Lagarda JL, Pacheco-Aguilar R, Gutiérrez-Dorado R, Mendoza JL, López-Valenzuela JÁ, Mazorra-Manzano MÁ, Muy-Rangel MD. Interaction of Squid (Dosidicus giga) Mantle Protein with a Mixtures of Potato and Corn Starch in an Extruded Snack, as Characterized by FTIR and DSC. Molecules. 2021; 26(7):2103. https://doi.org/10.3390/molecules26072103
Chicago/Turabian StyleValenzuela-Lagarda, José Luis, Ramón Pacheco-Aguilar, Roberto Gutiérrez-Dorado, Jaime Lizardi Mendoza, Jose Ángel López-Valenzuela, Miguel Ángel Mazorra-Manzano, and María Dolores Muy-Rangel. 2021. "Interaction of Squid (Dosidicus giga) Mantle Protein with a Mixtures of Potato and Corn Starch in an Extruded Snack, as Characterized by FTIR and DSC" Molecules 26, no. 7: 2103. https://doi.org/10.3390/molecules26072103
APA StyleValenzuela-Lagarda, J. L., Pacheco-Aguilar, R., Gutiérrez-Dorado, R., Mendoza, J. L., López-Valenzuela, J. Á., Mazorra-Manzano, M. Á., & Muy-Rangel, M. D. (2021). Interaction of Squid (Dosidicus giga) Mantle Protein with a Mixtures of Potato and Corn Starch in an Extruded Snack, as Characterized by FTIR and DSC. Molecules, 26(7), 2103. https://doi.org/10.3390/molecules26072103