Antioxidant Activity and Chemical Characteristics of Supercritical CO2 and Water Extracts from Willow and Poplar
Abstract
1. Introduction
2. Results and Discussion
2.1. Concentration of Polyphenols and Flavonoids
2.2. Antioxidant Activity of Extracts
2.3. Fe2+-Chelating Activity of Extracts
2.4. Composition Analysis by HPLC-MS/MS
3. Materials and Methods
3.1. Chemicals
3.2. Extraction Conditions
3.3. Determination of Total Polyphenol Concentration
3.4. Determination of Total Flavonoid Concentration
3.5. Antioxidant Capacity Assay (DPPH and ABTS test)
3.6. Fe2+-Chelating Activity Assay
3.7. Determination of Phenolic Acids, Flavonoids and Salicylic Compounds by HPLC-MS/MS
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Koch, W. Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases. A systematic review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Lutz, M.; Fuentes, E.; Ávila, F.; Alarcón, M.; Palomo, I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 2019, 24, 366. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef]
- Aguirre-Joya, J.A.; Pastrana-Castro, L.; Nieto-Oropeza, D.; Ventura-Sobrevilla, J.; Rojas-Molina, R.; Aguilar, C.N. The physicochemical, antifungal and antioxidant properties of a mixed polyphenol based bioactive film. Heliyon 2018, 4, e00942. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and type 2 diabetes: Human study and clinical trial. Crit. Rev. Food Sci. Nutr. 2019, 59, 3371–3379. [Google Scholar] [CrossRef]
- Panzella, L. Natural phenolic compounds for health, food and cosmetic applications. Antioxidants 2020, 9, 427. [Google Scholar] [CrossRef]
- Oyenihi, A.B.; Smith, C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? J. Ethnopharmacol. 2019, 229, 54–72. [Google Scholar] [CrossRef]
- Silveira, A.C.; Dias, J.P.; Santos, V.M.; Oliveira, P.F.; Alves, M.G.; Rato, L.; Silva, B.M. The action of polyphenols in diabetes mellitus and Alzheimer’s disease: A common agent for overlapping pathologies. Curr. Neuropharmacol. 2019, 17, 590–613. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef]
- Global Polyphenols Market Size & Share, Industry Report, 2019–2025. Available online: www.grandviewresearch.com/industry-analysis/polyphenols-market-analysis (accessed on 23 October 2020).
- Phenol-Explorer Database. Available online: www.phenol-explorer.eu (accessed on 23 October 2020).
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- Koch, W.; Kukuła-Koch, W.; Czop, M.; Helon, P.; Gumbarewicz, E. The role of extracting solvents in the recovery of polyphenols from green tea and its antiradical activity supported by principal component analysis. Molecules 2020, 25, 2173. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Selvamuthukumaran, M.; Shi, J. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J. Agric. Food Chem. 2011, 59, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical fluid extraction of bioactive compounds from plant materials. J. AOAC Int. 2019, 100, 1624–1635. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, V.; Gasser, J. Polyphenols from waste streams of food industry: Valorisation of blanch water from marzipan production. Phytochem. Rev. 2020. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Front. Nutr. 2020, 7. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits by-products—A source of valuable active principles. A short review. Front. Bioeng. Biotechnol. 2020, 8, 319. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, J.; Duan, C.Q.; Reeves, M.J.; He, F. A review of polyphenolics in oak woods. Int. J. Mol. Sci. 2015, 16, 6978–7014. [Google Scholar] [CrossRef]
- Withouck, H.; Boeykens, A.; Luyten, W.; Lavigne, R.; Wagemans, J.; Broucke, M.V. Phenolic composition, antimicrobial and antioxidant properties of Belgian apple wood extracts. J. Biol. Act. Prod. Nat. 2019, 9, 24–38. [Google Scholar] [CrossRef]
- Ogawa, S.; Matsuo, Y.; Tanaka, T.; Yazaki, Y. Utilization of flavonoid compounds from bark and wood. III. Application in health foods. Molecules 2018, 23, 1860. [Google Scholar] [CrossRef]
- Tanase, C.; Coșarcă, S.; Muntean, D.L. A aritical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef]
- Hoshino, T.; Yamashita, S.I.; Suzuki, N.; Baba, A.; Ogawa, S.; Izumi, T. Impact of Acacia bark extract tablets on the skin of healthy humans: A randomized, double-blind, placebo-controlled study. Biosci. Biotechnol. Biochem. 2019, 83, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, Y. Utilization of flavonoid compounds from bark and wood: A review. Nat. Prod. Commun. 2015, 10, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Strižincová, P.; Ház, A.; Burčová, Z.; Feranc, J.; Kreps, F.; Šurina, I.; Jablonský, M. Spruce bark-a source of polyphenolic compounds: Optimizing the operating conditions of supercritical carbon dioxide extraction. Molecules 2019, 24, 4049. [Google Scholar] [CrossRef] [PubMed]
- Zuin, V.G.; Ramin, L.Z. Green and sustainable separation of natural products from agro-industrial waste: Challenges, potentialities, and perspectives on emerging approaches. Top. Curr. Chem. 2018, 376, 3. [Google Scholar] [CrossRef] [PubMed]
- Tyśkiewicz, K.; Konkol, M.; Kowalski, R.; Rój, E.; Warmiński, K.; Krzyżaniak, M.; Gil, Ł.; Stolarski, M.J. Characterization of bioactive compounds in the biomass of black locust, poplar and willow. Trees 2019, 33, 1235–1263. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M. Energy value of yield and biomass quality of poplar grown in two consecutive 4-year harvest rotations in the north-east of Poland. Energies 2020, 13, 1495. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, H.; Zheng, J.; Liang, G. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: An experimental and theoretical evaluation. PLoS ONE 2015, 10, e0121276. [Google Scholar] [CrossRef]
- Franco, E.P.D.; Contesini, F.J.; Lima da Silva, B.; Alves de Piloto Fernandes, A.M.; Wielewski Leme, C.; Gonçalves Cirino, J.P.; Bueno Campos, P.R.; de Oliveira Carvalho, P. Enzyme-assisted modification of flavonoids from Matricaria chamomilla: Antioxidant activity and inhibitory effect on digestive enzymes. J. Enzym. Inhib. Med. 2020, 35, 42–49. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef]
- Ren, J.; Meng, S.; Lekka, C.E.; Kaxiras, E. Complexation of flavonoids with iron:Structure and optical signatures. J. Phys. Chem. B 2008, 112, 1845–1850. [Google Scholar] [CrossRef]
- Nuñez, M.T.; Chana-Cuevas, P. New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals 2018, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, L.J.; Alakomi, H.L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R.H. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef]
- Freischmidt, A.; Jurgenliemk, G.; Kraus, B.; Okpanyi, S.N.; Muller, J.; Kelber, O.; Weiser, D.; Heilmann, J. Contribution of flavonoids and catechol to the reduction of ICAM-1 expression in endothelial cells by a standardised Willow bark extract. Phytomedicine 2012, 19, 245–252. [Google Scholar] [CrossRef]
- Aksinenko, S.G.; Suslov, N.I.; Povet’eva, T.N.; Nesterova, Y.V.; Kharina, T.G.; Kravtsova, S.S. Antitoxic activity of extract from Salix viminalis leaves under conditions of 5-fluorouracil treatment. Bull. Exp. Biol. Med. 2015, 160, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Kim, E.S.; Oh, K.; Kim, H.J.; Dhakal, R.; Kim, Y.; Baek, K.H. Bactericidal effect of extracts and metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis causing dental plaque and periodontal inflammatory diseases. Molecules 2015, 20, 6128–6139. [Google Scholar] [CrossRef]
- Debbache-Benaida, N.; Atmani-Kilani, D.; Schini-Keirth, V.B.; Djebbli, N.; Atmani, D. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent. Asian Pac. J. Trop. Biomed. 2013, 3, 697–704. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Tyśkiewicz, K.; Olba-Zięty, E.; Graban, Ł.; Lajszner, W.; Załuski, D.; Wiejak, R.; Kamiński, P.; et al. How does extraction of biologically active substances with supercritical carbon dioxide affect lignocellulosic biomass properties? Wood Sci. Technol. 2020, 54, 519–546. [Google Scholar] [CrossRef]
- Harbourne, N.; Marete, E.; Jacquier, J.C.; O’Riordan, D. Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). LWT Food Sci. Technol. 2009, 42, 1468–1473. [Google Scholar] [CrossRef]
- Todaro, L.; Russo, D.; Cetera, P.; Milella, L. Effects of thermo-vacuum treatment on secondary metabolite content and antioxidant activity of poplar (Populus nigra L.) wood extracts. Ind. Crops Prod. 2017, 109, 384–390. [Google Scholar] [CrossRef]
- Gąsecka, M.; Mleczek, M.; Jutrzenka, A.; Goliński, P.; Stuper-Szablewska, K. Phenolic compounds in leaves of Salix species and hybrids growing under different soil conditions. Chem. Ecol. 2017, 33, 196–212. [Google Scholar] [CrossRef]
- Krakowska-Sieprawska, A.; Rafińska, K.; Walczak-Skierska, J.; Buszewski, B. The influence of plant material enzymatic hydrolysis and extraction conditions on the polyphenolic profiles and antioxidant activity of extracts: A green and efficient approach. Molecules 2020, 25, 2074. [Google Scholar] [CrossRef] [PubMed]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [PubMed]
- Khaw, K.Y.; Parat, M.O.; Shaw, P.N.; Falconer, J.R. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef] [PubMed]
- Ekart, M.P.; Bennett, K.L.; Ekart, S.M.; Gurdial, G.S.; Liotta, C.L.; Eckert, C.A. Cosolvent interactions in supercritical fluid solutions. AIChE J. 1993, 39, 235–248. [Google Scholar] [CrossRef]
- Piantino, C.R.; Aquino, F.W.B.; Follegatti-Romero, L.A.; Cabral, F.A. Supercritical CO2 extraction of phenolic compounds from Baccharis dracunculifolia. J. Supercrit. Fluids 2008, 47, 209–214. [Google Scholar] [CrossRef]
- Kukula-Koch, W.; Aligiannis, N.; Halabalaki, M.; Skaltsounis, A.L.; Glowniak, K.; Kalpoutzakis, E. Influence of extraction procedures on phenolic content and antioxidant activity of Cretan barberry herb. Food Chem. 2013, 138, 406–413. [Google Scholar] [CrossRef]
- Kuś, P.M.; Okińczyc, P.; Jakovljević, M.; Jokić, S.; Jerković, I. Development of supercritical CO2 extraction of bioactive phytochemicals from black poplar (Populus nigra L.) buds followed by GC-MS and UHPLC-DAD-QqTOF-MS. J. Pharm. Biomed. Anal. 2018, 158, 15–27. [Google Scholar] [CrossRef]
- Soares, J.F.; Zabot, G.L.; Tres, M.V.; Lunelli, F.C.; Rodrigues, V.M.; Friedrich, M.T.; Pazinatto, C.A.; Bilibio, D.; Mazutti, M.A.; Carniel, N.; et al. Supercritical CO2 extraction of black poplar (Populus nigra L.) extract: Experimental data and fitting of kinetic parameters. J. Supercrit. Fluids 2016, 117, 270–278. [Google Scholar] [CrossRef]
- Scalia, S.; Giuffreda, L.; Pallado, P. Analytical and preparative supercritical fluid extraction of Chamomile flowers and its comparison with conventional methods. J. Pharm. Biomed. Anal. 1999, 21, 549–558. [Google Scholar] [CrossRef]
- Brereton, N.J.B.; Berthod, N.; Lafleur, B.; Pedneault, K.; Pitre, F.E.; Labrecque, M. Extractable phenolic yield variation in five cultivars of mature short rotation coppice willow from four plantations in Quebec. Ind. Crops Prod. 2017, 97, 525–535. [Google Scholar] [CrossRef]
- Kiselova, Y.; Ivanova, D.; Chervenkov, T.; Gerova, D.; Galunska, B.; Yankova, T. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from bulgarian herbs. Phytother. Res. 2006, 20, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Vamanu, E.; Nita, S. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. Biomed. Res. Int. 2013, 2013, 313905. [Google Scholar] [CrossRef] [PubMed]
- Bursal, E.; Köksal, E. Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.). Food Res. Int. 2011, 44, 2217–2221. [Google Scholar] [CrossRef]
- Pazos, M.; Gallardo, J.M.; Torres, J.L.; Medina, I. Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle. Food Chem. 2005, 92, 547–557. [Google Scholar] [CrossRef]
- Guo, M.; Perez, C.; Wei, Y.; Rapoza, E.; Su, G.; Bou-Abdallah, F.; Chasteen, N.D. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans. 2007, 43, 4951–4961. [Google Scholar] [CrossRef]
- Jaén, J.A.; González, L.; Vargas, A.; Olave, G. Gallic acid, ellagic acid and pyrogallol reaction with metallic iron. Hyperfine Interact. 2003, 148, 227–235. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Ozer, M.S.; Tepe, B.; Dilek, E.; Ceylan, O. Phenolic composition, antioxidant and enzyme inhibitory activities of acetone, methanol and water extracts of Clinopodium vulgare L. subsp. vulgare L. Ind. Crops Prod. 2015, 76, 961–966. [Google Scholar] [CrossRef]
- Oleszek, M.; Kowalska, I.; Oleszek, W. Phytochemicals in bioenergy crops. Phytochem. Rev. 2019, 18, 893–927. [Google Scholar] [CrossRef]
- Sulima, P.; Krauze-Baranowska, M.; Przyborowski, J.A. Variations in the chemical composition and content of salicylic glycosides in the bark of Salix purpurea from natural locations and their significance for breeding. Fitoterapia 2017, 118, 118–125. [Google Scholar] [CrossRef]
- Pobłocka-Olech, L. Zastosowanie Metod Chromatograficznych w Badaniach Składu Chemicznego Kory Niektórych Gatunków i Klonów Wierzby; Medicial Academy: Gdańsk, Poland, 2006. [Google Scholar]
- Noleto-Dias, C.; Ward, J.L.; Bellisai, A.; Lomax, C.; Beale, M.H. Salicin-7-sulfate: A new salicinoid from willow and implications for herbal medicine. Fitoterapia 2018, 127, 166–172. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Lamaison, J.L.; Carnat, A. The amount of main flavonoids in flowers and leaves of Crataegus monogyna Jacq. and Crataegus laevigata (Poiret) DC. (Rosaceae). Pharm. Acta Helv. 1990, 65, 315–320. [Google Scholar]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singh, N.; Rajini, P.S. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 2004, 85, 611–616. [Google Scholar] [CrossRef]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of phenolic acids and flavonoids of red beet and its fermentation products. Does long-term consumption of fermented beetroot juice affect phenolics profile in human blood plasma and urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
Scheme | TPC (mg GAE/g d.m.) * | TFC (mg QE/g d.m.) * | ||||
---|---|---|---|---|---|---|
scCO2 | scCO2 and Water | Water | scCO2 | scCO2 and Water | Water | |
S. viminalis (b) | 10.38 ± 0.13 m,l | 220.25 ± 6.96 g | 132.38 ± 0.19 h | 9.50 ± 0.03 c | 0.47 ± 0.07 k | 1.03 ± 0.01 k,j,i |
S. purpurea (b) | 6.02 ± 0.13 m | 377.83 ± 5.32 b | 59.69 ± 0.90 j | 2.07 ± 0.02 g | 3.19 ± 0.08 f | 1.99 ± 0.02 g |
S. purpurea (w) | 55.64 ± 0.72 j | 319.95 ± 3.12 e | 41.45 ± 0.26 k | 8.43 ± 0.18 d | 1.83 ± 0.06 h,g | 0.84 ± 0.02 k,j |
S. purpurea (b + w) | 66.30 ± 0.90 j,i | 260.71 ± 1.15 f | 63.92 ± 0.60 j,i | 18.37 ± 1.44 a | 6.68 ± 0.11 e | 1.97 ± 0.01 h,g |
P. nigra (b) | 17.30 ± 0.94 l | 502.62 ± 9.86 a | 74.07 ± 1.26 i | 10.28 ± 0.13 b | 0.95 ± 0.01 k,j,i | 1.12 ± 0.01 k,j,i |
P. nigra (w) | 7.00 ± 0.11 m,l | 359.02 ± 5.42 c | 32.46 ± 0.49 k | 0.88 ± 0.04 k,j,i | 1.85 ± 0.03 h,g | 0.49 ± 0.02 k |
P. nigra (b + w) | 16.6 ± 0.67 m,l | 335.45 ± 0.76 d | 72.14 ± 0.58 d | 3.33 ± 0.03 f | 1.33 ± 0.01 j,i,h | 1.52 ± 0.04 i,h,g |
Substrate | DPPH (g Trolox/g d.m.) * | ABTS (%) * | ||||
---|---|---|---|---|---|---|
scCO2 | scCO2 and Water | Water | scCO2 | scCO2 and Water | Water | |
S. viminalis (b) | 0.09 ± 0.00 n | 4.41 ± 0.02 f | 4.67 ± 0.02 f | 1.89 ± 0.03 j,i | 42.01 ± 1.39 d | 32.25 ± 0.25 e |
S. purpurea (b) | 0.07 ± 0.00 n | 15.25 ± 0.04 a | 2.20 ± 0.02 j | 2.58 ± 0.26 j,i | 75.77 ± 1.28 b | 21.36 ± 1.34 f |
S. purpurea (w) | 0.25 ± 0.00 n | 11.86 ± 0.02 b | 1.10 ± 0.01 l | 1.50 ± 0.35 j,i | 65.33 ± 1.41 c | 11.34 ± 0.14 h,g |
S. purpurea (b + w) | 1.74 ± 0.05 k | 15.25 ± 0.01 a | 3.88 ± 0.06 g | 1.93 ± 0.35 j,i | 43.73 ± 1.04 d | 16.07 ± 0.52 g,f |
P. nigra (b) | 0.74 ± 0.02 m,k | 10.03 ± 0.02 d | 2.66 ± 0.02 i | 4.70 ± 0.70 j,i,h | 84.19 ± 0.24 a | 20.75 ± 1.22 f |
P. nigra (w) | 0.03 ± 0.00 n | 10.53 ± 0.01 c | 1.08 ± 0.02 l | 1.43 ± 0.09 j | 64.81 ± 0.91 c | 9.17 ± 0.57 i,h,g |
P. nigra (b + w) | 0.10 ± 0.00 n | 7.06 ± 0.07 e | 3.15 ± 0.08 h | 3.76 ± 0.33 j,i,h | 73.60 ± 0.49 b | 15.33 ± 0.61 g,f |
Substrate | EC50 (mg/cm3) | ||
---|---|---|---|
scCO2 | scCO2 and Water | Water | |
S. viminalis (b) | 5.76 | n.d. | 5.14 |
S. purpurea (b) | 3.32 | n.d. | 5.52 |
S. purpurea (w) | 2.41 | n.d. | 7.61 |
S. purpurea (b + w) | 5.41 | n.d. | 5.99 |
P. nigra (b) | 4.84 | n.d. | 7.24 |
P. nigra (w) | 1.93 | n.d. | 6.49 |
P. nigra (b + w) | 0.85 | n.d. | 3.23 |
Compound | S. viminalis (b) | S. purpurea (b) | S. purpurea (w) | S. purpurea (b + w) | P. nigra (b) | P. nigra (w) | P. nigra (b + w) |
---|---|---|---|---|---|---|---|
Salicylic compounds (µg/g extract) * | |||||||
Salicin | 9.32 ± 0.01 | 11.05 ± 0.01 | 10.95 ± 0.01 | 6.57 ± 0.01 | 10.68 ± 0.11 | 6.11 ± 0.00 | 10.28 ± 0.06 |
Saligenin | 203.03 ± 0.96 | 184.83 ± 0.96 | 142.32 ± 0.02 | 181.52 ± 0.96 | 295.17 ± 0.96 | 142.18 ± 0.17 | 300.69 ± 0.96 |
Salicortin | 111.56 ± 0.11 | 164.61 ± 0.65 | 81.00 ± 0.06 | 16.09 ± 0.65 | 138.80 ± 1.30 | 63.30 ± 0.11 | 39.58 ± 0.13 |
Total content | 323.91 | 360.49 | 234.27 | 204.17 | 444.65 | 211.59 | 350.55 |
Flavonoids (µg/g extract) * | |||||||
Catechin | 13.16 ± 0.07 | 15.38 ± 0.04 | 10.40 ± 0.04 | 5.24 ± 0.00 | 28.24 ± 0.08 | 20.32 ± 0.10 | 4.49 ± 0.02 |
F/E/G | 11.73/0.50/0.93 | 14.34/0.27/0.77 | 9.95/0.17/0.27 | 4.79/0.19/0.26 | 26.83/0.56/0.85 | 19.71/0.41/0.20 | 3.60/0.28/0.60 |
Quercetin | 1.67 ± 0.00 | 1.71 ± 0.00 | 1.36 ± 0.00 | 2.03 ± 0.02 | 5.05 ± 0.01 | 2.65 ± 0.02 | 1.29 ± 0.00 |
F/E/G | 1.47/0.12/0.08 | 1.54/0.09/0.07 | 1.26/0.04/0.07 | 1.82/0.08/0.13 | 4.91/0.06/0.07 | 2.57/0.04/0.04 | 1.17/0.06/0.06 |
Naringenin | 11.59 ± 0.03 | 15.19 ± 0.03 | 3.94 ± 0.04 | 8.56 ± 0.02 | 29.25 ± 0.03 | 8.79 ± 0.03 | 14.46 ± 0.03 |
F/E/G | 10.82/0.29/0.48 | 14.78/0.27/0.15 | 3.39/0.40/0.15 | 8.23/0.28/0.04 | 28.63/0.27/0.35 | 7.84/0.43/0.52 | 14.29/0.04/0.13 |
Total content | 26.42 | 32.28 | 15.70 | 15.84 | 62.54 | 31.76 | 20.23 |
Phenolic acids (µg/g extract) * | |||||||
Ferulic acid | 41.88 ± 0.03 | 14.68 ± 0.03 | 10.34 ± 0.06 | 23.42 ± 0.12 | 26.87 ± 0.06 | 7.84 ± 0.12 | 14.77 ± 0.03 |
F/E/G | 41.50/0.23/0.14 | 14.36/0.13/0.19 | 10.22/0.11/0.01 | 23.02/0.26/0.14 | 26.39/0.39/0.09 | 7.61/0.19/0.05 | 14.42/0.22/0.12 |
Sinapic acid | 19.30 ± 0.03 | 13.41 ± 0.04 | 11.50 ± 0.03 | 3.43 ± 0.00 | 14.24 ± 0.03 | 19.62 ± 0.09 | 17.77 ± 0.04 |
F/E/G | 18.66/0.52/0.12 | 12.69/0.34/0.37 | 11.00/0.31/0.19 | 2.88/0.36/0.19 | 13.67/0.35/0.23 | 19.40/0.13/0.10 | 17.37/0.29/0.11 |
p-Coumaric acid | 263.18 ± 0.61 | 128.82 ± 0.61 | 93.98 ± 0.09 | 82.51 ± 0.14 | 281.35 ± 0.60 | 56.03 ± 0.07 | 106.09 ± 0.59 |
F/E/G | 257.83/4.20/1.16 | 124.80/2.88/1.14 | 92.19/1.68/0.11 | 79.03/2.83/0.65 | 278.40/2.00/0.95 | 54.65/1.35/0.03 | 105.26/0.77/0.06 |
Syringic acid | 72.35 ± 0.34 | 39.98 ± 0.13 | 75.92 ± 0.33 | 33.80 ± 0.11 | 76.77 ± 0.32 | 76.11 ± 0.52 | 60.38 ± 0.10 |
F/E/G | 46.20/9.77/16.38 | 20.30/7.70/11.99 | 55.65/10.53/9.74 | 16.37/6.86/10.58 | 53.40/10.97/12.41 | 59.40/6.89/9.83 | 42.63/9.95/7.80 |
Protocatechuic acid | 36.79 ± 0.06 | 27.54 ± 0.06 | 14.77 ± 0.09 | 11.92 ± 0.02 | 19.45 ± 0.02 | 10.16 ± 0.04 | 18.34 ± 0.06 |
F/E/G | 28.22/2.01/6.56 | 14.07/2.11/11.36 | 5.74/2.03/7.00 | 7.24/2.31/2.36 | 15.77/2.19/1.49 | 3.56/1.45/5.16 | 5.65/2.79/9.90 |
p-Hydroxybenzoic acid | 422.79 ± 0.30 | 255.71 ± 0.45 | 210.45 ± 0.46 | 384.63 ± 0.46 | 428.88 ± 0.45 | 269.33 ± 0.43 | 330.50 ± 0.46 |
F/E/G | 389.73/19.97/13.09 | 230.32/13.11/12.29 | 191.80/9.74/8.91 | 356.08/17.83/10.72 | 381.96/25.19/21.73 | 246.83/8.95/13.55 | 309.20/9.58/11.72 |
Caffeic acid | 11.57 ± 0.04 | 2.90 ± 0.00 | 1.46 ± 0.01 | 3.94 ± 0.01 | 17.12 ± 0.07 | 5.71 ± 0.01 | 10.54 ± 0.04 |
F/E/G | 11.17/0.28/0.12 | 2.58/0.18/0.14 | 1.30/0.08/0.07 | 3.73/0.13/0.08 | 15.64/1.39/0.09 | 5.54/0.09/0.08 | 10.05/0.36/0.13 |
Total content | 867.86 | 483.03 | 418.42 | 543.63 | 864.68 | 444.80 | 558.38 |
Total phenolic concentration | 1218.19 | 875.79 | 668.39 | 763.64 | 1371.87 | 688.15 | 929.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostolski, M.; Adamczak, M.; Brzozowski, B.; Wiczkowski, W. Antioxidant Activity and Chemical Characteristics of Supercritical CO2 and Water Extracts from Willow and Poplar. Molecules 2021, 26, 545. https://doi.org/10.3390/molecules26030545
Ostolski M, Adamczak M, Brzozowski B, Wiczkowski W. Antioxidant Activity and Chemical Characteristics of Supercritical CO2 and Water Extracts from Willow and Poplar. Molecules. 2021; 26(3):545. https://doi.org/10.3390/molecules26030545
Chicago/Turabian StyleOstolski, Mateusz, Marek Adamczak, Bartosz Brzozowski, and Wiesław Wiczkowski. 2021. "Antioxidant Activity and Chemical Characteristics of Supercritical CO2 and Water Extracts from Willow and Poplar" Molecules 26, no. 3: 545. https://doi.org/10.3390/molecules26030545
APA StyleOstolski, M., Adamczak, M., Brzozowski, B., & Wiczkowski, W. (2021). Antioxidant Activity and Chemical Characteristics of Supercritical CO2 and Water Extracts from Willow and Poplar. Molecules, 26(3), 545. https://doi.org/10.3390/molecules26030545