Quality Evaluation of Taxilli Herba from Different Hosts Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis
Abstract
:1. Introduction
2. Results
2.1. Optimization of Sample Preparation
2.2. Optimization of UFLC Conditions
2.3. Optimization of MS Conditions
2.4. Method Validation
2.5. Determination of Samples
2.6. OPLS-DA of Samples
2.7. HCA of Samples
2.8. GRA of Samples
- (1)
- Normalized processing of the original data
- (2)
- Calculation of grey relational coefficient
- (3)
- Calculation of relational grade
- (4)
- Calculation of the relative relational grade is as follows:
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Chemicals and Reagents
4.3. Preparation of Standard Solutions
4.4. Preparation of Sample Solutions
4.5. Chromatographic and Mass Spectrometric Conditions
4.6. Validation of the Method
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Part I; China Medical Science Press: Beijing, China, 2020; p. 312. [Google Scholar]
- Chen, Q.W. Commentary of Shennong’s Herbal Classic of Materia Medica; Traditional Chinese Medicine Ancient Books Press: Beijing, China, 2018; pp. 870–872. [Google Scholar]
- Chen, J.T.; Feng, F. Studies on Chemical Constituents of Taxillus sutchuenenisis. J. Chin. Med. Mater. 2007, 11, 1393–1395. [Google Scholar]
- Yang, L.Y.; Lin, J.; Zhou, B.; Liu, Y.G.; Zhu, B.Q. Activity of compounds from Taxillus sutchuenensis as inhibitors of HCV NS3 serine protease. Nat. Prod. Res. 2017, 31, 487–491. [Google Scholar] [CrossRef]
- Li, L.Q.; Li, M.R.; Yang, Z.B.; Hu, X.B. Studies on the chemical constituents of Taxillus nigrans Danser. Chin. Tradit. Herb. Drugs 1995, 26, 118–121. [Google Scholar]
- Huo, X.; Gao, Y.Q.; Yang, J.; Liu, W.W.; Liu, J.H. Chemical composition of the essential oil of Herba Taxilli. Biotechnology 2008, 18, 47–49. [Google Scholar]
- Huang, F.Y.; Liu, R.Y.; Chai, Z.S.; Su, B.W.; Zhu, K.X.; Lu, H.L.; Li, Y.H. Study on aromatic components in essential oil of Taxillus chinensis from different cold/hot properties hosts by GC-MS. Asia Pac. Tradit. Med. 2019, 15, 61–66. [Google Scholar]
- Xu, Y.M.; Wu, Q.N.; Chen, J.W.; Jiang, X.P. Analysis of phospholipid constituents of Taxilli Herba and Visci Herba. China J. Chin. Mater. Med. 1990, 15, 36–38. [Google Scholar]
- Qin, Y.R.; Nong, H.H.; Teng, Y.J.; Huang, X.J.; Fan, C.X. Comparative analysis on vitamin C content in several common Loranthaceae leaves collected from northwest of Guangxi province. Lishizhen Med. Mater. Med. Res. 2011, 22, 1890–1893. [Google Scholar]
- Xia, J.Q.; Wan, Y.Q.; Fu, Z.H.; Liu, Y.X.; Guo, L. Determination of trace elements in crude medicine and decocted liquid of Shoutai pill by ICP-AES. Chin. J. Spectrosc. Lab. 2013, 30, 272–279. [Google Scholar]
- Park, S.B.; Park, G.H.; Kim, H.N.; Song, H.M.; Son, H.J.; Park, J.A.; Kim, H.S.; Jeong, J.B. Ethanol extracts from the branch of Taxillus yadoriki parasitic to Neolitsea sericea induces cyclin D1 proteasomal degradation through cyclin D1 nuclear export. BMC Complement. Altern. Med. 2018, 18, 189. [Google Scholar] [CrossRef]
- Li, S.S. Mistletoe lectins: Telomerase inhibitors in alternative cancer therapy. Drug Discov. Today 2002, 7, 896–897. [Google Scholar] [CrossRef]
- Hua, Y.L.; Zhang, R.R.; Qiu, J.M. Wu, H.P. Study on lipid-lowering effect of extracts of Taxilli Herba. J. Nanjing Univ. Tradit. Chin. Med. 1995, 11, 86. [Google Scholar]
- Ye, F.; Du, G.Z.; Cui, A.Q.; Lu, X.T. Study on the mechanism of compound mistletoe fluidextract in relieving hypertension. J. Tradit. Chin. Med. 2009, 29, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.C.; Shyur, L.F.; Jan, J.T.; Liang, P.H.; Kuo, C.J.; Arulselvan, P.; Wu, J.B.; Kuo, S.C.; Yang, N.S. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J. Tradit. Complement. Med. 2011, 1, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Park, S.B.; Park, G.H.; Kim, H.N.; Son, H.J.; Song, H.M.; Kim, H.S.; Jeong, H.J.; Jeong, J.B. Anti-inflammatory effect of the extracts from the branch of Taxillus yadoriki being parasitic in Neolitsea sericea in LPS-stimulated RAW264.7 cells. Biomed. Pharmacother. 2018, 104, 1–7. [Google Scholar] [CrossRef]
- Thoa, N.; Tran, C.V. Phytochemical Components, Antioxidant and Cytotoxic Activities of Mulberry Mistletoe (Loranthus parasiticus Merr) Leaves Extracts. Asian J. Biotechnol. Bioresour. Technol. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Wong, D. Antioxidative and neuroprotective effects of Loranthus parasiticus (L.) Merr (Loranthaceae) against oxidative stress in NG108-15 cells. J. Med. Plants Res. 2011, 5, 6291–6298. [Google Scholar]
- Huang, F.Y.; Liu, R.Y.; Lu, H.L.; Li, Y.H. Effects of hosts with different properties on total flavonoids content of Taxilli Herba. J. Guangxi Univ. Tradit. Chin. Med. 2017, 20, 34–36. [Google Scholar]
- Yang, Z.B.; Yang, S.L.; Long, C.M.; Mao, H.L.; Sun, C.B. Determination of the total flavonoids and antioxidant activity of Taxillus chinensis. Food Res. Dev. 2012, 33, 120–122. [Google Scholar]
- Su, B.W.; Wang, H.; Li, Y.H.; Pei, H.H.; Zhu, K.X.; Lu, D. Content analysis of avicularin, quercitrin and quercetin in Herba Taxilli from different host plants. J. Int. Pharm. Res. 2017, 44, 738–742. [Google Scholar]
- Wu, L.W.; Li, J.J.; Liu, T.; Li, S.N.; Feng, J.; Yu, Q.; Zhang, J.; Chen, J.; Zhou, Y.; Ji, J.; et al. Quercetin shows anti-tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med. 2019, 8, 4806–4820. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, X.; Sun, J.X.; Yu, F.L.; Zhang, H.; Gao, J.; Zheng, A.P. Size-Dependent Biological Effects of Quercetin Nanocrystals. Molecules 2019, 24, 1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesiak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Wang, S.G.; Yao, J.Y.; Zhou, B.; Yang, J.X.; Chaudry, M.T.; Wang, M.; Xiao, F.L.; Li, Y.; Yin, W.Z. Bacteriostatic Effect of Quercetin as an Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Mirzaei, S.; Hashemi, F.; Samarghandian, S.; Zabolian, A.; Hushmandi, K.; Ang, H.L.; Sethi, G.; Kumar, A.P.; et al. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem. Toxicol. 2021, 157, 112576. [Google Scholar] [CrossRef]
- Ma, Z.C.; Hong, Q.; Wang, Y.G.; Tan, H.L.; Xiao, C.R.; Liang, Q.D.; Cai, S.H.; Gao, Y. Expression in Gamma-Radiated Human Umbilical Vascular Endothelial Cells. Biol. Pharm. Bull. 2010, 33, 752–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharmappa, K.K.; Kumar, R.V.; Nataraju, A.; Mohamed, R.; Shivaprasad, H.V.; Vishwanath, B.S. Anti-inflammatory activity of oleanolic acid by inhibition of secretory phospholipase A2. Planta Med. 2009, 75, 211–215. [Google Scholar] [CrossRef]
- Lv, H.H.; Yang, A.L.; Zhang, H. HPLC-DAD method for simultaneous determination of 8 nucleosides in cordyceps cicadae. Pract. Pharm. Clin. Rem. 2015, 18, 1466–1469. [Google Scholar]
- Baram, G.I.; Reihart, D.V.; Gol’dberg, E.D.; Izotov, B.N.; Rodinko, M.O.; Khazanov, V.A. New potentialities of HPLC in pharmacopoeian analysis. Bull. Exp. Biol. Med. 2003, 135, 62. [Google Scholar] [CrossRef]
- Baldrey, S.F.; Brodie, R.R.; Morris, G.R.; Jenkins, E.H.; Brookes, S.T. Comparison of LC-UV and LC-MS-MS for the determination of taxol. Chromatographia 2002, 55, 187–192. [Google Scholar] [CrossRef]
- Masters, A.R.; Mccoy, M.; Jones, D.R.; Desta, Z. Stereoselective method to quantify bupropion and its three major metabolites, hydroxy bupropion, erythro-dihydrobupropion, and threo-dihydrobupropion using HPLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1015, 201–208. [Google Scholar] [CrossRef]
- Wang, C.C.; Cai, H.; Zhao, H.; Yan, Y.; Shi, J.J.; Chen, S.Y.; Tan, M.X.; Chen, J.L.; Zou, L.S.; Chen, C.H.; et al. Distribution patterns for metabolites in medicinal parts of wild and cultivated licorice. J. Pharm. Biomed. Anal. 2018, 161, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wu, W.Y.; Sun, G.X.; Wang, D.D.; Hou, J.J.; Yang, W.Z.; Jiang, B.H.; Liu, X.; Guo, D.A. A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing pill as an example. J. Chromatogr. A 2013, 1294, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Lu, D.; Zhao, M.H.; Zhu, K.X. Research on the developments and applications for medicinal plants of loranthaceae in Guangxi. Guangxi Med. J. 2006, 28, 1695–1698. [Google Scholar]
- Peng, L.; Wang, Y.Z.; Zhu, H.B.; Chen, Q.M. Fingerprint profile of active components for Artemisia selengensis Turcz by HPLC–PAD combined with chemometrics. Food Chem. 2011, 125, 1064–1071. [Google Scholar] [CrossRef]
- Deng, J.L. Properties of Relational Space for Grey System; China Ocean Press: Beijing, China, 1988; pp. 20–75. [Google Scholar]
- Du, D.; Pang, Q.H.; Wu, Y. Modern Comprehensive Evaluation Method and Case Study; Tsinghua University Press: Beijing, China, 2008. [Google Scholar]
- Zhang, Y.Y.; Jia, Y.; Li, M.; Hou, L.A. Spatiotemporal variations and relationship of PM and gaseous pollutants based on gray correlation analysis. J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. 2018, 53, 139–145. [Google Scholar] [CrossRef]
- Han, B.S. Materia Medica of Shu; Anhui Science and Technology Press: Hefei, China, 2005; pp. 117–118. [Google Scholar]
- Kou, Z.S. Deduction of Materia Medica; China Medical Science Press: Beijing, China, 2018; p. 62. [Google Scholar]
- Eom, H.Y.; Jang, S.I.; Lee, J.H. Development and Validation of a Bioanalytical Method for 3′- and 6′-Sialyllactose in Minipig Liver and Kidney Using Liquid Chromatography-Tandem Mass Spectrometry and Its Application to Analysis of Tissue Distribution. Molecules 2020, 25, 5721. [Google Scholar] [CrossRef]
- Wang, F.Q.; Li, S.H.; Feng, H.; Yang, Y.J.; Xiao, B.; Chen, D.W. An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry. Food Chem. 2019, 275, 530–538. [Google Scholar]
No. | Constituents | Formula | TR (min) | MRM Parameters | |||
---|---|---|---|---|---|---|---|
MRM Transitions (m/z) | DP (V) | CE (eV) | Ion Mode | ||||
1 | Lysine | C6H14N2O2 | 1.81 | 147.11/83.91 | 100 | 14 | ESI+ |
2 | Histidine | C6H9N3O2 | 1.85 | 156.09/110.03 | 130 | 32 | ESI+ |
3 | Argnine | C6H14N4O2 | 1.88 | 175.12/70.02 | 88 | 18 | ESI+ |
4 | Serine | C3H7NO3 | 1.96 | 106.05/59.99 | 100 | 8 | ESI+ |
5 | Theronine | C4H9NO3 | 2.04 | 120.07/74.00 | 100 | 2 | ESI+ |
6 | Glutamic acid | C5H9NO4 | 2.07 | 148.08/83.91 | 12 | 14 | ESI+ |
7 | Proline | C5H9NO2 | 2.25 | 116.07/70.02 | 68 | 10 | ESI+ |
8 | Valine | C5H11NO2 | 3.06 | 118.09/72.06 | 100 | 10 | ESI+ |
9 | Tyrosine | C9H11NO3 | 4.38 | 182.08/136.01 | 16 | 16 | ESI+ |
10 | Adenosine | C10H13N5O4 | 4.63 | 268.10/136.10 | 86 | 23 | ESI+ |
11 | 2′-Deoxyadenosine | C10H13N5O3 | 4.7 | 252.40/136.10 | 50 | 18 | ESI+ |
12 | Isoleucine | C6H13NO2 | 4.8 | 132.20/86.05 | 64 | 10 | ESI+ |
13 | Inosine | C10H12N4O5 | 4.88 | 269.00/137.00 | 46 | 15 | ESI+ |
14 | Guanosine | C10H13N5O5 | 4.89 | 284.30/152.10 | 42 | 16 | ESI+ |
15 | Gallic acid | C7H6O5 | 4.98 | 169.00/125.00 | −33 | −13 | ESI- |
16 | Leucine | C6H13NO2 | 5.04 | 132.20/86.00 | 64 | 10 | ESI+ |
17 | 2′-Deoxyguanosine | C10H13N5O4 | 5.07 | 268.00/152.30 | 39 | 13 | ESI+ |
18 | Phenylalanine | C9H11NO2 | 6.46 | 166.10/120.05 | 100 | 14 | ESI+ |
19 | Protocatechuic acid | C7H6O4 | 7.07 | 152.94/109.00 | −85 | −16 | ESI− |
20 | Catechin | C15H14O6 | 7.88 | 289.00/244.80 | −180 | −20 | ESI− |
21 | Chlorogenic acid | C16H18O9 | 8.59 | 353.14/190.90 | −35 | −20 | ESI− |
22 | Coniferic acid | C10H10O4 | 14.87 | 193.00/133.90 | −27 | −24 | ESI− |
23 | Quercetin-3-O-(6″-galloyl)-β-D-galactopyranoside | C28H24O16 | 15.26 | 615.02/463.05 | −180 | −38 | ESI− |
24 | Quercetin-3-O-(6″-galloyl)-β-D-glucopyranoside | C28H24O16 | 15.9 | 615.02/463.05 | −180 | −38 | ESI− |
25 | Quercetin-3-O-β-D-glucuronide | C21H18O13 | 19.55 | 477.09/300.97 | −110 | −32 | ESI− |
26 | Hyperin | C21H20O12 | 19.67 | 462.936/300.00 | −155 | −36 | ESI− |
27 | Rutin | C27H30O16 | 20.24 | 608.945/299.90 | −170 | −48 | ESI− |
28 | Isoquercitrin | C21H20O12 | 20.37 | 462.90/300.00 | −155 | −36 | ESI− |
29 | Auicularin | C20H18O11 | 23.9 | 435.00/303.00 | 130 | 15 | ESI+ |
30 | Kaempferol-3,7-bisrhamnoside | C27H30O14 | 24.05 | 577.13/282.99 | −200 | −52 | ESI− |
31 | Quercetrin | C21H20O11 | 24.76 | 447.00/301.00 | −180 | −30 | ESI− |
32 | Quercetin | C15H10O7 | 27.24 | 301.10/151.00 | −62 | −28 | ESI− |
33 | Isosakuranetin | C16H14O5 | 27.76 | 285.07/164.09 | −120 | −28 | ESI− |
No. | Constituents | Regression Equation | r | Liner Range (ng/mL) | LOD (ng/mL) | LOQ (ng/mL) | Precision (RSD, %) | Repeatability (RSD, %) | Stability (RSD, %) | Recovery (%) | Matrix Effect | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 9) | Mean | RSD | ||||||||||
(n = 6) | (n = 6) | ||||||||||||
1 | Lysine | Y = 2870X + 29,900 | 0.9995 | 19.297–4940 | 3.938 | 13.127 | 2.32 | 1.42 | 1.64 | 1.12 | 100.30 | 2.08 | 0.92 |
2 | Histidine | Y = 1120X – 11,500 | 0.9998 | 44.922–2875 | 8.751 | 29.170 | 1.07 | 2.98 | 3.47 | 2.31 | 100.50 | 2.04 | 0.94 |
3 | Argnine | Y = 7830X – 135,000 | 0.9992 | 8.301–2125 | 0.711 | 2.372 | 1.24 | 0.97 | 1.55 | 2.45 | 101.32 | 1.57 | 0.91 |
4 | Serine | Y = 1050X + 32,600 | 0.9997 | 80.625–5160 | 14.397 | 47.991 | 3.08 | 1.82 | 3.95 | 2.05 | 99.83 | 1.02 | 0.96 |
5 | Theronine | Y = 1430X + 56,100 | 0.9992 | 39.531–5060 | 6.663 | 22.209 | 1.41 | 1.36 | 2.88 | 2.40 | 99.61 | 3.17 | 1.02 |
6 | Glutamic acid | Y = 1390X + 85,400 | 0.9998 | 59.766–15,300 | 11.277 | 37.588 | 2.35 | 2.06 | 1.69 | 1.65 | 99.96 | 1.50 | 0.99 |
7 | Proline | Y = 5530X + 2,310,000 | 0.9993 | 8.647–4427.5 | 1.540 | 5.132 | 2.52 | 1.42 | 2.82 | 2.89 | 99.77 | 2.10 | 0.97 |
8 | Valine | Y = 14,200X – 74,600 | 0.9998 | 19.844–2540 | 4.314 | 14.380 | 1.24 | 1.14 | 3.66 | 0.87 | 100.24 | 2.32 | 1.03 |
9 | Tyrosine | Y = 3580X + 244,000 | 0.9995 | 20–5120 | 5.728 | 19.093 | 2.85 | 2.22 | 4.44 | 1.30 | 99.40 | 3.40 | 1.04 |
10 | Adenosine | Y =32,700X + 414,000 | 0.9991 | 2.432–622.5 | 0.355 | 1.185 | 2.77 | 2.66 | 2.21 | 0.95 | 99.61 | 1.60 | 0.95 |
11 | 2′-Deoxyadenosine | Y = 47,300X + 17,500 | 0.9996 | 1.289–82.5 | 0.182 | 0.608 | 2.82 | 3.07 | 1.98 | 3.23 | 100.15 | 1.97 | 0.99 |
12 | Isoleucine | Y = 21,100X + 211,000 | 0.9999 | 5.098–652.5 | 1.179 | 3.929 | 3.11 | 3.22 | 2.15 | 1.27 | 99.92 | 1.20 | 0.96 |
13 | Inosine | Y = 10,900X − 495 | 0.9992 | 5.029–643.8 | 0.903 | 3.012 | 2.63 | 1.91 | 1.93 | 2.07 | 100.42 | 2.10 | 1.00 |
14 | Guanosine | Y = 7560X + 146,000 | 0.9994 | 2.495–2555 | 0.466 | 1.555 | 2.72 | 3.83 | 1.99 | 1.45 | 98.98 | 1.34 | 1.01 |
15 | Gallic acid | Y = 4090X + 10,100 | 0.9999 | 11.035–2825 | 3.168 | 10.560 | 2.23 | 2.25 | 1.38 | 2.81 | 99.82 | 2.18 | 1.01 |
16 | Leucine | Y = 22,900X + 124,000 | 0.9994 | 5.039–645 | 1.032 | 3.440 | 2.76 | 2.41 | 1.93 | 1.73 | 99.27 | 1.24 | 1.04 |
17 | 2’-Deoxyguanosine | Y = 14900X − 44000 | 0.9992 | 2.698–690.6 | 0.493 | 1.645 | 1.97 | 2.35 | 3.87 | 2.93 | 100.03 | 2.87 | 1.02 |
18 | Phenylalanine | Y = 32,700X + 1,210,000 | 0.9993 | 5.137–657.5 | 0.954 | 3.181 | 2.96 | 2.72 | 2.35 | 3.53 | 99.86 | 3.27 | 1.02 |
19 | Protocatechuic acid | Y = 14,000X + 105,000 | 0.9992 | 2.808–1437.5 | 0.665 | 2.215 | 1.57 | 3.38 | 3.04 | 2.40 | 100.81 | 2.14 | 0.97 |
20 | Catechin | Y = 968X + 12,800 | 0.9993 | 189.453–24,250 | 40.597 | 135.324 | 1.63 | 2.93 | 3.29 | 3.25 | 100.54 | 1.63 | 0.98 |
21 | Chlorogenic acid | Y = 7700X + 35,900 | 0.9999 | 2.441–2500 | 0.631 | 2.105 | 3.02 | 2.15 | 2.68 | 3.16 | 99.67 | 1.70 | 1.04 |
22 | Coniferic acid | Y=2490X-39,100 | 0.9998 | 4.834–4950 | 0.780 | 2.599 | 2.00 | 3.27 | 3.27 | 2.44 | 99.79 | 1.83 | 0.97 |
23 | Quercetin-3-O-(6”-galloyl)-β-D-galactopyranoside | Y = 2900X – 122,000 | 0.9994 | 9.668–4950 | 1.040 | 3.465 | 3.34 | 2.70 | 3.09 | 2.93 | 99.83 | 2.60 | 0.97 |
24 | Quercetin-3-O-(6”-galloyl)-β-D-glucopyranoside | Y = 2700X – 97,900 | 0.9996 | 9.863–5050 | 1.885 | 6.282 | 1.22 | 1.01 | 2.86 | 2.77 | 100.10 | 2.34 | 0.95 |
25 | Quercetin-3-O-β-D-glucuronide | Y = 5740X + 238,000 | 0.9997 | 61.816–31,650 | 4.579 | 15.263 | 2.75 | 1.95 | 2.89 | 1.85 | 99.10 | 1.51 | 0.97 |
26 | Hyperin | Y = 2350X + 54,100 | 0.9991 | 4.824–9880 | 1.285 | 4.283 | 1.27 | 1.67 | 1.65 | 1.37 | 99.25 | 2.04 | 1.03 |
27 | Rutin | Y = 1560X + 5950 | 0.9998 | 4.932–1262.5 | 0.834 | 2.778 | 1.26 | 2.41 | 4.67 | 1.16 | 99.70 | 1.38 | 0.98 |
28 | Isoquercitrin | Y = 867X + 461,000 | 0.9991 | 24.487–25,075 | 5.010 | 16.701 | 1.39 | 1.33 | 2.41 | 1.75 | 100.86 | 1.42 | 0.97 |
29 | Auicularin | Y = 2800X – 11,100 | 0.9990 | 9.766–5000 | 2.441 | 8.138 | 2.79 | 2.39 | 1.77 | 0.86 | 100.05 | 2.65 | 0.96 |
30 | Kaempferol-3,7-bisrhamnoside | Y = 1170X − 1700 | 0.9998 | 4.858–2487.5 | 1.388 | 4.627 | 1.26 | 2.90 | 3.53 | 4.45 | 98.83 | 1.20 | 0.94 |
31 | Quercetrin | Y = 3980X + 608,000 | 0.9997 | 17.761–36,375 | 2.264 | 7.546 | 1.80 | 1.77 | 2.94 | 1.43 | 99.97 | 2.18 | 0.95 |
32 | Quercetin | Y = 3160X – 212,000 | 0.9990 | 9.766–5000 | 2.307 | 7.689 | 3.09 | 3.86 | 2.20 | 1.37 | 100.58 | 2.75 | 0.92 |
33 | Isosakuranetin | Y = 7540X – 11,800 | 0.9994 | 3.082–789.1 | 0.478 | 1.595 | 1.12 | 3.52 | 3.65 | 4.58 | 98.03 | 2.78 | 1.03 |
Species | No. | Host | Family of Host | Batch No. | Origin |
---|---|---|---|---|---|
Taxilli Herba | S1 | Morus alba | Moraceae | 2019051901 | Wuzhou Guangxi |
S2 | Morus alba | Moraceae | 2019051902 | Wuzhou Guangxi | |
S3 | Morus alba | Moraceae | 2020121301 | Wuzhou Guangxi | |
S4 | Morus alba | Moraceae | 2020121302 | Wuzhou Guangxi | |
S5 | Morus alba | Moraceae | 2020121303 | Wuzhou Guangxi | |
S6 | Morus alba | Moraceae | 2021021401 | Wuzhou Guangxi | |
S7 | Morus alba | Moraceae | 2021030101 | Wuzhou Guangxi | |
S8 | Liquidambar formosana | Altingiaceae | 2019110301 | Nanning Guangxi | |
S9 | Liquidambar formosana | Altingiaceae | 2019110302 | Nanning Guangxi | |
S10 | Liquidambar formosana | Altingiaceae | 2020122802 | Wuzhou Guangxi | |
S11 | Liquidambar formosana | Altingiaceae | 2020122803 | Wuzhou Guangxi | |
S12 | Cinnamomum camphora | Lauraceae | 2020081801 | Nanning Guangxi | |
S13 | Cinnamomum camphora | Lauraceae | 2020081802 | Nanning Guangxi | |
S14 | Clausena lansium | Rutaceae | 2019110302 | Nanning Guangxi | |
S15 | Clausena lansium | Rutaceae | 2019110303 | Nanning Guangxi | |
S16 | Clausena lansium | Rutaceae | 2020122812 | Wuzhou Guangxi | |
S17 | Clausena excavata | Rutaceae | 2019100201 | Chongzuo Guangxi | |
S18 | Clausena excavata | Rutaceae | 2019100202 | Chongzuo Guangxi | |
S19 | Tabernaemontana divaricata | Apocynaceae | 2019052005 | Wuzhou Guangxi | |
S20 | Tabernaemontana divaricata | Apocynaceae | 2019052006 | Wuzhou Guangxi | |
S21 | Amygdalus persica | Rosaceae | 2020122901 | Nanning Guangxi | |
S22 | Amygdalus persica | Rosaceae | 2020122902 | Nanning Guangxi | |
S23 | Amygdalus persica | Rosaceae | 2020122903 | Nanning Guangxi | |
S24 | Glyptostrobus pensilis | Cupressaceae | 2020120801 | Baise Guangxi | |
S25 | Glyptostrobus pensilis | Cupressaceae | 2020120802 | Baise Guangxi | |
S26 | Glyptostrobus pensilis | Cupressaceae | 2020120803 | Baise Guangxi | |
S27 | Diospyros kaki | Ebenaceae | 2020122816 | Wuzhou Guangxi | |
S28 | Diospyros kaki | Ebenaceae | 2020122817 | Wuzhou Guangxi | |
S29 | Ilex latifolia | Aquifoliaceae | 2019051903 | Wuzhou Guangxi | |
S30 | Ilex latifolia | Aquifoliaceae | 2019051904 | Wuzhou Guangxi | |
S31 | Crataegus pinnatifida var. major | Rosaceae | 2019051906 | Wuzhou Guangxi | |
S32 | Crataegus pinnatifida var. major | Rosaceae | 2019051907 | Wuzhou Guangxi | |
S33 | Crataegus pinnatifida var. major | Rosaceae | 2019051908 | Wuzhou Guangxi | |
S34 | Passiflora edulis | Passifloraceae | 2019052001 | Wuzhou Guangxi | |
S35 | Passiflora edulis | Passifloraceae | 2019052002 | Wuzhou Guangxi | |
S36 | Passiflora edulis | Passifloraceae | 2019052003 | Wuzhou Guangxi | |
S37 | Pyrus pyrifolia | Rosaceae | 2019051910 | Wuzhou Guangxi | |
S38 | Pyrus pyrifolia | Rosaceae | 2019051911 | Wuzhou Guangxi | |
Tolypanthi Herba | S39 | Morus alba | Moraceae | 2019070701 | Guilin Guangxi |
S40 | Morus alba | Moraceae | 2019070702 | Guilin Guangxi | |
S41 | Diospyros kaki | Ebenaceae | 2019070706 | Guilin Guangxi | |
S42 | Morus alba | Moraceae | 2019070703 | Guilin Guangxi | |
S43 | Morus alba | Moraceae | 2019070704 | Guilin Guangxi | |
S44 | Diospyros kaki | Ebenaceae | 2019070707 | Guilin Guangxi | |
S45 | Diospyros kaki | Ebenaceae | 2019070708 | Guilin Guangxi |
No. | ri | Ranking | Difference of (ri%) | No. | ri | Ranking | Difference of (ri%) |
---|---|---|---|---|---|---|---|
S1 | 0.4537 | 3 | 6.2 | S24 | 0.3574 | 35 | 26.1 |
S2 | 0.4392 | 4 | 9.2 | S25 | 0.3564 | 36 | 26.3 |
S3 | 0.4386 | 5 | 9.3 | S26 | 0.3479 | 39 | 28.0 |
S4 | 0.4308 | 7 | 10.9 | S27 | 0.3892 | 22 | 19.5 |
S5 | 0.4384 | 6 | 9.3 | S28 | 0.3831 | 23 | 20.8 |
S6 | 0.4783 | 2 | 1.1 | S29 | 0.3950 | 17 | 18.3 |
S7 | 0.4836 | 1 | 0.0 | S30 | 0.3943 | 18 | 18.4 |
S8 | 0.3763 | 26 | 22.2 | S31 | 0.3916 | 20 | 19.0 |
S9 | 0.3899 | 21 | 19.4 | S32 | 0.3787 | 25 | 21.7 |
S10 | 0.3816 | 24 | 21.1 | S33 | 0.3673 | 31 | 24.0 |
S11 | 0.3756 | 27 | 22.3 | S34 | 0.3748 | 29 | 22.5 |
S12 | 0.3203 | 45 | 33.8 | S35 | 0.3635 | 33 | 24.8 |
S13 | 0.3276 | 42 | 32.3 | S36 | 0.3617 | 34 | 25.2 |
S14 | 0.3994 | 15 | 17.4 | S37 | 0.3686 | 30 | 23.8 |
S15 | 0.4015 | 14 | 17.0 | S38 | 0.3653 | 32 | 24.4 |
S16 | 0.4071 | 12 | 15.8 | S39 | 0.3749 | 28 | 22.5 |
S17 | 0.3961 | 16 | 18.1 | S40 | 0.3378 | 40 | 30.1 |
S18 | 0.3926 | 19 | 18.8 | S41 | 0.3234 | 43 | 33.1 |
S19 | 0.4096 | 11 | 15.3 | S42 | 0.3506 | 38 | 27.5 |
S20 | 0.4056 | 13 | 16.1 | S43 | 0.3555 | 37 | 26.5 |
S21 | 0.4114 | 10 | 14.9 | S44 | 0.3218 | 44 | 33.5 |
S22 | 0.4298 | 8 | 11.1 | S45 | 0.3360 | 41 | 30.5 |
S23 | 0.4200 | 9 | 13.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, N.; Li, L.; Cai, Z.-C.; Yuan, J.-H.; Wang, W.-X.; Yin, S.-X.; Liu, S.-J.; Wei, L.-F.; Mei, Y.-Q.; Chen, C.-H.; et al. Quality Evaluation of Taxilli Herba from Different Hosts Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis. Molecules 2021, 26, 7490. https://doi.org/10.3390/molecules26247490
Wu N, Li L, Cai Z-C, Yuan J-H, Wang W-X, Yin S-X, Liu S-J, Wei L-F, Mei Y-Q, Chen C-H, et al. Quality Evaluation of Taxilli Herba from Different Hosts Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis. Molecules. 2021; 26(24):7490. https://doi.org/10.3390/molecules26247490
Chicago/Turabian StyleWu, Nan, Li Li, Zhi-Chen Cai, Jia-Huan Yuan, Wen-Xin Wang, Sheng-Xin Yin, Sheng-Jin Liu, Li-Fang Wei, Yu-Qi Mei, Cui-Hua Chen, and et al. 2021. "Quality Evaluation of Taxilli Herba from Different Hosts Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis" Molecules 26, no. 24: 7490. https://doi.org/10.3390/molecules26247490