Alignments of a Microparticle Pair in a Glow Discharge
Abstract
:1. Introduction
2. Criteria for Particle Stability
3. Experiment
4. Results and Discussion
4.1. Forces Acting on the Particles
4.2. Experimental Verification of the Criteria for Particle Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ivlev, A.; Morfill, G.; Lowen, H.; Royall, C.P. Complex plasmas and colloidal dispersions: Particle-resolved studies of classical liquids and solids. In Series in Soft Condensed Matter; World Scientific Publishing Company: Singapore, 2012; Volume 5. [Google Scholar]
- Morfill, G.E.; Ivlev, A.V. Complex plasmas: An interdisciplinary research field. Rev. Mod. Phys. 2009, 81, 1353. [Google Scholar] [CrossRef]
- Klumov, B.A. On melting criteria for complex plasma. Phys.-Usp. 2010, 53, 1053. [Google Scholar] [CrossRef]
- Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006. [Google Scholar] [CrossRef]
- Nosenko, V.; Luoni, F.; Kaouk, A.; Rubin-Zuzic, M.; Thomas, H. Active Janus particles in a complex plasma. Phys. Rev. Res. 2020, 2, 033226. [Google Scholar] [CrossRef]
- Lisin, E.A.; Vaulina, O.S.; Lisina, I.I.; Petrov, O.F. Active Brownian particle in homogeneous media of different viscosities: Numerical simulations. Phys. Chem. Chem. Phys. 2021, 23, 16248. [Google Scholar] [CrossRef]
- Hutchinson, I.H. Intergrain forces in low-Mach-number plasma wakes. Phys. Rev. E 2012, 85, 066409. [Google Scholar] [CrossRef] [Green Version]
- Kompaneets, R.; Morfill, G.E.; Ivlev, A.V. Wakes in complex plasmas: A self-consistent kinetic theory. Phys. Rev. E 2016, 93, 063201. [Google Scholar] [CrossRef]
- Sukhinin, G.I.; Fedoseev, A.V.; Salnikov, M.V.; Rostom, A.; Vasiliev, M.M.; Petrov, O.F. Plasma anisotropy around a dust particle placed in an external electric field. Phys. Rev. E 2017, 95, 063207. [Google Scholar] [CrossRef]
- Melzer, A.; Schweigert, V.A.; Schweigert, I.V.; Homann, A.; Peters, S.; Piel, A. Structure and stability of the plasma crystal. Phys. Rev. E 1996, 54, R46. [Google Scholar] [CrossRef]
- Vaulina, O.S.; Vasilieva, E.V.; Timirkhanov, R.A. Plasma parameters and existence conditions of monolayer dust structures in the electrode sheath of an RF discharge. Plasma Phys. Rep. 2011, 37, 1035–1041. [Google Scholar] [CrossRef]
- Nosenko, V.; Ivlev, A.V.; Kompaneets, R.; Morfill, G. Stability and size of particle pairs in complex plasmas. Phys. Plasmas 2014, 21, 113701. [Google Scholar] [CrossRef]
- Vladimirov, S.V.; Maiorov, S.A.; Cramer, N.F. Kinetics of plasma flowing around two stationary dust grains. Phys. Rev. E 2003, 67, 016407. [Google Scholar] [CrossRef]
- Prior, N.J.; Mitchell, L.W.; Samarian, A.A. Determination of charge on vertically aligned particles in a complex plasma using laser excitations. Phys. D Appl. Phys. 2003, 36, 1249. [Google Scholar] [CrossRef]
- Carstensen, J.; Greiner, F.; Block, D.; Schablinski, J.; Miloch, W.J.; Piel, A. Charging and coupling of a vertically aligned particle pair in the plasma sheath. Phys. Plasmas 2012, 19, 033702. [Google Scholar] [CrossRef]
- Lisina, I.I.; Lisin, E.A.; Vaulina, O.S.; Petrov, O.F. Self-confined particle pairs in complex plasmas. Phys. Rev. E 2017, 95, 013202. [Google Scholar] [CrossRef]
- Takahashi, K.; Oishi, T.; Shimomai, K.I.; Hayashi, Y.; Nishino, S. Analyses of attractive forces between particles in Coulomb crystal of dusty plasmas by optical manipulations. Phys. Rev. E 1998, 58, 7805. [Google Scholar] [CrossRef]
- Lisina, I.I.; Vaulina, O.S. Formation of layered structures of particles with anisotropic pair interaction. EPL 2013, 103, 55002. [Google Scholar] [CrossRef]
- Melzer, A.; Schweigert, V.A.; Piel, A. Transition from attractive to repulsive forces between dust molecules in a plasma sheath. Phys. Rev. Lett. 1999, 83, 3194. [Google Scholar] [CrossRef]
- Hebner, G.A.; Riley, M.E. Measurement of attractive interactions produced by the ion wakefield in dusty plasmas using a constrained collision geometry. Phys. Rev. E 2003, 68, 046401. [Google Scholar] [CrossRef]
- Samarian, A.A.; Vladimirov, S.V.; James, B.W. Dust particle alignments and confinement in a radio frequency sheath. Phys. Plasmas 2005, 12, 022103. [Google Scholar] [CrossRef]
- Jung, H.; Greiner, F.; Asnaz, O.H.; Carstensen, J.; Piel, A. Exploring the wake of a dust particle by a continuously approaching test grain. Phys. Plasmas 2015, 22, 053702. [Google Scholar] [CrossRef]
- Steinberg, V.; Sütterlin, R.; Ivlev, A.V.; Morfill, G. Vertical pairing of identical particles suspended in the plasma sheath. Phys. Rev. Lett. 2001, 86, 4540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroll, M.; Schablinski, J.; Block, D.; Piel, A. On the influence of wakefields on three-dimensional particle arrangements. Phys. Plasmas 2010, 17, 013702. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.K.; Goree, J. Two-particle distribution and correlation function for a 1D dusty plasma experiment. Phys. Rev. E 2012, 109, 165003. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Dropmann, M.; Zhang, B.; Matthews, L.S.; Hyde, T.W. Ion-wake field inside a glass box. Phys. Rev. E 2016, 94, 033201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisin, E.A.; Petrov, O.F.; Sametov, E.A.; Vaulina, O.S.; Statsenko, K.B.; Vasiliev, M.M.; Carmona-Reyes, J.; Hyde, T.W. Experimental study of the nonreciprocal effective interactions between microparticles in an anisotropic plasma. Sci. Rep. 2020, 10, 13653. [Google Scholar] [CrossRef] [PubMed]
- Hyde, T.W.; Kong, J.; Matthews, L.S. Helical structures in vertically aligned dust particle chains in a complex plasma. Phys. Rev. E 2013, 87, 053106. [Google Scholar] [CrossRef] [Green Version]
- Fortov, V.E.; Nefedov, E.A.; Sinel’shchikov, V.A.; Usachev, A.D.; Zobnin, A.V. Filamentary dusty structures in RF inductive discharge. Phys. Lett. A 2000, 267, 179. [Google Scholar] [CrossRef]
- Dzlieva, E.S.; Karasev, V.Y.; Eikhval’d, A.I. The effect of a longitudinal magnetic field on the plasma-dust structures in strata in a glow discharge. Opt. Spectrosc. 2005, 98, 569. [Google Scholar] [CrossRef]
- Lipaev, A.M.; Molotkov, V.I.; Nefedov, A.P.; Petrov, O.F.; Torchinskii, V.M.; Fortov, V.E.; Khrapak, A.G.; Khrapak, S.A. Ordered structures in a nonideal dusty glow-discharge plasma. J. Exp. Theor. Phys. 1997, 85, 1110. [Google Scholar] [CrossRef]
- Lampe, M.; Joyce, G.; Ganguli, G. Structure and dynamics of dust in streaming plasma: Dust molecules, strings, and crystals. IEEE Trans. Plasma Sci. 2005, 33, 57. [Google Scholar] [CrossRef]
- Lisina, I.I.; Lisin, E.A.; Vaulina, O.S.; Petrov, O.F. Coupling of dust particles in a weakly collisional plasma with an ion flow. J. Phys. Conf. Ser. 2019, 1147, 012112. [Google Scholar] [CrossRef]
- Yaroshenko, V.; Pustylnik, M. Possible Mechanisms of String Formation in Complex Plasmas at Elevated Pressures. Molecules 2021, 26, 308. [Google Scholar] [CrossRef]
- Vaulina, O.S.; Lisina, I.I.; Koss, X.G. Formation of chain structures in systems of charged grains interacting via isotropic pair potentials. Plasma Phys. Rep. 2013, 39, 455. [Google Scholar] [CrossRef]
- Lisina, I.I.; Vaulina, O.S. Formation of chain-like structures of dust particles with anisotropic pair interaction. Phys. Scr. 2014, 89, 105604. [Google Scholar] [CrossRef]
- Vaulina, O.S.; Lisina, I.I.; Lisin, E.A. Formation Conditions and Stability Criteria for Small-Size Cluster Systems. Plasma Phys. Rep. 2018, 44, 270–277. [Google Scholar] [CrossRef]
- Vaulina, O.S. Influence of inhomogeneous conditions on the kinetic energy of dust macroparticles in plasma. J. Exp. Theor. Phys. 2016, 122, 193. [Google Scholar] [CrossRef]
- Petrov, O.F.; Vasiliev, M.M.; Vaulina, O.S.; Stacenko, K.B.; Vasilieva, E.V.; Lisin, E.A.; Tun, Y.; Fortov, V.E. Solid-hexatic-liquid transition in a two-dimensional system of charged dust particles. Europhys. Lett. 2015, 111, 45002. [Google Scholar] [CrossRef] [Green Version]
- Koss, X.G.; Petrov, O.F.; Statsenko, K.B.; Vasiliev, M.M. Small systems of laser-driven active Brownian particles: Evolution and dynamic entropy. Europhys. Lett. 2018, 124, 45001. [Google Scholar] [CrossRef]
- Arkar, K.; Vasiliev, M.M.; Petrov, O.F.; Kononov, E.A.; Trukhachev, F.M. Dynamics of Active Brownian Particles in Plasma. Molecules 2021, 26, 561. [Google Scholar] [CrossRef]
- Kononov, E.A.; Vasiliev, M.M.; Vasilieva, E.V.; Petrov, O.F. Particle Surface Modification in the Near-Electrode Region of an RF Discharge. Nanomaterials 2021, 11, 2931. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Maiorov, S.A.; Golyatina, R.I. Calculation of dependenses of ion drift characteristics in a proper gas on the voltage of electric field. Inzhenernaya Fiz. 2012, 9, 3. [Google Scholar]
- Pustylnik, M.Y.; Fink, M.A.; Nosenko, V.; Antonova, T.; Hagl, T.; Thomas, H.M.; Zobnin, A.V.; Lipaev, A.M.; Usachev, A.D.; Molotkov, V.I.; et al. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station. Rev. Sci. Instrum. 2016, 87, 093505. [Google Scholar] [CrossRef]
- Qiao, K.; Ding, Z.; Kong, J.; Chen, M.; Matthews, L.S.; Hyde, T.W. Non-perturbative experiments on plasma-mediated particle interaction and the ion wake potential. arXiv 2018, arXiv:1810.07173. [Google Scholar]
- Miloch, W.J.; Kroll, M.; Block, D. Charging and dynamics of a dust grain in the wake of another grain in flowing plasmas. Phys. Plasmas 2010, 17, 103703. [Google Scholar] [CrossRef]
- Dzubiella, J.; Löwen, H.; Likos, C.N. Depletion forces in nonequilibrium. Phys. Rev. Lett. 2003, 91, 248301. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Sasa, S.I. The law of action and reaction for the effective force in a non-equilibrium colloidal system. J. Phys. Condens. Matter 2006, 18, 2825. [Google Scholar] [CrossRef] [Green Version]
- Khair, A.S.; Brady, J.F. On the motion of two particles translating with equal velocities through a colloidal dispersion. Proc. R. Soc. A 2007, 463, 223. [Google Scholar] [CrossRef]
- Mejía-Monasterio, C.; Oshanin, G. Bias-and bath-mediated pairing of particles driven through a quiescent medium. Soft Matter 2011, 7, 993. [Google Scholar] [CrossRef] [Green Version]
- Sriram, I.; Furst, E.M. Out-of-equilibrium forces between colloids. Soft Matter 2012, 8, 3335. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisin, E.A.; Kononov, E.A.; Sametov, E.A.; Vasiliev, M.M.; Petrov, O.F. Alignments of a Microparticle Pair in a Glow Discharge. Molecules 2021, 26, 7535. https://doi.org/10.3390/molecules26247535
Lisin EA, Kononov EA, Sametov EA, Vasiliev MM, Petrov OF. Alignments of a Microparticle Pair in a Glow Discharge. Molecules. 2021; 26(24):7535. https://doi.org/10.3390/molecules26247535
Chicago/Turabian StyleLisin, Evgeny A., Evgeny A. Kononov, Eduard A. Sametov, Mikhail M. Vasiliev, and Oleg F. Petrov. 2021. "Alignments of a Microparticle Pair in a Glow Discharge" Molecules 26, no. 24: 7535. https://doi.org/10.3390/molecules26247535
APA StyleLisin, E. A., Kononov, E. A., Sametov, E. A., Vasiliev, M. M., & Petrov, O. F. (2021). Alignments of a Microparticle Pair in a Glow Discharge. Molecules, 26(24), 7535. https://doi.org/10.3390/molecules26247535