Enzymatically Extracted Apple Pectin Possesses Antioxidant and Antitumor Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Content of Ferulic Acid (FA) and Total Phenols
2.2. In Vitro Antioxidant Activity of Pectin
2.3. Anti-Cancer Activity of Pectin Preparations
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Pectin
3.3. Ferulic Acid and Total Phenols Determination
3.4. Measurement of Antioxidant Activities In Vitro
3.4.1. DPPH Radical Scavenging Activity
3.4.2. ABTS•+ Scavenging Activity
3.4.3. Hydroxyl Radical Scavenging Activity
3.4.4. Determination of Reducing Power
3.5. Evaluation of Pectin Anti-Cancer Activities In Vitro
3.5.1. Cell Lines and Culture
3.5.2. Cell Adhesion Assays
3.5.3. Cell Proliferation Assays
3.5.4. Anchorage-Independent Growth Assay (Colony Formation in Soft Agar)
3.5.5. Cells Migration by Transwell Assay (Invasion)
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Willats, W.G.; Knox, J.P.; Mikkelsen, J.D. Pectin: New insights into an old polymer are starting to gel. Trends Food Sci. Technol. 2006, 17, 97–104. [Google Scholar] [CrossRef]
- Morris, G.A.; Binhamad, H.A. Isolation and Characterisation of Pectin. In Pectin: Technological and Physiological Properties; Vassilis, K., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 61–82. [Google Scholar] [CrossRef]
- Wikiera, A.; Mika, M.; Grabacka, A. Multicatalytic enzyme preparations as effective alternative to acid in pectin extraction. Food Hydrocoll. 2015, 44, 156–161. [Google Scholar] [CrossRef]
- Dominiak, M.; Søndergaard, K.M.; Wichmann, J.; Vidal-Melgosa, S.; Willats, W.G.; Meyer, A.S.; Mikkelsen, J.D. Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin. Food Hydrocoll. 2014, 40, 273–282. [Google Scholar] [CrossRef]
- Yuliarti, O.; Matia-Merino, L.; Goh, K.T.; Mawson, J.; Brennan, C. Characterization of gold kiwifruit pectin isolated by enzymatic treatment. Int. J. Food Sci. Technol. 2012, 47, 633–639. [Google Scholar] [CrossRef]
- Sánchez, D.; Muguerza, B.; Moulay, L.; Hernández, R.; Miguel, M.; Aleixandre, A. Highly methoxylated pectin improves insulin resistance and other cardiometabolic risk factors in Zucker fatty rats. J. Agric. Food Chem. 2008, 56, 3574–3581. [Google Scholar] [CrossRef]
- Gunness, P.; Gidley, M.J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef]
- Celus, M.; Kyomugasho, C.; van Loey, A.M.; Grauwet, T.; Hendrickx, M.E. Influence of pectin structural properties on interactions with divalent cations and its associated functionalities. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1576–1594. [Google Scholar] [CrossRef][Green Version]
- Snamornsak, P.; Wattanakorn, N.; Takeuchi, H. Study on the mucoadhesion mechanism of pectin by atomic force microscopy and mucin-particle method. Carbohyd. Polym. 2010, 79, 54–59. [Google Scholar] [CrossRef]
- Popov, S.V.; Ovodov, Y.S. Polypotency of the immunomodulatory effect of pectins. Biochemistry 2013, 78, 823–835. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Lü, X. Pecticn extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll. 2014, 38, 129–137. [Google Scholar] [CrossRef]
- Amaral, S.C.; Barbieri, S.F.; Ruthes, A.C.; Bark, J.M.; Winnischofer, S.M.; Silveira, J.L. Cytotoxic effect of crude and purified pectins from Campomanesia xanthocarpa Berg on human glioblastoma cells. Carbohydr. Polym. 2019, 224, 115140. [Google Scholar] [CrossRef] [PubMed]
- Nagash, F.; Masoodi, F.A.; Rather, S.A.; Wani, S.M.; Gani, A. Emerging concepts in the nutraceutical and functional properties of pectin–A Review. Carbohydr. Polym. 2017, 168, 227–239. [Google Scholar] [CrossRef]
- Eliaz, I.; Raz, A. Pleiotropic effects of modified citrus pectin. Nutrients 2019, 11, 2619. [Google Scholar] [CrossRef][Green Version]
- Maxwell, E.G.; Colquhoun, I.J.; Chau, H.K.; Hotchkiss, A.T.; Waldron, K.W.; Morris, V.J.; Belshaw, N.J. Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains. Carbohydr. Polym. 2016, 136, 923–929. [Google Scholar] [CrossRef]
- Wikiera, A.; Mika, M.; Starzyńska-Janiszewska, A.; Stodolak, B. Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydr. Polym. 2016, 142, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Schieber, A.; Hilt, P.; Streker, P.; Endreß, H.U.; Rentschler, C.; Carle, R. Anew process for the combined recovery of pectin and phenolic compounds from apple pomace. IFSET 2003, 4, 99–107. [Google Scholar] [CrossRef]
- Çam, M.; Aaby, K. Optimization of extraction of apple pomace phenolics with water by response surface methodology. J. Agric. Food Chem. 2010, 58, 9103–9111. [Google Scholar] [CrossRef] [PubMed]
- Maragò, E.; Iacopini, P.; Camangi, F.; Scattino, C.; Ranieri, A.; Stefani, A.; Sebastiani, L. Phenolic profile and antioxidant activity in apple juice and pomace: Effects of different storage conditions. Fruits 2015, 70, 213–223. [Google Scholar] [CrossRef][Green Version]
- Voragen, A.G.; Coenen, G.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef][Green Version]
- Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-related gelling of pectins and linking with other natural compounds: A review. Polymers 2018, 10, 762. [Google Scholar] [CrossRef][Green Version]
- Smirnov, V.V.; Golovchenko, V.V.; Vityazev, F.V.; Patova, O.A.; Selivanov, N.Y.; Selivanova, O.G.; Popov, S.V. The Antioxidant properties of pectin fraction isolated from vegetables using a simulated gastric fluid. J. Chem. 2017, 2, 1–10. [Google Scholar] [CrossRef][Green Version]
- Yapo, B.M.; Robert, C.; Etienne, I.; Wathelet, B.; Paquot, M. Effect of extraction condition on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem. 2007, 100, 1356–1364. [Google Scholar] [CrossRef]
- Müller-Maatsch, J.; Caligiani, A.; Tedeschi, T.; Elst, K.; Sforza, S. Simple and validated quantitative 1H-NMR method for the determination of methylation, acetylation, and feruloylation degree of pectin. J. Agric. Food Chem. 2014, 62, 9081–9087. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, Y.; Ognyanov, M.; Yanakieva, I.; Kussovski, V.; Kratchanova, M. Isolation, characterization and modification of citrus pectins. J. Biosci. Biotech. 2012, 1, 223–233. Available online: http://www.jbb.uni-plovdiv.bg (accessed on 1 February 2021).
- Dou, J.; Meng, Y.; Liu, L.; Ren, D.; Guo, Y. Purification, characterization and antioxidant activities of polysaccharides from thinned-young apple. Int. J. Biol. Macromol. 2015, 72, 31–40. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Yin, X.; Zhang, S.; Jiang, Z. Extraction, purification, and antioxidant activities of polysaccharides from Tricholoma mangolicum imai. Carbohydr. Polym. 2014, 99, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Sheng, J.; Li, Z.; Qi, H.; Sun, Y.; Duan, Y.; Zhang, W. Antioxidant activity of polysaccharide fractions extracted from Athyrium multidentatum (Doll) Ching. Int. J. Biol. Macromol. 2013, 56, 1–5. [Google Scholar] [CrossRef]
- Veenashri, B.R.; Muralikrishna, G. In vitro antioxidant activity of xylo-oligosaccharides derived from cereal and millet brans–a comparative study. Food Chem. 2011, 126, 1475–1481. [Google Scholar] [CrossRef]
- Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on mechanism of in vitro antioxidant activity of polysaccharides. Oxid. Med. Cell Longev. 2016, 5692852. [Google Scholar] [CrossRef][Green Version]
- Lo, T.C.; Chang, C.A.; Chiu, K.H.; Tsay, P.K.; Jen, J.F. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbochydr. Polym. 2011, 86, 320–327. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Mo, X.; Qi, H. Degradation and antioxidant activity of polysaccharide from Enteromorpha linza. Carbohydr. Polym. 2013, 92, 2084–2087. [Google Scholar] [CrossRef]
- Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymer 2018, 10, 1407. [Google Scholar] [CrossRef][Green Version]
- Vayssade, M.; Sengkhamparn, N.; Verhoef, R.; Delaigue, C.; Goundiam, O.; Vigneron, P.; Voragen, A.G.; Schols, H.A.; Nagel, M.D. Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells. Phytother. Res. 2010, 24, 982–989. [Google Scholar] [CrossRef]
- Satelli, A.; Rao, P.; Gupta, P.K.; Lockman, P.R.; Srivenugopal, K.S.; Rao, U.S. Varied expression and localization of multiple galectins in different cancer cell lines. Oncol. Rep. 2008, 19, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Kim, S.J.; Baek, J.H.; Lee, H.W.; Jeong, S.Y.; Chun, K.H. Galectin-3 increases the motility of mouse melanoma cells by regulating matrix mealloproteinase-1 expression. Exp. Mol. Med. 2012, 44, 387–393. [Google Scholar] [CrossRef][Green Version]
- Cardoso, A.C.; Andreade, L.N.; Bustos, S.O.; Chammas, R. Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front. Oncol. 2016, 6, 127. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Salehi, F.; Behboudi, H.; Kavoosi, G.; Ardestani, S.K. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin. Sci. Rep. 2018, 8, 13902. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.S.; Jordão, N.A.; Soares, N.C.; Mesquita, J.F.; Monteiro, M.; Teodoro, A.J. Pharmacokinetic, antiproliferative and apoptotic effects of phenolic acids in human colon adenocarcinoma cells using in vitro and in silico approaches. Molecules 2018, 23, 2569. [Google Scholar] [CrossRef][Green Version]
- Wang, E.; Liu, Y.; Xu, C.; Liu, J. Antiproliferative and proapoptotic activities of anthocyanin and antocyanidin extracts from blueberry fruits on B16F10 melanoma cells. Food Nutr. Res. 2017, 61, 1325308. [Google Scholar] [CrossRef][Green Version]
- Li, W.Y.; Chan, S.W.; Guo, D.J.; Yu, P. Correlation between antioxidative power and anticancer activity in herbs from traditional Chinese medicine formulae with anticancer therapeutic effect. Pharm. Biol. 2007, 45, 541–546. [Google Scholar] [CrossRef]
- Zhang, L.; Khoo, C.S.; Koyyalamudi, S.R.; de Pedro, N.; Reddy, N. Antioxidant, anti-inflammatory and anticancer activities of ethanol soluble organics from water extracts of selected medicinal herbs and their relation with flavonoid and phenolic contents. Pharmacologia 2017, 8, 59–72. [Google Scholar] [CrossRef][Green Version]
- Liao, Z.; Chua, D.; Soon, N. Reactive oxygen species: A volatile driver of field cancerization and metastasis. Mol. Cancer 2019, 18, 65. [Google Scholar] [CrossRef]
- Wei, H. Activation of oncogenes and/or inactivation of anti-oncogene by reactive oxygen species. Med. Hypotheses 1992, 39, 267–270. [Google Scholar] [CrossRef]
- Genard, G.; Lucas, S.; Michiels, C. Reprogramming of tumor-associated macrophages with anticancer therapies: Radiotherapy versus chemo- and immunotherapies. Front. Immunol. 2017, 8, 828. [Google Scholar] [CrossRef][Green Version]
- Machu, L.; Misurcova, L.; Ambrozova, J.F.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic content and antioxidant capacity in algal food products. Molecules 2015, 20, 1118–1133. [Google Scholar] [CrossRef][Green Version]
- Rha, H.J.; Bae, I.Y.; Lee, S.; Yoo, S.H.; Chang, P.S.; Lee, H.G. Enhancement of anti-radical activity of pectin from apple pomace by hydroxamation. Food Hydrocoll. 2011, 25, 545–548. [Google Scholar] [CrossRef]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Marambe, H.K.; Shand, P.J.; Wanasundara, P.K. In vitro digestibility of flaxseed (Linum usitatissimum L.) protein: Effect of seed mucilage, oil and thermal processing. Int. J. Food. Sci. Technol. 2013, 48, 628–635. [Google Scholar] [CrossRef]
- Ardestani, A.; Yazdanparast, R. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem. 2007, 104, 21–29. [Google Scholar] [CrossRef]
Pectin | Total Phenols Area (mAU × min) | FA Content (µg/g) | Total Phenols Expressed in FA (µg/g) | |
---|---|---|---|---|
Pomace | ||||
Pcel | 1.244 ± 0.03 c | 63.56 ± 0.59 c | 840 ± 1.42 d | |
Pxyl | 1.546 ± 0.04 e | 152.87 ± 0.84 e | 930 ± 1.08 e | |
Pcel + xyl | 1.301 ± 0.08 d | 122.38 ± 0.51 d | 790 ± 0.91 c | |
Pacid | 0.949 ± 0.14 b | 37.31 ± 0.39 b | 590 ± 1.13 b | |
Pcommercial | 0.592 ± 0.03 a | 24.86 ± 0.41 a | 380 ± 0.59 a | |
Apple pomace | 4.009 ± 0.19 f | 220.04 ± 1.51 f | 2220 ± 2.07 f |
Pectin | IC50 (mg/mL) | RP0.5 (mg/mL) | |||
---|---|---|---|---|---|
References | DPPH• | ABTS•+ | •OH | ||
Pcel | 3.02 ± 0.07 d | 0.92 ± 0.06 d | 1.87 ± 0.05 d | 5.14 ± 0.08 d | |
Pxyl | 2.75 ± 0.09 c | 0.76 ± 0.05 c | 2.00 ± 0.07 e | 5.91 ± 0.07 e | |
Pcel + xyl | 3.26 ± 0.08 e | 1.14 ± 0.08 e | 1.18 ± 0.07 c | 3.49 ± 0.09 c | |
Pacid | 5.24 ± 0.08 f | 1.58 ± 0.09 f | 2.37 ± 0.05 f | 6.56 ± 0.10 f | |
Pcommercial | 9.01 ± 0.11 g | 2.45 ± 0.08 g | 2.98 ± 0.06 g | 8.00 ± 0.11 g | |
(µg/mL) | (µg/mL) | ||||
FA | 8.39 ± 0.14 b | 4.02 ± 0.09 b | 4.67 ± 0.10 b | 12.04 ± 0.21 b | |
Trolox | 5.14 ± 0.12 a | 8.82 ± 0.17 a | 3.51 ± 0.08 a | 5.43 ± 0.19 a |
Variable | Parameter Estimate | Standard Error | R2 | p Value | |
---|---|---|---|---|---|
Dependent | Independent | ||||
DPPH• | Mw | 2.0081 | 1.2200 | 0.3438 | 0.0065 |
DM | 1.4861 | 3.2304 | 0.6406 | 0.0000 | |
FA | 1.6343 | 0.6960 | 0.5654 | 0.0001 | |
Phenols | 0.5931 | 0.4923 | 0.9427 | 0.0000 | |
Protein | 1.1036 | 0.5558 | 0.8018 | 0.0000 | |
Rhamnose | 1.6060 | 2.0237 | 0.5803 | 0.0000 | |
Mannose | 1.9040 | 0.5848 | 0.4101 | 0.0023 | |
Fucose | 0.8159 | 0.5132 | 0.8917 | 0.0000 | |
ABTS•+ | Mw | 0.4685 | 0.2848 | 0.4673 | 0.0008 |
DM | 0.3503 | 0.7625 | 0.7022 | 0.0000 | |
FA | 0.4140 | 0.1763 | 0.5839 | 0.0000 | |
Phenols | 0.1113 | 0.0902 | 0.9698 | 0.0000 | |
Protein | 0.2353 | 0.1185 | 0.8656 | 0.0000 | |
Rhamnose | 0.4463 | 0.5623 | 0.5167 | 0.0003 | |
Mannose | 0.4695 | 0.1442 | 0.4651 | 0.0009 | |
Fucose | 0.1684 | 0.1059 | 0.9311 | 0.0000 | |
•OH | Mw | 0.6172 | 0.3750 | 0.0474 | 0.3562 |
DM | 0.4740 | 1.0317 | 0.4382 | 0.0014 | |
FA | 0.4541 | 0.1934 | 0.4843 | 0.0006 | |
Phenols | 0.4103 | 0.3406 | 0.5792 | 0.0000 | |
Protein | 0.4687 | 0.2360 | 0.4506 | 0.0011 | |
Rhamnose | 0.2633 | 0.3318 | 0.8266 | 0.0000 | |
Mannose | 0.5584 | 0.1715 | 0.2204 | 0.0367 | |
Fucose | 0.4191 | 0.2636 | 0.5908 | 0.0001 | |
RP0.5 | Mw | 1.5622 | 0.9491 | 0.0213 | 0.5383 |
DM | 1.2520 | 2.7252 | 0.3714 | 0.0043 | |
FA | 1.2288 | 0.5233 | 0.3945 | 0.0030 | |
Phenols | 1.0978 | 0.9115 | 0.5167 | 0.0003 | |
Protein | 1.2457 | 0.6274 | 0.3777 | 0.0039 | |
Rhamnose | 0.7618 | 0.9600 | 0.7672 | 0.0000 | |
Mannose | 1.4590 | 0.4481 | 0.1464 | 0.0957 | |
Fucose | 1.1170 | 0.7026 | 0.5297 | 0.0005 |
Sample | L929 Cells | |
---|---|---|
Proliferation (% of Control) | Adhesion (% of Control) | |
Control | 100.00 ± 3.83 | 100.00 ± 2.03 |
Pcel | 99.83 ± 4.64 | 100.61 ± 2.37 |
Pxyl | 102.19 ± 5.03 | 99.17 ± 3.83 |
Pcel + xyl | 100.41 ± 7.41 | 100.32 ± 2.94 |
Pacid | 97.91 ± 4.45 | 99.64 ± 2.79 |
Pcommercial | 100.56 ± 6.55 | 102.10 ± 3.13 |
Pectin | Pectin Features and Components | |||||
---|---|---|---|---|---|---|
Mw (kDa) | GalA (%) | DM (%) | NS (%) | Protein (%) | Reactive with F–C Reagent (%) | |
Pcel | 589 ± 66 | 70.5 ± 1.8 | 66.3 ± 2.0 | 20.9 ± 1.1 | 3.11 ± 0.45 | 0.98 ± 0.14 |
Pxyl | 899 ± 79 | 61.1 ± 1.9 | 73.4 ± 2.4 | 29.8 ± 1.2 | 4.38 ± 0.38 | 1.34 ± 0.18 |
Pcel + xyl | 419 ± 34 | 74.7 ± 2.1 | 67.5 ± 2.3 | 17.9 ± 1.0 | 2.98 ± 0.42 | 1.01 ± 0.09 |
Pacid | 331 ± 42 | 59.9 ± 2.0 | 56.1 ± 2.5 | 31.1 ± 1.3 | 1.53 ± 0.26 | 0.71 ± 0.11 |
Pcommercial | 378 ± 45 | 80.9 ± 2.4 | 56.9 ± 2.1 | 14.3 ± 0.7 | 0.78 ± 0.12 | 0.49 ± 0.08 |
Pectin | Neutral Sugars Content in Apple Pectin [g/100 g] | ||||||
---|---|---|---|---|---|---|---|
Glucose | Galactose | Arabinose | Rhamnose | Xylose | Fucose | Mannose | |
Pcel | 6.69 ± 0.41 | 5.74 ± 0.13 | 4.57 ± 0.12 | 1.05 ± 0.04 | 2.27 ± 0.11 | 0.27 ± 0.02 | 0.40 ± 0.03 |
Pxyl | 8.06 ± 0.38 | 5.86 ± 0.21 | 8.99 ± 0.26 | 1.23 ± 0.03 | 2.49 ± 0.10 | 0.31 ± 0.02 | 2.91 ± 0.07 |
Pcel + xyl | 4.05 ± 0.29 | 5.27 ± 0.18 | 3.92 ± 0.19 | 1.38 ± 0.08 | 1.54 ± 0.06 | 0.25 ± 0.03 | 1.40 ± 0.04 |
Pacid | 17.50 ± 0.48 | 4.75 ± 0.23 | 5.29 ± 0.19 | 0.92 ± 0.03 | 2.18 ± 0.12 | 0.15 ± 0.02 | 0.30 ± 0.01 |
Pcommercial | 2.35 ± 0.15 | 4.68 ± 0.19 | 5.20 ± 0.21 | 0.85 ± 0.02 | 1.15 ± 0.04 | 0.09 ± 0.01 | 0.00 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wikiera, A.; Grabacka, M.; Byczyński, Ł.; Stodolak, B.; Mika, M. Enzymatically Extracted Apple Pectin Possesses Antioxidant and Antitumor Activity. Molecules 2021, 26, 1434. https://doi.org/10.3390/molecules26051434
Wikiera A, Grabacka M, Byczyński Ł, Stodolak B, Mika M. Enzymatically Extracted Apple Pectin Possesses Antioxidant and Antitumor Activity. Molecules. 2021; 26(5):1434. https://doi.org/10.3390/molecules26051434
Chicago/Turabian StyleWikiera, Agnieszka, Maja Grabacka, Łukasz Byczyński, Bożena Stodolak, and Magdalena Mika. 2021. "Enzymatically Extracted Apple Pectin Possesses Antioxidant and Antitumor Activity" Molecules 26, no. 5: 1434. https://doi.org/10.3390/molecules26051434