Excited-State Intramolecular Proton Transfer: A Short Introductory Review
Abstract
:1. Introduction
- (1)
- Fast and slow ESIPT vis a vis irreversible and reversible ESIPT
- (2)
- Effect of substitution, hydrogen bonding and geometrical effects
- (3)
- Excited-state double proton transfer (ESDPT), proton relay, concerted/stepwise proton transfer
- (4)
- Excitation wavelength dependence, anti-Kasha ESIPT, anti-aromaticity
- (5)
- Ground state vis a vis excited-state tautomerisation
2. Fast and Slow ESIPT
3. Hydrogen Bonding, Effect of Substitution and Crystal Structure
4. Excited-State Double Proton Transfer (ESDPT), Proton Relay, Concerted/Stepwise Proton Transfer
5. Excitation Wavelength Dependence
6. Ground State vis a vis Excited-State Tautomerization
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheiner, S. Hydrogen Bonding: A Theoretical Perspective; Topics in physical chemistry; Oxford University Press: New York, NY, USA, 1997; ISBN 978-0-19-509011-6. [Google Scholar]
- Hynes, J.T.; Klinman, J.P.; Limbach, H.; Schowen, R.L. (Eds.) Hydrogen-Transfer Reactions, 1st ed.; Wiley: Weinheim, Germany, 2006; ISBN 978-3-527-30777-7. [Google Scholar]
- Antonov, L. (Ed.) Tautomerism: Methods and Theories; Wiley-VCH: Weinheim, Germany, 2014; ISBN 978-3-527-65884-8. [Google Scholar]
- Arnaut, L.G.; Formosinho, S.J. Excited-State Proton Transfer Reactions I. Fundamentals and Intermolecular Reactions. J. Photochem. Photobiol. A Chem. 1993, 75, 1–20. [Google Scholar] [CrossRef]
- Formosinho, S.J.; Arnaut, L.G. Excited-State Proton Transfer Reactions II. Intramolecular Reactions. J. Photochem. Photobiol. A Chem. 1993, 75, 21–48. [Google Scholar] [CrossRef]
- Ormson, S.M.; Brown, R.G. Excited State Intramolecular Proton Transfer. I: ESIPT to Nitrogen. Prog. React. Kinet. 1994, 19, 45–91. [Google Scholar]
- Le Gourrierec, D.; Ormson, S.M.; Brown, R.G. Excited State Intramolecular Proton Transfer. Part 2. ESIPT to Oxygen. Prog. React. Kinet. 1994, 19, 211–275. [Google Scholar]
- Douhal, A.; Lahmani, F.; Zewail, A.H. Proton-Transfer Reaction Dynamics. Chem. Phys. 1996, 207, 477–498. [Google Scholar] [CrossRef]
- Van der Zwan, G. Dynamics of Ground- and Excited-State Intramolecular Proton Transfer Reactions. In Tautomerism; Antonov, L., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 213–251. ISBN 978-3-527-65882-4. [Google Scholar]
- Wu, L.; Han, H.-H.; Liu, L.; Gardiner, J.E.; Sedgwick, A.C.; Huang, C.; Bull, S.D.; He, X.-P.; James, T.D. ESIPT-Based Fluorescence Probe for the Rapid Detection of Peroxynitrite ‘AND’ Biological Thiols. Chem. Commun. 2018, 54, 11336–11339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, H.; Zhang, A.; Li, P.; Xia, L.; Guo, F. ESIPT Fluorescence Probe Based on Double-Switch Recognition Mechanism for Selective and Rapid Detection of Hydrogen Sulfide in Living Cells. ACS Omega 2019, 4, 9113–9119. [Google Scholar] [CrossRef] [PubMed]
- Mishra, H.; Misra, V.; Mehata, M.S.; Pant, T.C.; Tripathi, H.B. Fluorescence Studies of Salicylic Acid Doped Poly(Vinyl Alcohol) Film as a Water/Humidity Sensor. J. Phys. Chem. A 2004, 108, 2346–2352. [Google Scholar] [CrossRef]
- Chen, L.; Ye, J.-W.; Wang, H.-P.; Pan, M.; Yin, S.-Y.; Wei, Z.-W.; Zhang, L.-Y.; Wu, K.; Fan, Y.-N.; Su, C.-Y. Ultrafast Water Sensing and Thermal Imaging by a Metal-Organic Framework with Switchable Luminescence. Nat. Commun. 2017, 8, 15985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, V.; Mishra, H. Photoinduced Proton Transfer Coupled with Energy Transfer: Mechanism of Sensitized Luminescence of Terbium Ion by Salicylic Acid Doped in Polymer. J. Chem. Phys. 2008, 128, 244701. [Google Scholar] [CrossRef]
- Acuna, A.U.; Costela, A.; Munoz, J.M. A Proton-Transfer Laser. J. Phys. Chem. 1986, 90, 2807–2808. [Google Scholar] [CrossRef]
- Acuña, A.U.; Amat-Guerri, F.; Costela, A.; Douhal, A.; Figuera, J.M.; Florido, F.; Sastre, R. Proton-Transfer Lasing from Solid Organic Matrices. Chem. Phys. Lett. 1991, 187, 98–102. [Google Scholar] [CrossRef]
- Chou, P.; McMorrow, D.; Aartsma, T.J.; Kasha, M. The Proton-Transfer Laser. Gain Spectrum and Amplification of Spontaneous Emission of 3-Hydroxyflavone. J. Phys. Chem. 1984, 88, 4596–4599. [Google Scholar] [CrossRef]
- Yan, C.-C.; Wang, X.-D.; Liao, L.-S. Organic Lasers Harnessing Excited State Intramolecular Proton Transfer Process. ACS Photonics 2020, 7, 1355–1366. [Google Scholar] [CrossRef]
- Tsutsui, Y.; Zhang, W.; Ghosh, S.; Sakurai, T.; Yoshida, H.; Ozaki, M.; Akutagawa, T.; Seki, S. Electrically Switchable Amplified Spontaneous Emission from Liquid Crystalline Phase of an AIEE-Active ESIPT Molecule. Adv. Opt. Mater. 2020, 8, 1902158. [Google Scholar] [CrossRef]
- Catalan, J.; Fabero, F.; Soledad Guijarro, M.; Claramunt, R.M.; Santa Maria, M.D.; de la Foces-Foces, M.C.; Hernandez Cano, F.; Elguero, J.; Sastre, R. Photoinduced Intramolecular Proton Transfer as the Mechanism of Ultraviolet Stabilizers: A Reappraisal. J. Am. Chem. Soc. 1990, 112, 747–759. [Google Scholar] [CrossRef]
- Long, Y.; Mamada, M.; Li, C.; dos Santos, P.L.; Colella, M.; Danos, A.; Adachi, C.; Monkman, A. Excited State Dynamics of Thermally Activated Delayed Fluorescence from an Excited State Intramolecular Proton Transfer System. J. Phys. Chem. Lett. 2020, 11, 3305–3312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, G.; Li, F.; Fan, J.; Song, Y.; Wang, C.-K.; Lin, L. Theoretical Perspective for Luminescent Mechanism of Thermally Activated Delayed Fluorescence Emitter with Excited-State Intramolecular Proton Transfer. J. Mater. Chem. C 2020, 8, 98–108. [Google Scholar] [CrossRef]
- Tang, K.-C.; Chang, M.-J.; Lin, T.-Y.; Pan, H.-A.; Fang, T.-C.; Chen, K.-Y.; Hung, W.-Y.; Hsu, Y.-H.; Chou, P.-T. Fine Tuning the Energetics of Excited-State Intramolecular Proton Transfer (ESIPT): White Light Generation in a Single ESIPT System. J. Am. Chem. Soc. 2011, 133, 17738–17745. [Google Scholar] [CrossRef]
- Moraes, E.S.; Teixeira Alves Duarte, L.G.; Germino, J.C.; Atvars, T.D.Z. Near Attack Conformation as Strategy for ESIPT Modulation for White-Light Generation. J. Phys. Chem. C 2020, 124, 22406–22415. [Google Scholar] [CrossRef]
- Serdiuk, I.E. Design and Emissive Features of Ionic White-Light Fluorophore. J. Phys. Chem. C 2018, 122, 18615–18620. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.-A.; Hung, W.-Y.; Tang, W.-F.; Hsu, Y.-H.; Chen, C.-L.; Meng, F.-Y.; Chou, P.-T. Control of the Reversibility of Excited-State Intramolecular Proton Transfer (ESIPT) Reaction: Host-Polarity Tuning White Organic Light Emitting Diode on a New Thiazolo[5,4- d ]Thiazole ESIPT System. Chem. Mater. 2016, 28, 8815–8824. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Wu, L.; Han, H.-H.; Bull, S.D.; He, X.-P.; James, T.D.; Sessler, J.L.; Tang, B.Z.; Tian, H.; Yoon, J. Excited-State Intramolecular Proton-Transfer (ESIPT) Based Fluorescence Sensors and Imaging Agents. Chem. Soc. Rev. 2018, 47, 8842–8880. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Peng, X.; Fan, J.; Gao, S.; Tian, M.; Zhao, J.; Sun, S. Fluorescence Sensing of Anions Based on Inhibition of Excited-State Intramolecular Proton Transfer. J. Org. Chem. 2007, 72, 62–70. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, L.; Wu, F.-Y.; Jiang, Y.-B. Development of Fluorescent Sensing of Anions under Excited-State Intermolecular Proton Transfer Signaling Mechanism. Org. Lett. 2003, 5, 2667–2670. [Google Scholar] [CrossRef] [PubMed]
- Henary, M.M.; Wu, Y.; Fahrni, C.J. Zinc(II)-Selective Ratiometric Fluorescent Sensors Based on Inhibition of Excited-State Intramolecular Proton Transfer. Chem. Eur. J. 2004, 10, 3015–3025. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-J.; Seo, J.; Park, S.Y. Photochromic Switching of Excited-State Intramolecular Proton-Transfer (ESIPT) Fluorescence: A Unique Route to High-Contrast Memory Switching and Nondestructive Readout. J. Am. Chem. Soc. 2006, 128, 14542–14547. [Google Scholar] [CrossRef]
- Sobolewski, A.L. Reversible Molecular Switch Driven by Excited-State Hydrogen Transfer. Phys. Chem. Chem. Phys. 2008, 10, 1243. [Google Scholar] [CrossRef]
- Berenbeim, J.A.; Boldissar, S.; Owens, S.; Haggmark, M.R.; Gate, G.; Siouri, F.M.; Cohen, T.; Rode, M.F.; Patterson, C.S.; de Vries, M.S. Excited State Intramolecular Proton Transfer in Hydroxyanthraquinones: Toward Predicting Fading of Organic Red Colorants in Art. Sci. Adv. 2019, 5, eaaw5227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, A. Über die Fluoreszenz der Salizylsäure und verwandter Verbindungen. Naturwissenschaften 1955, 42, 175–176. [Google Scholar] [CrossRef]
- Weller, A. Innermolekularer Protonenübergang Im Angeregten Zustand. Z. Für Elektrochem. Ber. Der Bunsenges. Für Phys. Chem. 1956, 60, 1144–1147. [Google Scholar] [CrossRef]
- Waluk, J. Proton or Hydrogen Transfer? Charge Distribution Analysis. Pol. J. Chem. 2008, 82, 947–962. [Google Scholar]
- Konijnenberg, J.; Ekelmans, G.B.; Huizer, A.H.; Varma, C.A.G.O. Mechanism and Solvent Dependence of the Solvent-Catalysed Pseudo-Intramolecular Proton Transfer of 7-Hydroxyquinoline in the First Electronically Excited Singlet State and in the Ground State of Its Tautomer. J. Chem. Soc. Faraday Trans. 2 1989, 85, 39–51. [Google Scholar] [CrossRef]
- Sandros, K.; Seip, R.; Østvold, T.; Pohjonen, M.-L.; Koskikallio, J. Hydrogen Bonding Effects on the Fluorescence of Methyl Salicylate. Acta Chem. Scand. 1976, 30a, 761–763. [Google Scholar] [CrossRef]
- Kovi, P.J.; Miller, C.L.; Schulman, S.G. Biprotonic versus Intramolecular Phototautomerism of Salicylic Acid and Some of Its Methylated Derivatives in the Lowest Excited Singlet State. Anal. Chim. Acta 1972, 61, 7–13. [Google Scholar] [CrossRef]
- Smith, K.K.; Kaufmann, K.J. Solvent Dependence of the Nonradiative Decay Rate of Methyl Salicylate. J. Phys. Chem. 1981, 85, 2895–2897. [Google Scholar] [CrossRef]
- Heimbrook, L.; Kenny, J.E.; Kohler, B.E.; Scott, G.W. Lowest Excited Singlet State of Hydrogen-Bonded Methyl Salicylate. J. Phys. Chem. 1983, 87, 280–289. [Google Scholar] [CrossRef]
- Herek, J.L.; Pedersen, S.; Bañares, L.; Zewail, A.H. Femtosecond Real-time Probing of Reactions. IX. Hydrogen-atom Transfer. J. Chem. Phys. 1992, 97, 9046–9061. [Google Scholar] [CrossRef] [Green Version]
- Toribio, F.; Catalan, J.; Amat, F.; Acuna, A.U. Electronically Induced Proton-Transfer Reactions in Salicylic Acid Esters and Salicyloyl Chloride. J. Phys. Chem. 1983, 87, 817–822. [Google Scholar] [CrossRef]
- Kosower, E.M.; Dodiuk, H. Multiple Fluorescences III. Methyl 2,6-Dihydroxybenzoate and Methyl Salicylate. J. Lumin. 1975, 11, 249–254. [Google Scholar] [CrossRef]
- Acuna, A.U.; Amat-Guerri, F.; Catalan, J.; Gonzalez-Tablas, F. Dual Fluorescence and Ground State Equilibriums in Methyl Salicylate, Methyl 3-Chlorosalicylate, and Methyl 3-Tert-Butylsalicylate. J. Phys. Chem. 1980, 84, 629–631. [Google Scholar] [CrossRef]
- Pant, D.D.; Joshi, H.C.; Bisht, P.B.; Tripathi, H.B. Dual Emission and Double Proton Transfer in Salicylic Acid. Chem. Phys. 1994, 185, 137–144. [Google Scholar] [CrossRef]
- Denisov, G.S.; Golubev, N.S.; Schreiber, V.M.; Shajakhmedov, S.S.; Shurukhina, A.V. Excited State Intramolecular Proton Transfer and Dual Emission of the Cyclic Homo- and Heterodimers of 2-Hydroxy and 2,6-Dihydroxy Benzoic Acids. J. Mol. Struct. 1996, 381, 73–81. [Google Scholar] [CrossRef]
- Young, J.W.; Fleisher, A.J.; Pratt, D.W. Exploring Single and Double Proton Transfer Processes in the Gas Phase: A High Resolution Electronic Spectroscopy Study of 5-Fluorosalicylic Acid. J. Chem. Phys. 2011, 134, 084310. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H.; Karas, L.J.; Ottosson, H.; Wu, J.I.-C. Excited-State Proton Transfer Relieves Antiaromaticity in Molecules. Proc Natl Acad. Sci. USA 2019, 116, 20303–20308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisht, P.B.; Petek, H.; Yoshihara, K.; Nagashima, U. Excited State Enol-keto Tautomerization in Salicylic Acid: A Supersonic Free Jet Study. J. Chem. Phys. 1995, 103, 5290–5307. [Google Scholar] [CrossRef]
- Joshi, H.C.; Tripathi, H.B.; Pant, T.C.; Pant, D.D. Hydrogen-Bonding Effect on the Dual Emission of Salicylic Acid. Chem. Phys. Lett. 1990, 173, 83–86. [Google Scholar] [CrossRef]
- Denisov, G.S.; Golubev, N.S.; Schreiber, V.M.; Shajakhmedov, S.S.; Shurukhina, A.V. Effect of Intermolecular Hydrogen Bonding and Proton Transfer on Fluorescence of Salicylic Acid. J. Mol. Struct. 1997, 436–437, 153–160. [Google Scholar] [CrossRef]
- Joshi, H.C.; Mishra, H.; Tripathi, H.B. Photophysics and Photochemistry of Salicylic Acid Revisited. J. Photochem. Photobiol. A Chem. 1997, 105, 15–20. [Google Scholar] [CrossRef]
- Lahmani, F.; Zehnacker-Rentien, A. Effect of Substitution on the Photoinduced Intramolecular Proton Transfer in Salicylic Acid. J. Phys. Chem. A 1997, 101, 6141–6147. [Google Scholar] [CrossRef]
- Smoluch, M.; Joshi, H.; Gerssen, A.; Gooijer, C.; van der Zwan, G. Fast Excited-State Intramolecular Proton Transfer and Subnanosecond Dynamic Stokes Shift of Time-Resolved Fluorescence Spectra of the 5-Methoxysalicylic Acid/Diethyl Ether Complex. J. Phys. Chem. A 2005, 109, 535–541. [Google Scholar] [CrossRef]
- Acuña, A.U.; Toribio, F.; Amat-Guerri, F.; Catalán, J. Excited State Proton Transfer: A New Feature in the Fluorescence of Methyl 5-Chlorosalicylate and Methyl 5-Methoxysalicylate. J. Photochem. 1985, 30, 339–352. [Google Scholar] [CrossRef]
- Abd El-Hakam Abou El-Nasr, E.; Fujii, A.; Ebata, T.; Mikami, N. Substitution Effects on the Excited-State Intramolecular Proton Transfer of Salicylic Acid: An Infrared Spectroscopic Study on the OH Stretching Vibrations of Jet-Cooled 5-Methoxysalicylic Acid. Chem. Phys. Lett. 2003, 376, 788–793. [Google Scholar] [CrossRef]
- Maheshwary, S.; Lourderaj, U.; Sathyamurthy, N. Ab Initio Quantum Chemical Investigation of the Ground and Excited States of Salicylic Acid Dimer. J. Phys. Chem. A 2006, 110, 12662–12669. [Google Scholar] [CrossRef]
- Sobolewski, A.L.; Domcke, W. Ab Initio Potential-Energy Functions for Excited State Intramolecular Proton Transfer: A Comparative Study of o-Hydroxybenzaldehyde, Salicylic Acid and 7-Hydroxy-1-Indanone. Phys. Chem. Chem. Phys. 1999, 1, 3065–3072. [Google Scholar] [CrossRef]
- Sobolewski, A.L.; Domcke, W. Photophysics of Intramolecularly Hydrogen-Bonded Aromatic Systems: Ab Initio Exploration of the Excited-State Deactivation Mechanisms of Salicylic Acid. Phys. Chem. Chem. Phys. 2006, 8, 3410. [Google Scholar] [CrossRef]
- Yahagi, T.; Fujii, A.; Ebata, T.; Mikami, N. Infrared Spectroscopy of the OH Stretching Vibrations of Jet-Cooled Salicylic Acid and Its Dimer in S0 and S1. J. Phys. Chem. A 2001, 105, 10673–10680. [Google Scholar] [CrossRef]
- Morsi, S.E.; Williams, J.O. Fluorescence and Reactivity of P-Aminosalicylic Acid: An Example of Proton Transfer in the Solid State. J. Chem. Soc. Perkin Trans. 2 1978, 1280. [Google Scholar] [CrossRef]
- Maheshwari, S.; Chowdhury, A.; Sathyamurthy, N.; Mishra, H.; Tripathi, H.B.; Panda, M.; Chandrasekhar, J. Ground and Excited State Intramolecular Proton Transfer in Salicylic Acid: An Ab Initio Electronic Structure Investigation. J. Phys. Chem. A 1999, 103, 6257–6262. [Google Scholar] [CrossRef]
- Friedrich, D.M.; Wang, Z.; Joly, A.G.; Peterson, K.A.; Callis, P.R. Ground-State Proton-Transfer Tautomer of the Salicylate Anion. J. Phys. Chem. A 1999, 103, 9644–9653. [Google Scholar] [CrossRef] [Green Version]
- Joshi, H.C.; Gooijer, C.; van der Zwan, G. Water-Induced Quenching of Salicylic Anion Fluorescence. J. Phys. Chem. A 2002, 106, 11422–11430. [Google Scholar] [CrossRef]
- Joshi, H.C.; Gooijer, C.; van der Zwan, G. Substitution Effects on the Photophysical Characteristics of the Salicylic Anion. J. Fluoresc. 2003, 13, 227–234. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Sathyamurthy, N. Structure and Stability of Salicylic Acid−Water Complexes and the Effect of Molecular Hydration on the Spectral Properties of Salicylic Acid. J. Phys. Chem. A 2006, 110, 5960–5964. [Google Scholar] [CrossRef]
- Vener, M.V.; Scheiner, S. Hydrogen Bonding and Proton Transfer in the Ground and Lowest Excited Singlet States of O-Hydroxyacetophenone. J. Phys. Chem. 1995, 99, 642–649. [Google Scholar] [CrossRef]
- Sobolewski, A.L.; Domcke, W. Ab Initio Study of Excited-State Intramolecular Proton Dislocation in Salicylic Acid. Chem. Phys. 1998, 232, 257–265. [Google Scholar] [CrossRef]
- Jang, Sungwoo; Jin, Sung Il; Park, Chan Ryang TDDFT Potential Energy Functions for Excited State Intramolecular Proton Transfer of Salicylic Acid, 3-Aminosalicylic Acid, 5-Aminosalicylic Acid, and 5-Methoxysalicylic Acid. Bull. Korean Chem. Soc. 2007, 28, 2343–2353. [CrossRef] [Green Version]
- Adhikari, M.; Joshi, N.K.; Joshi, H.C.; Mehata, M.S.; Mishra, H.; Pant, S. Revisiting the Photochemistry 2,5-dihydroxy Benzoic Acid (Gentisic Acid): Solvent and PH Effect. J. Phys. Org. Chem. 2020. [Google Scholar] [CrossRef]
- Woolfe, G.J.; Thistlethwaite, P.J. Excited-State Prototropism in Esters of o-Hydroxy-2-Naphthoic Acids. J. Am. Chem. Soc. 1981, 103, 3849–3854. [Google Scholar] [CrossRef]
- Catalán, J.; del Valle, J.C.; Palomar, J.; Díaz, C.; de Paz, J.L.G. The Six-Membered Intramolecular Hydrogen Bond Position as a Switch for Inducing an Excited State Intramolecular Proton Transfer (ESIPT) in Esters of o -Hydroxynaphthoic Acids. J. Phys. Chem. A 1999, 103, 10921–10934. [Google Scholar] [CrossRef]
- Mishra, H.; Joshi, H.C.; Tripathi, H.B.; Maheshwary, S.; Sathyamurthy, N.; Panda, M.; Chandrasekhar, J. Photoinduced Proton Transfer in 3-Hydroxy-2-Naphthoic Acid. J. Photochem. Photobiol. A Chem. 2001, 139, 23–36. [Google Scholar] [CrossRef]
- Mishra, H.; Maheshwary, S.; Tripathi, H.B.; Sathyamurthy, N. An Experimental and Theoretical Investigation of the Photophysics of 1-Hydroxy-2-Naphthoic Acid. J. Phys. Chem. A 2005, 109, 2746–2754. [Google Scholar] [CrossRef]
- Mishra, H. Photo-Induced Relaxation and Proton Transfer in Some Hydroxy Naphthoic Acids in Polymers. J. Phys. Chem. B 2006, 110, 9387–9396. [Google Scholar] [CrossRef]
- Southern, C.A.; Levy, D.H.; Florio, G.M.; Longarte, A.; Zwier, T.S. Electronic and Infrared Spectroscopy of Anthranilic Acid in a Supersonic Jet. J. Phys. Chem. A 2003, 107, 4032–4040. [Google Scholar] [CrossRef]
- Southern, C.A.; Levy, D.H.; Stearns, J.A.; Florio, G.M.; Longarte, A.; Zwier, T.S. Spectroscopic Consequences of Localized Electronic Excitation in Anthranilic Acid Dimer. J. Phys. Chem. A 2004, 108, 4599–4609. [Google Scholar] [CrossRef]
- Stearns, J.A.; Das, A.; Zwier, T.S. Hydrogen Atom Dislocation in the Excited State of Anthranilic Acid: Probing the Carbonyl Stretch Fundamental and the Effects of Water Complexation. Phys. Chem. Chem. Phys. 2004, 6, 2605. [Google Scholar] [CrossRef]
- Blodgett, K.N.; Sun, D.; Fischer, J.L.; Sibert, E.L.; Zwier, T.S. Vibronic Spectroscopy of Methyl Anthranilate and Its Water Complex: Hydrogen Atom Dislocation in the Excited State. Phys. Chem. Chem. Phys. 2019, 21, 21355–21369. [Google Scholar] [CrossRef] [PubMed]
- Blodgett, K.N.; Fischer, J.L.; Zwier, T.S.; Sibert, E.L. The Missing NH Stretch Fundamental in S 1 Methyl Anthranilate: IR-UV Double Resonance Experiments and Local Mode Theory. Phys. Chem. Chem. Phys. 2020, 22, 14077–14087. [Google Scholar] [CrossRef]
- Kolek, P.; Andrzejak, M.; Uchacz, T.; Szlachcic, P. Consistent Franck–Condon Modeling of Geometry Changes for the S0→S1(Ππ*) Excitation in Anthranilic Acid: LIF Spectroscopy Aided by CC2 or TDDFT Vibrations. J. Quant. Spectrosc. Radiat. Transf. 2020, 242, 106747. [Google Scholar] [CrossRef]
- Bader, A.N.; Ariese, F.; Gooijer, C. Proton Transfer in 3-Hydroxyflavone Studied by High-Resolution 10 K Laser-Excited Shpol’skii Spectroscopy. J. Phys. Chem. A 2002, 106, 2844–2849. [Google Scholar] [CrossRef]
- Ameer-Beg, S.; Ormson, S.M.; Brown, R.G.; Matousek, P.; Towrie, M.; Nibbering, E.T.J.; Foggi, P.; Neuwahl, F.V.R. Ultrafast Measurements of Excited State Intramolecular Proton Transfer (ESIPT) in Room Temperature Solutions of 3-Hydroxyflavone and Derivatives. J. Phys. Chem. A 2001, 105, 3709–3718. [Google Scholar] [CrossRef]
- Furukawa, K.; Yamamoto, N.; Hino, K.; Sekiya, H. Excited-State Intramolecular Proton Transfer and Conformational Relaxation in 4′-N,N-Dimethylamino-3-Hydroxyflavone Doped in Acetonitrile Crystals. Phys. Chem. Chem. Phys. 2016, 18, 28564–28575. [Google Scholar] [CrossRef]
- Zamotaiev, O.M.; Shvadchak, V.; Sych, T.P.; Melnychuk, N.A.; Yushchenko, D.; Mely, Y.; Pivovarenko, V.G. Environment-Sensitive Quinolone Demonstrating Long-Lived Fluorescence and Unusually Slow Excited-State Intramolecular Proton Transfer Kinetics. Methods Appl. Fluoresc. 2016, 4, 034004. [Google Scholar] [CrossRef]
- Hristova, S.; Dobrikov, G.; Kamounah, F.S.; Kawauchi, S.; Hansen, P.E.; Deneva, V.; Nedeltcheva, D.; Antonov, L. 10-Hydroxybenzo[h]Quinoline: Switching between Single- and Double-Well Proton Transfer through Structural Modifications. RSC Adv. 2015, 5, 102495–102507. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, H.; Hristova, S.; Deneva, V.; Kamounah, F.S.; Hansen, P.E.; Lochbrunner, S.; Antonov, L. Dynamics of Excited State Proton Transfer in Nitro Substituted 10-Hydroxybenzo[h]Quinolines. Phys. Chem. Chem. Phys. 2017, 19, 26621–26629. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.K.; Arora, P.; Pant, S.; Joshi, H.C. Slow Excited State Phototautomerization in 3-Hydroxyisoquinoline. Photochem. Photobiol. Sci. 2014, 13, 929. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Z.; Guo, Q.; Wang, X.; Song, H.; Maroncelli, M.; Xia, A. Ultrafast Ground-State Intramolecular Proton Transfer in Diethylaminohydroxyflavone Resolved with Pump–Dump–Probe Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 4174–4181. [Google Scholar] [CrossRef] [PubMed]
- Yushchenko, D.A.; Shvadchak, V.V.; Klymchenko, A.S.; Duportail, G.; Pivovarenko, V.G.; Mély, Y. Steric Control of the Excited-State Intramolecular Proton Transfer in 3-Hydroxyquinolones: Steady-State and Time-Resolved Fluorescence Study. J. Phys. Chem. A 2007, 111, 8986–8992. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-Y.; Hu, J.-W.; Huang, T.-H.; Chen, K.-Y.; Chou, P.-T. Excited-State Intramolecular Proton Transfer in the Kinetic-Control Regime. Phys. Chem. Chem. Phys. 2020, 22, 22271–22278. [Google Scholar] [CrossRef]
- Khimich, M.N.; Ivanov, V.L.; Melnikov, M.Y.; Shelaev, I.V.; Gostev, F.E.; Nadtochenko, V.A.; Uzhinov, B.M. Dynamics of Excited-State Intramolecular Proton-Transfer in 2-Amino-3-(2′-Benzazolyl)Quinoline Cations. Photochem. Photobiol. Sci. 2017, 16, 1139–1145. [Google Scholar] [CrossRef]
- Perveaux, A.; Lorphelin, M.; Lasorne, B.; Lauvergnat, D. Fast and Slow Excited-State Intramolecular Proton Transfer in 3-Hydroxychromone: A Two-State Story? Phys. Chem. Chem. Phys. 2017, 19, 6579–6593. [Google Scholar] [CrossRef]
- Ray, D.; Pramanik, A.; Guchhait, N. Slow Proton Transfer Dynamics of a Four Member Intramolecular Hydrogen Bonded Isoindole Fused Imidazole System: A Spectroscopic Approach to Photophysical Properties. J. Photochem. Photobiol. A Chem. 2015, 302, 42–50. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, D.; Chen, W.; Liu, X.; Yan, J. Solvent Effect on Excited-State Intramolecular Proton Transfer Process Based on ‘Naked’ Diazaborepins. Comput. Theor. Chem. 2020, 1185, 112898. [Google Scholar] [CrossRef]
- Ni, M.; Su, S.; Fang, H. Substituent Control of Photophysical Properties for Excited-State Intramolecular Proton Transfer (ESIPT) of o-LHBDI Derivatives: A TD-DFT Investigation. J. Mol. Model. 2020, 26, 108. [Google Scholar] [CrossRef]
- Parada, G.A.; Markle, T.F.; Glover, S.D.; Hammarström, L.; Ott, S.; Zietz, B. Control over Excited State Intramolecular Proton Transfer and Photoinduced Tautomerization: Influence of the Hydrogen-Bond Geometry. Chem. Eur. J. 2015, 21, 6362–6366. [Google Scholar] [CrossRef] [PubMed]
- Mehata, M.S.; Joshi, H.C.; Tripathi, H.B. Excited-State Intermolecular Proton Transfer Reaction of 6-Hydroxyquinoline in Protic Polar Medium. Chem. Phys. Lett. 2002, 359, 314–320. [Google Scholar] [CrossRef]
- Schriever, C.; Barbatti, M.; Stock, K.; Aquino, A.J.A.; Tunega, D.; Lochbrunner, S.; Riedle, E.; de Vivie-Riedle, R.; Lischka, H. The Interplay of Skeletal Deformations and Ultrafast Excited-State Intramolecular Proton Transfer: Experimental and Theoretical Investigation of 10-Hydroxybenzo[h]Quinoline. Chem. Phys. 2008, 347, 446–461. [Google Scholar] [CrossRef]
- Mehata, M.S. Photoinduced Excited State Proton Rearrangement of 6-Hydroxyquinoline along a Hydrogen-Bonded Acetic Acid Wire. Chem. Phys. Lett. 2007, 436, 357–361. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Mehata, M.S.; Liu, J.-Y. Excited-State Proton Transfer via Hydrogen-Bonded Acetic Acid (AcOH) Wire for 6-Hydroxyquinoline. J. Phys. Chem. A 2011, 115, 19–24. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, B.; Lee, Y.-S.; Kwon, O.-H.; Jang, D.-J. Triple Proton Transfer of Excited 7-Hydroxyquinoline along a Hydrogen-Bonded Water Chain in Ethers: Secondary Solvent Effect on the Reaction Rate. Photochem. Photobiol. Sci. 2009, 8, 1611. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Kwon, O.-H. Proton Diffusion Dynamics along a Diol as a Proton-Conducting Wire in a Photo-Amphiprotic Model System. Phys. Chem. Chem. Phys. 2016, 18, 32826–32839. [Google Scholar] [CrossRef] [PubMed]
- Alarcos, N.; Gutierrez, M.; Liras, M.; Sánchez, F.; Douhal, A. An Abnormally Slow Proton Transfer Reaction in a Simple HBO Derivative Due to Ultrafast Intramolecular-Charge Transfer Events. Phys. Chem. Chem. Phys. 2015, 17, 16257–16269. [Google Scholar] [CrossRef] [Green Version]
- Dommett, M.; Rivera, M.; Smith, M.T.H.; Crespo-Otero, R. Molecular and Crystalline Requirements for Solid State Fluorescence Exploiting Excited State Intramolecular Proton Transfer. J. Mater. Chem. C 2020, 8, 2558–2568. [Google Scholar] [CrossRef]
- Taylor, C.A.; El-Bayoumi, M.A.; Kasha, M. Excited-State Tow-Photon Tautomerism in Hydrogen Bonded N0heterocyclic Base Pairs. Proc. Natl. Acad. Sci. USA 1969, 63, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingham, K.C.; Abu-Elgheit, M.; El-Bayoumi, M.A. Confirmation of Biprotonic Phototautomerism in 7-Azaindole Hydrogen-Bonded Dimers. J. Am. Chem. Soc. 1971, 93, 5023–5025. [Google Scholar] [CrossRef]
- Hetherington, W.M.; Micheels, R.H.; Eisenthal, K.E. Picosecond Dynamics of Double Proton Transfer in 7-Azaindole Dimers. Chem. Phys. Lett. 1979, 66, 230–233. [Google Scholar] [CrossRef]
- Douhal, A.; Kim, S.K.; Zewail, A.H. Femtosecond Molecular Dynamics of Tautomerization in Model Base Pairs. Nature 1995, 378, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.-H.; Zewail, A.H. Double Proton Transfer Dynamics of Model DNA Base Pairs in the Condensed Phase. Proc. Natl. Acad. Sci. USA 2007, 104, 8703–8708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folmer, D.E.; Wisniewski, E.S.; Hurley, S.M.; Castleman, A.W. Femtosecond Cluster Studies of the Solvated 7-Azaindole Excited State Double-Proton Transfer. Proc. Natl. Acad. Sci. USA 1999, 96, 12980–12986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, S.; Tahara, T. The Answer to Concerted versus Step-Wise Controversy for the Double Proton Transfer Mechanism of 7-Azaindole Dimer in Solution. Proc. Natl. Acad. Sci. USA 2007, 104, 5285–5290. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Otero, R.; Kungwan, N.; Barbatti, M. Stepwise Double Excited-State Proton Transfer Is Not Possible in 7-Azaindole Dimer. Chem. Sci. 2015, 6, 5762–5767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Han, K. Unraveling the Detailed Mechanism of Excited-State Proton Transfer. Acc. Chem. Res. 2018, 51, 1681–1690. [Google Scholar] [CrossRef]
- Demchenko, A.P.; Tomin, V.I.; Chou, P.-T. Breaking the Kasha Rule for More Efficient Photochemistry. Chem. Rev. 2017, 117, 13353–13381. [Google Scholar] [CrossRef]
- Tseng, H.-W.; Shen, J.-Y.; Kuo, T.-Y.; Tu, T.-S.; Chen, Y.-A.; Demchenko, A.P.; Chou, P.-T. Excited-State Intramolecular Proton-Transfer Reaction Demonstrating Anti-Kasha Behavior. Chem. Sci. 2016, 7, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Guo, X.; Zhang, J. Ab Initio Insights into the Mechanism of Excited-State Intramolecular Proton Transfer Triggered by the Second Excited Singlet State of a Fluorescent Dye: An Anti-Kasha Behavior. Mater. Chem. Front. 2019, 3, 1225–1230. [Google Scholar] [CrossRef]
- Del Valle, J.C.; Catalán, J. Kasha’s Rule: A Reappraisal. Phys. Chem. Chem. Phys. 2019, 21, 10061–10069. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P. Solvent Effects on the Photochemical Behaviour of 4-Phenylazo-1-Naphthol: A Flash Photolysis Study. Dye. Pigment. 1988, 9, 129–135. [Google Scholar] [CrossRef]
- Joshi, H.; Kamounah, F.S.; Gooijer, C.; van der Zwan, G.; Antonov, L. Excited State Intramolecular Proton Transfer in Some Tautomeric Azo Dyes and Schiff Bases Containing an Intramolecular Hydrogen Bond. J. Photochem. Photobiol. A Chem. 2002, 152, 183–191. [Google Scholar] [CrossRef]
- Yordanov, D.; Deneva, V.; Georgiev, A.; Crochet, A.; Fromm, K.M.; Antonov, L. Indirect Solvent Assisted Tautomerism in 4-Substituted Phthalimide 2-Hydroxy-Schiff Bases. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 237, 118416. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, A.; Todorov, P.; Dimov, D. Excited State Proton Transfer and E/Z Photoswitching Performance of 2-Hydroxy-1-Naphthalene and 1-Naphthalene 5,5′-Dimethyl- and 5,5′-Diphenylhydantoin Schiff Bases. J. Photochem. Photobiol. A Chem. 2020, 386, 112143. [Google Scholar] [CrossRef]
- Todorov, P.; Georgieva, S.; Peneva, P.; Rusew, R.; Shivachev, B.; Georgiev, A. Experimental and Theoretical Study of Bidirectional Photoswitching Behavior of 5,5′-Diphenylhydantoin Schiff Bases: Synthesis, Crystal Structure and Kinetic Approaches. New J. Chem. 2020, 44, 15081–15099. [Google Scholar] [CrossRef]
- Wnuk, P.; Burdziński, G.; Sliwa, M.; Kijak, M.; Grabowska, A.; Sepioł, J.; Kubicki, J. From Ultrafast Events to Equilibrium – Uncovering the Unusual Dynamics of ESIPT Reaction: The Case of Dually Fluorescent Diethyl-2,5-(Dibenzoxazolyl)-Hydroquinone. Phys. Chem. Chem. Phys. 2014, 16, 2542. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Lan, R.; Li, Y. Effect of Different Substituted Groups on Excited-State Intramolecular Proton Transfer of 1-(Acylamino)-Anthraquinons. J. Phys. Chem. C 2017, 121, 14779–14786. [Google Scholar] [CrossRef]
- Kyrychenko, A.; Herbich, J.; Waluk, J. Studies of Photoinduced NH Tautomerism by Stationary and Time-Resolved Fluorescence Techniques. In Tautomerism; Antonov, L., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 49–78. ISBN 978-3-527-65882-4. [Google Scholar]
- Zhao, J.; Chen, J.; Liu, J.; Hoffmann, M.R. Competitive Excited-State Single or Double Proton Transfer Mechanisms for Bis-2,5-(2-Benzoxazolyl)-Hydroquinone and Its Derivatives. Phys. Chem. Chem. Phys. 2015, 17, 11990–11999. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, X.; Zheng, Y. Controlling Excited State Single versus Double Proton Transfer for 2,2′-Bipyridyl-3,3′-Diol: Solvent Effect. J. Phys. Chem. A 2017, 121, 4002–4008. [Google Scholar] [CrossRef] [PubMed]
- Plasser, F.; Barbatti, M.; Aquino, A.J.A.; Lischka, H. Excited-State Diproton Transfer in [2,2′-Bipyridyl]-3,3′-Diol: The Mechanism Is Sequential, Not Concerted. J. Phys. Chem. A 2009, 113, 8490–8499. [Google Scholar] [CrossRef]
- Waluk, J. Spectroscopy and Tautomerization Studies of Porphycenes. Chem. Rev. 2017, 117, 2447–2480. [Google Scholar] [CrossRef] [PubMed]
- Savarese, M.; Brémond, É.; Antonov, L.; Ciofini, I.; Adamo, C. Computational Insights into Excited-State Proton-Transfer Reactions in Azo and Azomethine Dyes. ChemPhysChem 2015, 16, 3966–3973. [Google Scholar] [CrossRef] [PubMed]
Temperature K | Emission Wavelength nm | τ1 ns | τ2 ns | α1 | α2 | χ2 |
---|---|---|---|---|---|---|
298 * | 400 | 0.4 | 2.32 | 51.52 | 48.58 | 1.04 |
298 * | 500 | 0.43 | 2.42 | −5.27 | 14.41 | 1.09 |
160 ** | 400 | 2.51 | 11.54 | 31.55 | 68.45 | 1.0 |
160 ** | 500 | - | 11.50 | - | - | 1.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, H.C.; Antonov, L. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules 2021, 26, 1475. https://doi.org/10.3390/molecules26051475
Joshi HC, Antonov L. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules. 2021; 26(5):1475. https://doi.org/10.3390/molecules26051475
Chicago/Turabian StyleJoshi, Hem C., and Liudmil Antonov. 2021. "Excited-State Intramolecular Proton Transfer: A Short Introductory Review" Molecules 26, no. 5: 1475. https://doi.org/10.3390/molecules26051475
APA StyleJoshi, H. C., & Antonov, L. (2021). Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules, 26(5), 1475. https://doi.org/10.3390/molecules26051475