A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application
Abstract
1. Introduction
2. Results and Discussion
2.1. Changes in Free Amino Acids after Ethylene Application
2.2. Metabolomic Analysis via GC-MS
3. Materials and Methods
3.1. Plant Material and Experiment Design
3.2. Quantitative Analysis of Free Amino Acids Using HPLC
3.3. Metabolite Extraction and Derivatization for GC-MS Analysis
3.4. GC-MS Analysis
3.5. Data Processing
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferrando, A.A.; Paddon-Jones, D.; Hays, N.P.; Kortebein, P.; Ronsen, O.; Williams, R.H.; McComb, A.; Symons, T.B.; Wolfe, R.R.; Evans, W. EAA supplementation to increase nitrogen intake improves muscle function during bed rest in the elderly. Clin. Nutr. 2010, 29, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Vianna, D.; Resende, G.F.T.; Torres-Leal, F.L.; Pantaleão, L.C.; Donato, J.; Tirapegui, J. Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats. Nutrition 2012, 28, 182–189. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.M.; Sivendiran, T.; Bohrer, B.M. Review: Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit. Rev. Food Sci. Nutr. 2017, 58, 2673–2678. [Google Scholar] [CrossRef]
- Ananieva, E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J. Biol. Chem. 2015, 6, 281. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.H. Dietary supplements and sports performance: Minerals. J. Int. Soc. Sports Nutr. 2005, 2, 43. [Google Scholar] [CrossRef] [PubMed]
- Tajiri, K.; Shimizu, Y. Branched-chain amino acids in liver diseases. World J. Gastroenterol. 2013, 19, 7620–7629. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, S.D.; Marletta, M.A. L-Arginine analogs as alternate substrates for nitric oxide synthase. Bioorg. Med. Chem. Lett. 2005, 15, 3934–3941. [Google Scholar] [CrossRef]
- Mossmann, D.; Park, S.; Hall, M.N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 2018, 18, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, Y.; Pi, D.; Leng, W.; Zhu, H.; Hou, Y.; Li, S.; Shi, H.; Wang, X. Asparagine attenuates hepatic injury caused by lipopolysaccharide in weaned piglets associated with modulation of Toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling and their negative regulators. Br. J. Nutr. 2015, 114, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Larkin, A.; Imperiali, B. The expanding horizons of asparagine-linked glycosylation. Biochemistry 2011, 50, 4411–4426. [Google Scholar] [CrossRef]
- Rønnestad, I.; Conceição, L.E.C.; Aragão, C.; Dinis, M.T. Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval senegal sole (solea senegalensis). J. Nutr. 2000, 130, 2809–2812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol. Biol. 2010, 73, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, K.; Wu, C.; Zhao, Y.; Yin, X.; Zhang, B.; Grierson, D.; Chen, K.; Xu, C. Effect of ethylene on cell wall and lipid metabolism during alleviation of postharvest chilling injury in peach. Cells 2019, 8, 1612. [Google Scholar] [CrossRef]
- Friedman, M.; Brandon, D.L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef]
- Omoni, A.O.; Aluko, R.E. Soybean foods and their benefits: Potential mechanisms of action. Nutr. Rev. 2005, 63, 272–283. [Google Scholar] [CrossRef]
- Kim, J.E.; Jeon, S.M.; Park, K.; Lee, W.; Jeong, T.S.; McGregor, R.A.; Choi, M.S. Does glycine max leaves or garcinia cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: A randomized control trial. Nutr. J. 2011, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Ohgo, Y.; Katayanagi, Y.; Yasui, K.; Hiramoto, S.; Ikemoto, H.; Nakata, Y.; Miyoshi, N.; Isemura, M.; Ohashi, N.; et al. Anti-inflammatory effects of green soybean extract irradiated with visible light. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Lee, Y.H.; Yuk, H.J.; Park, K.H.; Bae, Y.S. Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive oxygen species production in human breast cancer and colon cancer cells. Food Chem. 2013, 141, 381–388. [Google Scholar] [CrossRef]
- Yuk, H.J.; Lee, J.H.; Curtis-Long, M.J.; Lee, J.W.; Kim, Y.S.; Ryu, H.W.; Gyoo Park, C.; Jeong, T.-S.; Park, K.H. The most abundant polyphenol of soy leaves, coumestrol, displays potent α-glucosidase inhibitory activity. Food Chem. 2011, 126, 1057–1063. [Google Scholar] [CrossRef]
- Li, H.; Kim, U.H.; Yoon, J.H.; Ji, H.S.; Park, H.M.; Park, H.Y.; Jeong, T.S. Suppression of hyperglycemia and hepatic steatosis by black-soybean-leaf extract via enhanced adiponectin-receptor signaling and AMPK activation. J. Agric. Food Chem. 2019, 67, 90–101. [Google Scholar] [CrossRef]
- Bun, T.; Fai Cheung, R.C.; Ho, J. Biologically active constituents of soybean. In A Comprehensive Survey of International Soybean Research Genetics, Physiology, Agronomy and Nitrogen Relationships; InTech: New York, NY, USA, 2013; Volume i, p. 13. [Google Scholar]
- Kerwin, S.M. Soy saponins and the anticancer effects of soybeans and soy-based foods. Curr. Med. Chem. Anti-Cancer Agents 2004, 4, 263–272. [Google Scholar] [CrossRef]
- Yuk, H.J.; Curtis-Long, M.J.; Ryu, H.W.; Jang, K.C.; Seo, W.D.; Kim, J.Y.; Kang, K.Y.; Park, K.H. Pterocarpan profiles for soybean leaves at different growth stages and investigation of their glycosidase inhibitions. J. Agric. Food Chem. 2011, 59, 12683–12690. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.J.; Song, Y.H.; Curtis-Long, M.J.; Kim, D.W.; Woo, S.G.; Lee, Y.B.; Uddin, Z.; Kim, C.Y.; Park, K.H. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean (Glycine max) leaves. J. Agric. Food Chem. 2016, 64, 7315–7324. [Google Scholar] [CrossRef]
- Ban, Y.J.; Song, Y.H.; Kim, J.Y.; Baiseitova, A.; Lee, K.W.; Kim, K.D.; Park, K.H. Comparative investigation on metabolites changes in soybean leaves by ethylene and activation of collagen synthesis. Ind. Crop. Prod. 2020, 154, 112743. [Google Scholar] [CrossRef]
- Der Agopian, R.G.; Fabi, J.P.; Cordenunsi-Lysenko, B.R. Metabolome and proteome of ethylene-treated papayas reveal different pathways to volatile compounds biosynthesis. Food Res. Int. 2020, 131, 108975. [Google Scholar] [CrossRef]
- Marquezi, M.L.; Roschel, H.A.; Dos Santos Costa, A.; Sawada, L.A.; Lancha, A.H. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. (Lond.) 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Blomstrand, E. A role for branched-chain amino acids in reducing central fatigue. J. Nutr. 2006, 136, 544S–547S. [Google Scholar] [CrossRef]
- D’Aniello, A. D-Aspartic acid: An endogenous amino acid with an important neuroendocrine role. Brain Res. Rev. 2007, 53, 215–234. [Google Scholar] [CrossRef]
- Khalil, A.; Hardman, L.; O’Brien, P. The role of arginine, homoarginine and nitric oxide in pregnancy. Amino Acids 2015, 47, 1715–1727. [Google Scholar] [CrossRef]
- Boonstra, E.; de Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 2015, 6, 6–11. [Google Scholar] [CrossRef]
- Lopez-Gonzalez, A.A.; Grases, F.; Marí, B.; Tomás-Salvá, M.; Rodriguez, A. Urinary phytate concentration and risk of fracture determined by the FRAX index in a group of postmenopausal women. Turk. J. Med. Sci. 2019, 49, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Latchman, D.S. Biochemistry (4th edn). Trends Biochem. Sci. 1995, 20, 488. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Bugaud, C. A process-based model of TCA cycle functioning to analyze citrate accumulation in pre- and post-harvest fruits. PLoS ONE 2015, 10, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, D.; Smith, C.; Goodenough, P.; Prosser, I.; Grierson, D. Ethylene-independent and Ethylene-dependent biochemical changes in ripening tomatoes. Plant Physiol. 1984, 74, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Min, C.W.; Kramer, K.; Agrawal, G.K.; Rakwal, R.; Park, K.H.; Wang, Y.; Finkemeier, I.; Kim, S.T. A multi-omics analysis of glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics 2018, 18, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Rossoni, M.; Borgo, M.; Ferrara, L.; Faoro, F. Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: Primary versus secondary metabolism. J. Agric. Food Chem. 2005, 53, 9133–9139. [Google Scholar] [CrossRef]
- Fiehn, O.; Kopka, J.; Trethewey, R.N.; Willmitzer, L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 2000, 72, 3573–3580. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the soybean leaves and stems are not aveilable from the authors. |
Amino Acids | Leaves | Stems | ||
---|---|---|---|---|
Control | Treatment | Control | Treatment | |
NEAA a Asp Ser Asn Glu Pro Gly Ala Cys Tyr β-Ala GABA Total | 34 ± 3.5 d 27 ± 5.2 c 78 ± 15 d 21 ± 1.4 c 40 ± 0.7 d 10 ± 0.8 c 85 ± 3.2 b 4 ± 0.5 b 34 ± 5.7 b 13 ± 2.6 b 199 ± 27 b 544 ± 51 c | 290 ± 25 a 131 ± 19 a 1971 ± 25 c 45 ± 6.1 b 259 ± 41 b 21 ± 2.7 a 157 ± 34 a 8 ± 1.4 a 128 ± 21 a 32 ± 7.2 a 436 ± 64 a 3478 ± 270 b | 81 ± 16 c 42 ± 3.3 c 362 ± 76 b 9 ± 1.0 d 147 ± 12 c 4 ± 0.1 d 25 ± 1.0 c ND 16 ± 1.2 b 14 ± 2.5 b 73 ± 4.0 c 774 ± 73 c | 171 ± 25 b 85 ± 14 b 2975 ± 137 a 63 ± 9.3 a 576 ± 41 a 15 ± 2.2 b 50 ± 8.0 c ND 19 ± 3.1 b 39 ± 7.4 a 124 ± 13 c 4124 ± 165 a |
EAA b Thr Val Met Ile Leu Phe Lys His Arg Total | 31 ± 6.8 b 51 ± 6.6 b 7 ± 1.4 b 25 ± 4.9 b 48 ± 7.8 b 35 ± 6.3 c 29 ± 4.7 b 7 ± 0.8 c 20 ± 2.7 c 250 ± 43 c | 72 ± 12 a 240 ± 46 a 20 ± 3.5 a 128 ± 30 a 115 ± 21 a 263 ± 28 a 91 ± 15 a 73 ± 6.8 b 283 ± 23 a 1284 ± 144 a | 19 ± 1.1 b 43 ± 1.5 b ND 19 ± 1.5 b 21 ± 0.5 b 19 ± 2.3 c 14 ± 0.8 b 19 ± 1.5 c 10 ± 1.8 c 164 ± 9 c | 22 ± 4.8 b 87 ± 13 b ND 35 ± 6.7 b 33 ± 2.8 b 162 ± 35 b 17 ± 3.7 b 105 ± 21 a 151 ± 20 b 611 ± 93 b |
Total FAA c | 795 ± 90 b | 4763 ± 407 a | 938 ± 80 b | 4736 ± 251 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, Y.J.; Song, Y.H.; Kim, J.Y.; Cha, J.Y.; Ali, I.; Baiseitova, A.; Shah, A.B.; Kim, W.-Y.; Park, K.H. A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application. Molecules 2021, 26, 1128. https://doi.org/10.3390/molecules26041128
Ban YJ, Song YH, Kim JY, Cha JY, Ali I, Baiseitova A, Shah AB, Kim W-Y, Park KH. A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application. Molecules. 2021; 26(4):1128. https://doi.org/10.3390/molecules26041128
Chicago/Turabian StyleBan, Yeong Jun, Yeong Hun Song, Jeong Yoon Kim, Joon Yung Cha, Imdad Ali, Aizhamal Baiseitova, Abdul Bari Shah, Woe-Yeon Kim, and Ki Hun Park. 2021. "A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application" Molecules 26, no. 4: 1128. https://doi.org/10.3390/molecules26041128
APA StyleBan, Y. J., Song, Y. H., Kim, J. Y., Cha, J. Y., Ali, I., Baiseitova, A., Shah, A. B., Kim, W.-Y., & Park, K. H. (2021). A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application. Molecules, 26(4), 1128. https://doi.org/10.3390/molecules26041128