Next Article in Journal
FragNet, a Contrastive Learning-Based Transformer Model for Clustering, Interpreting, Visualizing, and Navigating Chemical Space
Next Article in Special Issue
Preparation of Co-Processed Excipients for Controlled-Release of Drugs Assembled with Solid Lipid Nanoparticles and Direct Compression Materials
Previous Article in Journal
Nanoparticle-Based Rifampicin Delivery System Development
Previous Article in Special Issue
A Novel Solid Nanocrystals Self-Stabilized Pickering Emulsion Prepared by Spray-Drying with Hydroxypropyl-β-cyclodextrin as Carriers
Review

Insights into Terminal Sterilization Processes of Nanoparticles for Biomedical Applications

1
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
2
Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico
3
Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
4
Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
5
Unidad de Microscopía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
6
Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico
7
Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
8
Facultad de Medicina, Universidad Veracruzana, Mendoza 94740, VER, Mexico
9
CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
10
Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
*
Authors to whom correspondence should be addressed.
Academic Editors: Yi Lu and Yongtai Zhang
Molecules 2021, 26(7), 2068; https://doi.org/10.3390/molecules26072068
Received: 28 February 2021 / Revised: 25 March 2021 / Accepted: 30 March 2021 / Published: 3 April 2021
Nanoparticles possess a huge potential to be employed in numerous biomedical purposes; their applications may include drug delivery systems, gene therapy, and tissue engineering. However, the in vivo use in biomedical applications requires that nanoparticles exhibit sterility. Thus, diverse sterilization techniques have been developed to remove or destroy microbial contamination. The main sterilization methods include sterile filtration, autoclaving, ionizing radiation, and nonionizing radiation. Nonetheless, the sterilization processes can alter the stability, zeta potential, average particle size, and polydispersity index of diverse types of nanoparticles, depending on their composition. Thus, these methods may produce unwanted effects on the nanoparticles’ characteristics, affecting their safety and efficacy. Moreover, each sterilization method possesses advantages and drawbacks; thus, the suitable method’s choice depends on diverse factors such as the formulation’s characteristics, batch volume, available methods, and desired application. In this article, we describe the current sterilization methods of nanoparticles. Moreover, we discuss the advantages and drawbacks of these methods, pointing out the changes in nanoparticles’ biological and physicochemical characteristics after sterilization. Our main objective was to offer a comprehensive overview of terminal sterilization processes of nanoparticles for biomedical applications. View Full-Text
Keywords: sterilization; nanoparticles; autoclaving; filtration; ionizing radiation; nonionizing radiation sterilization; nanoparticles; autoclaving; filtration; ionizing radiation; nonionizing radiation
Show Figures

Graphical abstract

MDPI and ACS Style

Bernal-Chávez, S.A.; Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Giraldo-Gomez, D.M.; Figueroa-Gonzalez, G.; Reyes-Hernandez, O.D.; González-Del Carmen, M.; González-Torres, M.; Cortés, H.; Leyva-Gómez, G. Insights into Terminal Sterilization Processes of Nanoparticles for Biomedical Applications. Molecules 2021, 26, 2068. https://doi.org/10.3390/molecules26072068

AMA Style

Bernal-Chávez SA, Del Prado-Audelo ML, Caballero-Florán IH, Giraldo-Gomez DM, Figueroa-Gonzalez G, Reyes-Hernandez OD, González-Del Carmen M, González-Torres M, Cortés H, Leyva-Gómez G. Insights into Terminal Sterilization Processes of Nanoparticles for Biomedical Applications. Molecules. 2021; 26(7):2068. https://doi.org/10.3390/molecules26072068

Chicago/Turabian Style

Bernal-Chávez, Sergio A., María L. Del Prado-Audelo, Isaac H. Caballero-Florán, David M. Giraldo-Gomez, Gabriela Figueroa-Gonzalez, Octavio D. Reyes-Hernandez, Manuel González-Del Carmen, Maykel González-Torres, Hernán Cortés, and Gerardo Leyva-Gómez. 2021. "Insights into Terminal Sterilization Processes of Nanoparticles for Biomedical Applications" Molecules 26, no. 7: 2068. https://doi.org/10.3390/molecules26072068

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop