Potential Mitigation of Smoke Taint in Wines by Post-Harvest Ozone Treatment of Grapes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Post-Harvest O3 Treatment on the Composition of Grapes Exposed to Smoke at Approximately 7 Days Post-Veraison
2.2. Influence of Post-Harvest O3 Treatment on the Composition and Sensory Profiles of Wines Made from Grapes Exposed to Smoke at Approximately 7 Days Post-Veraison
2.3. Influence of Post-Harvest Smoke Exposure and O3 Treatment on Composition of Grapes
2.3.1. VPs and VP Glycosides
2.3.2. Anthocyanins and Tannins
3. Materials and Methods
3.1. Smoke Treatment of Grapevines and Post-Harvest Ozone Treatment of Grapes (Trial 1)
3.2. Post-Harvest Smoke and Ozone Treatment of Grapes (Trial 2)
3.3. Winemaking
3.4. Chemical Analysis of Grapes and Wine
3.4.1. Determination of Volatile Phenols
3.4.2. Determination of Volatile Phenol Glycoconjugates
3.4.3. Determination of Total Tannins and Anthocyanins
3.4.4. Determination of Basic Wine Chemistry Parameters
3.5. Sensory Analysis of Wines
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Krstic, M.P.; Johnson, D.L.; Herderich, M.J. Review of smoke taint in wine: Smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Aust. J. Grape Wine Res. 2015, 21, 537–553. [Google Scholar] [CrossRef]
- The Australian Wine Research Institute. Annual Report; Høj, P., Pretorius, I., Blair, R., Eds.; The Australian Wine Research Institute: Adelaide, Australia, 2003; pp. 37–38. [Google Scholar]
- Kennison, K.R.; Wilkinson, K.L.; Williams, H.G.; Smith, J.H.; Gibberd, M.R. Smoke-derived taint in wine: Effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. J. Agric. Food Chem. 2007, 55, 10897–10901. [Google Scholar] [CrossRef]
- Collins, C.; Gao, H.; Wilkinson, K.L. An observational study into the recovery of grapevines (Vitis vinifera L.) following a bushfire. Am. J. Enol. Vitic. 2014, 65, 285–292. [Google Scholar] [CrossRef]
- Kennison, K.R.; Gibberd, M.R.; Pollnitz, A.P.; Wilkinson, K.L. Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. J. Agric. Food Chem. 2008, 56, 7379–7383. [Google Scholar] [CrossRef] [PubMed]
- Ristic, R.; Osidacz, P.; Pinchbeck, K.; Hayasaka, Y.; Fudge, A.; Wilkinson, K. The effect of winemaking techniques on the intensity of smoke taint in wine. Aust. J. Grape Wine Res. 2011, 17, S29–S40. [Google Scholar] [CrossRef]
- Noestheden, M.; Dennis, E.G.; Romero-Montalvo, E.; DiLabio, G.A.; Zandberg, W.F. Detailed characterization of glycosylated sensory-active volatile phenols in smoke-exposed grapes and wine. Food Chem. 2018, 259, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Guillén, M.D.; Ibargoitia, M.L. New compounds with potential antioxidant and organoleptic properties, detected for the first time in liquid smoke flavoring preparations. J. Agric. Food Chem. 1998, 46, 1276–1285. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Baldock, G.A.; Pardon, K.H.; Jeffery, D.W.; Herderich, M.J. Investigation into the formation of guaiacol conjugates in berries and leaves of grapevine Vitis vinifera L. cv. Cabernet Sauvignon using stable isotope tracers combined with HPLC-MS and MS/MS analysis. J. Agric. Food Chem. 2010, 58, 2076–2081. [Google Scholar] [CrossRef] [PubMed]
- Ristic, R.; Fudge, A.L.; Pinchbeck, K.A.; De Bei, R.; Fuentes, S.; Hayasaka, Y.; Tyerman, S.D.; Wilkinson, K.L. Impact of grapevine exposure to smoke on vine physiology and the composition and sensory properties of wine. Theor. Exp. Plant. Phys. 2016, 28, 67–83. [Google Scholar] [CrossRef]
- Kennison, K.R.; Wilkinson, K.L.; Pollnitz, A.P.; Williams, H.G.; Gibberd, M.R. Effect of timing and duration of grapevine exposure to smoke on the composition and sensory properties of wine. Aust. J. Grape Wine Res. 2009, 15, 228–237. [Google Scholar] [CrossRef]
- Wilkinson, K.L.; Ristic, R.; Pinchbeck, K.A.; Fudge, A.L.; Singh, D.P.; Pitt, K.M.; Downey, M.O.; Baldock, G.A.; Hayasaka, Y.; Parker, M.; et al. Comparison of method for the analysis of smoke related phenols and their conjugates in grapes and wine. Aust. J. Grape Wine Res. 2011, 17, S22–S28. [Google Scholar] [CrossRef]
- Noestheden, M.; Dennis, E.G.; Zandberg, W. Quantitating volatile phenols in Cabernet Franc berries and wine after on-vine exposure to smoke from a simulated forest fire. J. Agric. Food Chem. 2018, 66, 695–703. [Google Scholar] [CrossRef]
- Härtl, K.; Huang, F.-C.; Giri, A.P.; Franz-Oberdorf, K.; Frotscher, J.; Shao, Y.; Hoffmann, T.; Schwab, W. Glucosylation of smoke-derived volatiles in grapevine (Vitis vinifera) is catalyzed by a promiscuous resveratrol/guaiacol glucosyltransferase. J. Agric. Food Chem. 2017, 65, 5681–5689. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Härtl, K.; McGraphery, K.; Hoffmann, T.; Schwab, W. Attractive but toxic: Emerging roles of glycosidically bound volatiles and glycosyltransferases involved in their formation. Mol. Plant 2018, 11, 1225–1236. [Google Scholar] [CrossRef][Green Version]
- Dungey, K.A.; Hayasaka, Y.; Wilkinson, K.L. Quantitative analysis of glycoconjugate precursors of guaiacol in smoke-affected grapes using liquid chromatography-tandem mass spectrometry based stable isotope dilution analysis. Food Chem. 2011, 126, 801–806. [Google Scholar] [CrossRef]
- Szeto, C.; Ristic, R.; Capone, D.; Puglisi, C.; Pagay, V.; Culbert, J.; Jiang, W.; Herderich, M.; Tuke, J.; Wilkinson, K. Uptake and glycosylation of smoke-derived volatile phenols by Cabernet Sauvignon grapes and their subsequent fate during winemaking. Molecules 2020, 25, 3720. [Google Scholar] [CrossRef]
- Mayr, C.M.; Parker, M.; Baldock, G.A.; Black, C.A.; Pardon, K.H.; Williamson, P.O.; Herderich, M.J.; Francis, I.L. Determination of the importance of in-mouth release of volatile phenol glycoconjugates to the flavor of smoke-tainted wines. J. Agric. Food Chem. 2014, 62, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Ristic, R.; Pinchbeck, K.A.; Fudge, A.L.; Hayasaka, Y.; Wilkinson, K.L. Effect of leaf removal and grapevine smoke exposure on colour, chemical composition and sensory properties of Chardonnay wines. Aust. J. Grape Wine Res. 2013, 19, 230–237. [Google Scholar] [CrossRef]
- Fudge, A.L.; Ristic, R.; Wollan, D.; Wilkinson, K.L. Amelioration of smoke taint in wine by reverse osmosis and solid phase adsorption. Aust. J. Grape Wine Res. 2011, 17, S41–S48. [Google Scholar] [CrossRef]
- Fudge, A.L.; Schiettecatte, M.; Ristic, R.; Hayasaka, Y.; Wilkinson, K.L. Amelioration of smoke taint in wine by treatment with commercial fining agents. Aust. J. Grape Wine Res. 2012, 18, 302–307. [Google Scholar] [CrossRef]
- Dang, C.; Jiranek, V.; Taylor, D.K.; Wilkinson, K.L. Removal of volatile phenols from wine using crosslinked cyclodextrin polymers. Molecules 2020, 25, 910. [Google Scholar] [CrossRef][Green Version]
- Tzortzakis, N.; Chrysargyris, A. Postharvest ozone application for the preservation of fruits and vegetables. Food Rev. Int. 2016, 33, 270–315. [Google Scholar] [CrossRef]
- Glowacz, M.; Colgan, R.; Rees, D. The use of ozone to extend the shelf-life and maintain quality of fresh produce. J. Sci. Food Agric. 2015, 95, 662–671. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Greene, A.K.; Seydim, A.C. Use of ozone in the food industry. LWT Food Sci. Technol. 2004, 37, 453–460. [Google Scholar] [CrossRef]
- Khadre, M.A.; Yousef, A.E.; Kim, J.G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Bellincontro, A.; Catelli, C.; Cotarella, R.; Mencarelli, F. Postharvest ozone fumigation of Petit Verdot grapes to prevent the use of sulfites and to increase anthocyanin in wine. Aust. J. Grape Wine Res. 2017, 23, 200–206. [Google Scholar] [CrossRef]
- Botondi, R.; De Sanctis, F.; Moscatelli, N.; Vettraino, A.M.; Catelli, C.; Mencarelli, F. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Food Chem. 2015, 188, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Carbone, K.; Mencarelli, F. Influence of short-term postharvest ozone treatments in nitrogen or air atmosphere on the metabolic response of white wine grapes. Food Bioprocess. Tech. 2015, 8, 1739–1749. [Google Scholar] [CrossRef]
- Mencarelli, F.; Catelli, C. Process for the Treatment and the Winemaking of Grapes. Patent WO 2012095734 A1, 19 July 2012. [Google Scholar]
- Modesti, M.; Petriccione, M.; Forniti, R.; Zampella, L.; Mastrobuoi, F.; Scortichini, M.; Mencarelli, F. Methyl jasmonate and ozone affect the antioxidant system and the quality of wine grape during postharvest partial dehydration. Food Res. Int. 2018, 112, 369–377. [Google Scholar] [CrossRef]
- Forney, C.F.; Song, J.; Hildebrand, P.D.; Fan, L.; McRae, K.B. Interactive effects of ozone and 1-methylcyclopropene on decay resistance and quality of stored carrots. Postharvest Biol. Technol. 2007, 45, 341–348. [Google Scholar] [CrossRef]
- Forney, C.F.; Song, J.; Fan, L.H.; Hildebrand, P.D.; Jordan, M.A. Ozone and 1-methylcyclopropene alter the postharvest quality of broccoli. J. Am. Soc. Hortic. Sci. 2003, 128, 403–408. [Google Scholar] [CrossRef][Green Version]
- Nadas, A.; Olmo, M.; Garcia, J.M. Growth of Botrytis cinerea and strawberry quality in ozone-enriched atmospheres. J. Food Sci. 2003, 68, 1798–1802. [Google Scholar] [CrossRef]
- Brodowska, A.J.; Nowak, A.; Śmigielski, K. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 2176–2201. [Google Scholar] [CrossRef]
- Río Segade, S.; Vilanova, M.; Giacosa, S.; Perrone, I.; Chitarra, W.; Pollon, M.; Torchio, F.; Boccacci, P.; Gambino, G.; Gerbi, V.; et al. Ozone improves the aromatic fingerprint of white grapes. Sci. Rep. 2017, 7, 16301. [Google Scholar] [CrossRef][Green Version]
- Cisterna, B.; Boschi, F.; Croce, A.; Podda, R.; Zanzoni, S.; Degl’Innocenti, D.; Bernardi, P.; Costanzo, M.; Marzola, P.; Covi, V.; et al. Ozone treatment of grapes during withering for Amarone wine: A multimodal imaging and spectroscopic analysis. Microsc. Microanal. 2018, 4, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Río Segade, S.; Vilanova, M.; Pollon, M.; Giacosa, S.; Torchio, F.; Rolle, L. Grape VOCs response to postharvest short-term ozone treatments. Front. Plant Sci. 2008, 9, 1826. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’Donnell, C.P.; Patras, A.; Brunton, N.; Cullen, P.J. Anthocyanins and color degradation in ozonated grape juice. Food Chem. Toxicol. 2009, 47, 2824–2829. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, Y.; Baldock, G.A.; Parker, M.; Pardon, K.H.; Black, C.A.; Herderich, M.J.; Jeffery, D.W. Glycosylation of smoke derived volatile phenols in grapes as a consequence of grapevine exposure to bushfire smoke. J. Agric. Food Chem. 2010, 58, 10989–10998. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, Y.; Parker, M.; Baldock, G.A.; Pardon, K.H.; Black, C.A.; Jeffery, D.W.; Herderich, M.J. Assessing the impact of smoke exposure in grapes: Development and validation of an HPLC-MS/MS method for the quantitative analysis of smoke-derived phenolic glycosides in grapes and wine. J. Agric. Food Chem. 2013, 61, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Van der Hulst, L.; Munguia, P.; Culbert, J.A.; Ford, C.M.; Burton, R.A.; Wilkinson, K.L. Accumulation of volatile phenol glycoconjugates in grapes following grapevine exposure to smoke and potential mitigation of smoke taint by foliar application of kaolin. Planta 2019, 249, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Antolini, A.; Forniti, R.; Modesti, M.; Bellincontro, A.; Catelli, C.; Mencarelli, F. First application of ozone postharvest fumigation to remove smoke taint from grapes. Ozone Sci. Eng. 2020, 1–9. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Aguayo, E.; Artés, F.; Tomás-Barberán, F. Enriched ozone atmosphere enhances bioactive phenolics in seedless table grapes after prolonged shelf life. J. Sci. Food Agric. 2007, 87, 824–831. [Google Scholar] [CrossRef]
- Gabler, F.M.; Smilanick, J.L.; Mansour, M.F.; Karaca, H. Influence of fumigation with high concentrations of ozone gas on postharvest gray mold and fungicide residues on table grapes. Postharvest Biol. Technol. 2010, 55, 85–90. [Google Scholar] [CrossRef]
- Feliziani, E.; Romanazzi, G.; Smilanick, J.L. Application of low concentrations of ozone during the cold storage of table grapes. Postharvest Biol. Technol. 2014, 93, 38–48. [Google Scholar] [CrossRef]
- Paissoni, M.A.; Río Segade, S.; Giacosa, S.; Torchio, F.; Cravero, F.; Englezos, V.; Rantsiou, K.; Carboni, C.; Gerbi, V.; Teissedre, P.-L.; et al. Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo (Vitis vinifera L.). Food Res. Int. 2007, 98, 68–78. [Google Scholar] [CrossRef]
- Heath, R.L. Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environ. Pollut. 2008, 155, 453–463. [Google Scholar] [CrossRef]
- Vaultier, M.; Jolivet, Y. Ozone sensing and early signaling in plants: An outline from the cloud. Environ. Exp. Bot. 2015, 114, 144–152. [Google Scholar] [CrossRef]
- Behr, M.; Neutelings, G.; El Jaziri, M.; Baucher, M. You want it sweeter: How glycosylation affect plant response to oxidative stress. Front. Plant Sci. 2020, 11, 571399. [Google Scholar] [CrossRef]
- Noctor, G.; Reichheld, J.P.; Foyer, C.H. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 2018, 80, 3–12. [Google Scholar] [CrossRef][Green Version]
- Montoro, P.; Braca, A.; Pizza, C.; De Tommasi, N. Structure antioxidant activity relationships of flavonoids isolated from different plant species. Food Chem. 2005, 92, 349–355. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 2014, 77, 367–379. [Google Scholar] [CrossRef]
- Farooq, M.A.; Niazi, A.K.; Akhtar, J.; Saifullah; Farooq, M.; Souri, Z.; Karimi, N.; Rengel, Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol. Biochem. 2019, 141, 353–369. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef][Green Version]
- Pérez, A.G.; Sanz, C.; Ríos, J.J.; Olías, R.; Olías, J.M. Effects of ozone treatment on postharvest strawberry quality. J. Agric. Food Chem. 1999, 47, 1652–1656. [Google Scholar] [CrossRef]
- De Sanctis, F.; Ceccantoni, B.; Bellincontro, A.; Botondi, R.; Mencarelli, F.; D’Onofrio, C.; Ducci, E.; Catelli, C. Ozone fumigation postharvest treatment for the quality of wine grape. Acta Hortic. 2015, 1071, 795–800. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Dungey, K.A.; Baldock, G.A.; Kennison, K.R.; Wilkinson, K.L. Identification of a β-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Anal. Chim. Acta 2010, 660, 143–148. [Google Scholar] [CrossRef]
- Pardo-Garcia, A.I.; Wilkinson, K.L.; Culbert, J.A.; Lloyd, N.D.R.; Alonso, G.L.; Salinas, M.R. Accumulation of guaiacol glycoconjugates in fruit, leaves and shoots of Vitis vinifera cv. Monastrell following foliar applications of guaiacol or oak extract to grapevines. Food Chem. 2017, 217, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Ristic, R.; Boss, P.K.; Wilkinson, K.L. Influence of fruit maturity at harvest on the intensity of smoke taint in wine. Molecules 2015, 20, 8913–8927. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Culbert, J.C.; Jiang, W.; Ristic, R.; Puglisi, C.J.; Nixon, E.C.; Shi, H.; Wilkinson, K.L. Glycosylation of volatile phenols in grapes following pre-harvest (on-vine) vs. post-harvest (off-vine) exposure to smoke. Molecules 2021. in preparation. [Google Scholar]
- Cullen, P.J.; Tiwari, B.K.; O’Donnell, C.P.; Muthukumarappan, K. Modelling approaches to ozone processing of liquid foods. Trends Food Sci. Technol. 2009, 20, 125–136. [Google Scholar] [CrossRef]
- Sachadyn-Król, M.; Materska, M.; Chilczuk, B.; Karaś, M.; Jakubczyk, A.; Perucka, I.; Jackowska, I. Ozone-induced changes in the content of bioactive compounds and enzyme activity during storage of pepper fruits. Food Chem. 2016, 211, 59–67. [Google Scholar] [CrossRef]
- Lv, Y.; Tahir, I.I.; Olsson, M.E. Effect of ozone application on bioactive compounds of apple fruit during short-term cold storage. Sci. Hortic. 2019, 253, 49–60. [Google Scholar] [CrossRef]
- Pollnitz, A.P.; Pardon, K.H.; Sykes, M.; Sefton, M.A. The effects of sample preparation and gas chromatograph injection techniques on the accuracy of measuring guaiacol, 4-methylguaiacol and other volatile oak compounds in oak extracts by stable isotope dilution analyses. J. Agric. Food Chem. 2004, 52, 3244–3252. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High throughput analysis of red wine and grape phenolics—Adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Danner, L.; Crump, A.M.; Croker, A.; Gambetta, J.M.; Johnson, T.E.; Bastian, S.E.P. Comparison of Rate-All-That-Apply and descriptive analysis for the sensory profiling of wine. Am. J. Enol. Vitic. 2018, 69, 12–21. [Google Scholar] [CrossRef]
- Ristic, R.; van der Hulst, L.; Capone, D.L.; Wilkinson, K.L. Impact of bottle aging on smoke-tainted wines from different grape cultivars. J. Agric. Food Chem. 2017, 65, 4146–4152. [Google Scholar] [CrossRef]
Treatment | Guaiacol Glycosides | 4-Methyl Guaiacol Glycosides | Phenol Glycosides | Cresol Glycosides | Syringol Glycosides | 4-Methyl Syringol Glycosides | |
---|---|---|---|---|---|---|---|
control no O3 | 7.6 ± 0.3 d | 4.7 ± 0.8 d | 19 ± 2.3 e | 20 ± 1.9 d | 4.4 ± 0.2 e | 1.8 ± 0.3 d | |
control 1 ppm O3 | t = 6 | 12 ± 1.4 d | 5.0 ± 0.2 d | 24 ± 2.5 e | 23 ± 1.8 d | 8.9 ± 1.3 e | 1.8 ± 0.1 d |
t = 12 | 12 ± 0.6 d | 5.3 ± 0.6 d | 24 ± 0.9 e | 24 ± 1.4 d | 8.3 ± 0.6 e | 1.8 ± 0.2 d | |
t = 24 | 9.9 ± 1.3 d | 4.7 ± 0.6 d | 22 ± 4.1 e | 22 ± 3.1 d | 6.8 ± 1.3 e | 1.8 ± 0.5 d | |
control 3 ppm O3 | t = 6 | 8.1 ± 0.5 d | 4.7 ± 0.8 d | 17 ± 1.4 e | 21 ± 2.4 d | 5.2 ± 0.5 e | 1.7 ± 0.3 d |
t = 12 | 7.4 ± 0.7 d | 4.3 ± 0.5 d | 17 ± 1.8 e | 18 ± 2.2 d | 4.0 ± 0.3 e | 1.6 ± 0.2 d | |
smoke no O3 | 252 ± 14 b | 51 ± 5.9 ab | 227 ± 18 bc | 261 ± 23 b | 300 ± 22 bc | 19 ± 0.5 ab | |
smoke 1 ppm O3 | t = 6 | 231 ± 8.0 b | 45 ± 3.6 bc | 235 ± 27 bc | 257 ± 33 b | 316 ± 24 b | 18 ± 0.9 bc |
t = 12 | 246 ± 4.3 b | 47 ± 4.3 b | 245 ± 3.7 b | 261 ± 21 b | 327 ± 27 ab | 19 ± 2.2 ab | |
t = 24 | 207 ± 35 c | 41 ± 6.9 c | 189 ± 29 d | 208 ± 30 c | 265 ± 33 d | 16 ± 2.2 c | |
smoke 3 ppm O3 | t = 6 | 291 ± 12 a | 57 ± 3.9 a | 282 ± 25 a | 308 ± 25 a | 348 ± 7.8 a | 21 ± 2.0 a |
t = 12 | 230 ± 26 bc | 47 ± 3.9 b | 216 ± 23 cd | 238 ± 24 bc | 282 ± 32 cd | 18 ± 2.1 bc | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment | pH | TA (g/L) | Alcohol (% abv) | Wine Color Density (au) | Wine Color Hue | % Ionized Anthocyanins | SO2 Resistant Pigments (au) | Total Phenolics (au) | |
---|---|---|---|---|---|---|---|---|---|
control | no O3 | 3.9 ± 0.01 a | 6.1 ± 0.04 | 14.5 ± 0.1 ab | 7.1 ± 0.3 a | 0.69 ± 0.01 a | 20.2 ± 0.3 | 1.9 ± 0.06 b | 30.7 ± 1.7 a |
1 ppm O3 | 3.8 ± 0.02 ab | 7.0 ± 0.10 | 14.2 ± 0.2 c | 7.0 ± 0.2 a | 0.64 ± 0.01 c | 22.3 ± 2.1 | 2.3 ± 0.13 a | 26.1 ± 0.1 b | |
3 ppm O3 | 3.8 ± 0.01 ab | 5.8 ± 0.34 | 14.8 ± 0.1 a | 6.2 ± 0.2 b | 0.71 ± 0.01 a | 18.1 ± 0.8 | 1.8 ± 0.08 b | 26.1 ± 0.6 b | |
smoked | no O3 | 3.7 ± 0.13 b | 6.6 ± 0.28 | 14.0 ± 0.1 c | 6.6 ± 0.3 ab | 0.67 ± 0.0 b | 22.3 ± 1.5 | 1.9 ± 0.05 b | 29.4 ± 0.6 a |
1 ppm O3 | 3.7 ± 0.04 b | 7.5 ± 0.67 | 14.4 ± 0.1 ab | 6.7 ± 0.2 ab | 0.63 ± 0.01 c | 20.0 ± 1.5 | 1.8 ± 0.04 b | 27.3 ± 0.8 b | |
3 ppm O3 | 3.7 ± 0.03 b | 7.1 ± 0.63 | 14.1 ± 0.1 c | 6.6 ± 0.1 ab | 0.64 ± 0.0 bc | 20.8 ± 0.2 | 1.8 ± 0.05 b | 27.0 ± 0.4 b | |
p | 0.011 | ns | <0.001 | 0.039 | <0.001 | ns | <0.001 | 0.002 |
Treatment | Guaiacol | 4-Methyl Guaiacol | Cresols | Syringol | Guaiacol Glycosides | 4-Methyl Guaiacol Glycosides | Phenol Glycosides | Cresol Glycosides | Syringol Glycosides | 4-Methyl Syringol Glycosides | |
---|---|---|---|---|---|---|---|---|---|---|---|
control | no O3 | 1.0 ± 0.0 c | nd | nd | 3.0 ± 0.0 b | 9.4 ± 0.2 c | 4.8 ± 0.6 c | 19 ± 0.9 c | 20 ± 1.3 c | 3.4 ± 0.2 c | 1.0 ± 0.1 b |
1 ppm O3 | 1.0 ± 0.0 c | nd | nd | 2.7 ± 0.6 b | 13 ± 2.4 c | 5.3 ± 0.8 c | 23 ± 2.0 c | 23 ± 3.9 c | 6.1 ± 2.5 c | 1.0 ± 0.4 b | |
3 ppm O3 | 1.0 ± 0.0 c | nd | nd | 3.0 ± 0.0 b | 8.8 ± 0.6 c | 4.4 ± 0.4 c | 21 ± 1.2 c | 18 ± 1.1 c | 3.7 ± 0.3 c | tr | |
smoke | no O3 | 15 ± 1.5 a | 1.0 ± 0.0 | 7.7 ± 1.5 a | 4.7 ± 0.3 a | 295 ± 23 a | 59 ± 4.4 a | 249 ± 15 a | 280 ± 5.2 a | 240 ± 10 ab | 13 ± 0.9 a |
1 ppm O3 | 12 ± 2.1 b | nd | 5.7 ± 1.5 b | 4.0 ± 0.0 a | 232 ± 15 b | 47 ± 2.4 b | 198 ± 15 b | 217 ± 11 b | 213 ± 12 b | 12 ± 0.7 a | |
3 ppm O3 | 14 ± 2.3 ab | nd | 7.4 ± 1.2 a | 4.3 ± 0.3 a | 329 ± 57 a | 62 ± 11 a | 273 ± 51 a | 314 ± 63 a | 273 ± 42 a | 13 ± 3.6 a | |
p | < 0.001 | – | <0.001 | < 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modesti, M.; Szeto, C.; Ristic, R.; Jiang, W.; Culbert, J.; Bindon, K.; Catelli, C.; Mencarelli, F.; Tonutti, P.; Wilkinson, K. Potential Mitigation of Smoke Taint in Wines by Post-Harvest Ozone Treatment of Grapes. Molecules 2021, 26, 1798. https://doi.org/10.3390/molecules26061798
Modesti M, Szeto C, Ristic R, Jiang W, Culbert J, Bindon K, Catelli C, Mencarelli F, Tonutti P, Wilkinson K. Potential Mitigation of Smoke Taint in Wines by Post-Harvest Ozone Treatment of Grapes. Molecules. 2021; 26(6):1798. https://doi.org/10.3390/molecules26061798
Chicago/Turabian StyleModesti, Margherita, Colleen Szeto, Renata Ristic, WenWen Jiang, Julie Culbert, Keren Bindon, Cesare Catelli, Fabio Mencarelli, Pietro Tonutti, and Kerry Wilkinson. 2021. "Potential Mitigation of Smoke Taint in Wines by Post-Harvest Ozone Treatment of Grapes" Molecules 26, no. 6: 1798. https://doi.org/10.3390/molecules26061798