Comparative Study on Microencapsulation of Lavender (Lavandula angustifolia Mill.) and Peppermint (Mentha piperita L.) Essential Oils via Spray-Drying Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Essential Oils Composition by Gas Chromatography (GC)
2.3. Emulsion Preparation
2.4. Spray-Drying
2.5. Microparticles Characterization
2.5.1. Production Yield
2.5.2. Particles’ Average Size
2.5.3. Shape and Surface Morphology
2.5.4. Surface Oil Content
2.5.5. Total Oil Content
2.5.6. Encapsulation Efficiency
2.5.7. Moisture Content
2.6. Flowability Testing
2.6.1. Angle of Repose (θ)
2.6.2. Hausner Ratio (HR)
2.7. X-ray Powder Diffraction (XRPD)
3. Results and Discussion
3.1. Characterization of Microparticles
3.1.1. Production Yield and Encapsulation Efficiency
3.1.2. Particle Shape, Size, and Surface Morphology
3.2. XRD Analysis
3.3. Total Oil Content
3.4. Surface Content of Essential Oils in the Particles
3.4.1. Surface Content of Lavender Oil
3.4.2. Surface Content of Peppermint Oil
3.5. Moisture Content
3.6. Flowability Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharmeen, J.; Mahomoodally, F.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Aljaafari, M.; AlAli, A.; Baqais, L.; Alqubaisy, M.; AlAli, M.; Molouki, A.; Ong-Abdullah, J.; Abushelaibi, A.; Lai, K.-S.; Lim, S.-H. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021, 26, 628. [Google Scholar] [CrossRef] [PubMed]
- Caprari, C.; Fantasma, F.; Divino, F.; Bucci, A.; Iorizzi, M.; Naclerio, G.; Ranalli, G.; Saviano, G. Chemical Profile, In Vitro Biological Activity and Comparison of Essential Oils from Fresh and Dried Flowers of Lavandula angustifolia L. Molecules 2021, 26, 5317. [Google Scholar] [CrossRef]
- Wilson, T.; Poulson, A.; Packer, C.; Carlson, R.; Buch, R. Essential Oil Profile and Yield of Corolla, Calyx, Leaf, and Whole Flowering Top of Cultivated Lavandula angustifolia Mill. (Lamiaceae) from Utah. Molecules 2021, 26, 2343. [Google Scholar] [CrossRef] [PubMed]
- Valková, V.; Ďúranová, H.; Galovičová, L.; Vukovic, N.; Vukic, M.; Kačániová, M. In Vitro Antimicrobial Activity of Lavender, Mint, and Rosemary Essential Oils and the Effect of Their Vapours on Growth of Penicillium spp. in a Bread Model System. Molecules 2021, 26, 3859. [Google Scholar] [CrossRef]
- Koulivand, P.H.; Ghadiri, M.K.; Gorji, A. Lavender and the Nervous System. Evidence-Based Complement. Altern. Med. 2013, 2013, 681304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masomeh, L.; Narges, M.; Hassan, R.; Hadi, A. Peppermint and Its Functionality: A Review. Arch. Clin. Microbiol. 2017, 8, 54. [Google Scholar] [CrossRef]
- Chumpitazi, B.P.; Kearns, G.L.; Shulman, R.J. Review article: The physiological effects and safety of peppermint oil and its efficacy in irritable bowel syndrome and other functional disorders. Aliment. Pharmacol. Ther. 2018, 47, 738–752. [Google Scholar] [CrossRef] [Green Version]
- Mogosan, C.; Vostinaru, O.; Oprean, R.; Heghes, C.; Filip, L.; Balica, G.; Moldovan, R.I. A Comparative Analysis of the Chemical Composition, Anti-Inflammatory, and Antinociceptive Effects of the Essential Oils from Three Species of Mentha Cultivated in Romania. Molecules 2017, 22, 263. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Guerola, P.M.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eslahi, H.; Fahimi, N.; Sardarian, A.R. Chapter 4. Chemical Composition of Essential Oils. In Essential Oils in Food Processing: Chemistry, Safety and Applications, 1st ed.; Hashemi, M.B., Mousavi Khaneghah, A., de Souza Sant’Ana, A., Eds.; John Wiley & Sons Ltd.: New Jersey, NJ, USA, 2017; pp. 119–171. [Google Scholar] [CrossRef]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef]
- Delfiya, D.A.; Thangavel, K.; Natarajan, N.; Kasthuri, R.S.; Kailappan, R. Microencapsulation of Turmeric Oleoresin by Spray Drying and In Vitro Release Studies of Microcapsules. J. Food Process. Eng. 2015, 38, 37–48. [Google Scholar] [CrossRef]
- Jovanović, A.; Lević, S.; Pavlović, V.; Marković, S.; Pjanović, R.; Đorđević, V.; Nedović, V.; Bugarski, B. Freeze vs. Spray Drying for Dry Wild Thyme (Thymus serpyllum L.) Extract Formulations: The Impact of Gelatin as a Coating Material. Molecules 2021, 26, 3933. [Google Scholar] [CrossRef] [PubMed]
- Hijo, A.T.; Costa, J.M.; Silva, E.K.; Azevedo, V.M.; Yoshida, M.I.; Borges, S. Physical and Thermal Properties of Oregano (O riganum vulgare L.) Essential Oil Microparticles. J. Food Process. Eng. 2015, 38, 1–10. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Huang, H.-J.; Yuan, W.-K.; Chen, X.D. Microencapsulation Based on Emulsification for Producing Pharmaceutical Products: A Literature Review. Dev. Chem. Eng. Miner. Process. 2008, 14, 515–544. [Google Scholar] [CrossRef]
- Ferreira, S.; Malacrida, C.R.; Nicoletti, V.R. Influence of Emulsification Methods and Spray Drying Parameters on the Microencapsulation of Turmeric Oleoresin. Emir. J. Food Agric. 2019, 31, 491–500. [Google Scholar] [CrossRef]
- Lammari, N.; Louaer, O.; Meniai, A.H.; Elaissari, A. Encapsulation of Essential Oils via Nanoprecipitation Process: Overview, Progress, Challenges and Prospects. Pharmaceutics 2020, 12, 431. [Google Scholar] [CrossRef]
- Asbahani, A.E.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.A.; Casabianca, H.; Mousadik, A.E.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, J. Moisture Sorption Characteristics of Peppermint Oil Microencapsulated by Spray Drying. Dry. Technol. 2009, 27, 1363–1369. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Bylaitė, E.; Žukauskaitė, J.; Venskutonis, R.P. Flavor Retention of Peppermint (Mentha piperita L.) Essential Oil Spray-Dried in Modified Starches during Encapsulation and Storage. J. Agric. Food Chem. 2007, 55, 3027–3036. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, J.; Kalemba, D. Analysis of Microencapsulation Ability of Essential Oils during Spray Drying. Dry. Technol. 2006, 24, 1127–1132. [Google Scholar] [CrossRef]
- Glomm, W.; Molesworth, P.; Sandru, E.; Truong, L.; Brunsvik, A.; Johnsen, H. Microencapsulation of Peppermint Oil by Complex Coacervation and Subsequent Spray Drying Using Bovine Serum Albumin/Gum Acacia and an Oxidized Starch Crosslinker. Appl. Sci. 2021, 11, 3956. [Google Scholar] [CrossRef]
- Burhan, A.M.; Abdel-Hamid, S.M.; Soliman, M.E.; Sammour, O.A. Optimisation of the microencapsulation of lavender oil by spray drying. J. Microencapsul. 2019, 36, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, A.C.; Siani, A.C.; Grosso, C.R.F. Stability of Monoterpenes Encapsulated in Gum Arabic by Spray-Drying. J. Agric. Food Chem. 2001, 49, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Hassani, M.; Hasani, S. Nano-encapsulation of thyme essential oil in chitosan-Arabic gum system: Evaluation of its antiox-idant and antimicrobial properties. Trends Phytochem. Res. 2018, 2, 75–82. [Google Scholar]
- Kaushik, V.; Roos, Y.H. Limonene encapsulation in freeze-drying of gum Arabic–sucrose–gelatin systems. LWT-Food Sci. Technol. 2007, 40, 1381–1391. [Google Scholar] [CrossRef]
- Adhikari, B.; Howes, T.; Bhandari, B.R.; Truong, V. Characterization of the Surface Stickiness of Fructose–Maltodextrin Solutions During Drying. Int. J. Food Prop. 2003, 21, 17–34. [Google Scholar] [CrossRef]
- Savova, M.; Hristova, V.; Pilicheva, B. Determination of the optimum HLB value of lavender oil—an essential parameter for the development of emulsion formulations. Sci. Work. Union Sci. Bulg. Plovdiv 2017, 21, 229–232. [Google Scholar]
- Jaya, S.; Das, H. Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. J. Food Eng. 2004, 63, 125–134. [Google Scholar] [CrossRef]
- Papadakis, S.E.; Gardeli, C.; Tzia, C. Spray Drying of Raisin Juice Concentrate. Dry. Technol. 2006, 24, 173–180. [Google Scholar] [CrossRef]
- Roustapour, O.; Hosseinalipour, M.; Ghobadian, B. An Experimental Investigation of Lime Juice Drying in a Pilot Plant Spray Dryer. Dry. Technol. 2006, 24, 181–188. [Google Scholar] [CrossRef]
- Quek, S.Y.; Chok, N.K.; Swedlund, P. The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. 2007, 46, 386–392. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; Bhandari, B.; He, Y. Nano-particle encapsulation of fish oil by spray drying. Food Res. Int. 2008, 41, 172–183. [Google Scholar] [CrossRef]
- Reineccius, G.A. The Spray Drying of Food Flavors. Dry. Technol. 2004, 22, 1289–1324. [Google Scholar] [CrossRef]
- de Barros Fernandes, R.V.; Borges, S.; Botrel, D.A.; Silva, E.K.; Costa, J.M.; Queiroz, F. Microencapsulation of Rosemary Essential Oil: Characterization of Particles. Dry. Technol. 2013, 31, 1245–1254. [Google Scholar] [CrossRef]
- Huynh, T.V.; Caffin, N.; Dykes, G.A.; Bhandari, B. Optimization of the Microencapsulation of Lemon Myrtle Oil Using Response Surface Methodology. Dry. Technol. 2008, 26, 357–368. [Google Scholar] [CrossRef]
- Bringas-Lantigua, M.; Expósito-Molina, I.; Reineccius, G.A.; López-Hernández, O.; Pino, J.A. Influence of Spray-Dryer Air Temperatures on Encapsulated Mandarin Oil. Dry. Technol. 2011, 29, 520–526. [Google Scholar] [CrossRef]
- Jafari, S.M.; He, Y.; Bhandari, B. Encapsulation of Nanoparticles of d-Limonene by Spray Drying: Role of Emulsifiers and Emulsifying Techniques. Dry. Technol. 2007, 25, 1069–1079. [Google Scholar] [CrossRef]
- Finney, J.; Buffo, R.; Reineccius, G. Effects of Type of Atomization and Processing Temperatures on the Physical Properties and Stability of Spray-Dried Flavors. J. Food Sci. 2002, 67, 1108–1114. [Google Scholar] [CrossRef]
- Tonon, R.V.; Grosso, C.R.; Hubinger, M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int. 2011, 44, 282–289. [Google Scholar] [CrossRef]
- Fazaeli, M.; Emam-Djomeh, Z.; Ashtari, A.K.; Omid, M. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod. Process. 2012, 90, 667–675. [Google Scholar] [CrossRef]
- Flow Properties and Corresponding Angles of Repose. European Pharmacopoeia; European Pharmacopoeia, 9.0 (Ed.) Section: 2.9.36. Powder flow. Table 2.9.36.-1; Council of Europe: Strasbourg, France, 2016; p. 321. [Google Scholar]
Sample Code | Lavender Oil (LO) | Peppermint Oil (PO) | Arabic Gum (AG) | Maltodextrin (MD) | Tween 80 | Span 80 | ||||
---|---|---|---|---|---|---|---|---|---|---|
g | % | g | % | g | % | g | % | g | g | |
LO-5-AG-20 | 10 | 5 | - | - | 40 | 20 | - | - | 5.33 | 4.67 |
LO-2.5-AG-10 | 5 | 2.5 | - | - | 20 | 10 | - | - | 5.33 | 4.67 |
LO-5-AG-MD-15/5 | 10 | 5 | - | - | 30 | 15 | 10 | 5 | 5.33 | 4.67 |
LO-5-AG-MD-10/10 | 10 | 5 | - | - | 20 | 10 | 20 | 10 | 5.33 | 4.67 |
LO-5-AG-MD-5/15 | 10 | 5 | - | - | 10 | 5 | 30 | 15 | 5.33 | 4.67 |
LO-5-MD-20 | 10 | 5 | - | - | - | - | 40 | 20 | 5.33 | 4.67 |
PO-5-AG-20 | - | - | 10 | 5 | 40 | 20 | - | - | 7.48 | 2.52 |
PO-2.5-AG-10 | - | - | 5 | 2.5 | 20 | 10 | - | - | 7.48 | 2.52 |
Sample Code | Wall Material | Wall Material Concentration, % | Production Yield, % ± SD | Mean Particle Size, µm ± SD | Total Oil Content, % ± SD | Encapsulation Efficiency %± SD |
---|---|---|---|---|---|---|
LO-5-AG-20 | AG | 20 | 76.45 ± 2.03 | 5.93 ± 0.18 | 10.62 ± 0.72 | 48.72 ± 0.53 |
LO-2.5-AG-10 | AG | 10 | 71.37 ± 1.87 | 3.15 ± 0.12 | 5.31 ± 0.91 | 26.53 ± 0.95 |
LO-5-AG-MD-15/5 | AG/MD 75/25 | 20 | 74.01 ± 0.98 | 4.84 ± 0.14 | 10.55 ± 1.12 | 47.15 ± 1.11 |
LO-5-AG-MD-10/10 | AG/MD 50/50 | 20 | 83.05 ± 1.23 | 5.99 ± 0.22 | 8.85 ± 0.57 | 44.10 ± 1.02 |
LO-5-AG-MD-5/15 | AG/MD 25/75 | 20 | 81.03 ± 1.92 | 2.41 ± 0.09 | 7.08 ± 1.02 | 34.42 ± 0.97 |
LO-5-MD-20 | MD | 20 | 84.33 ± 0.85 | 3.84 ± 0.21 | 10.80 ± 1.71 | 91.08 ± 1.78 |
PO-5-AG-20 | AG | 20 | 76.37 ± 1.48 | 3.32 ± 0.08 | 7.18 ± 0.65 | 54.83 ± 1.53 |
PO-2.5-AG-10 | AG | 10 | 73.77 ± 0.97 | 3.15 ± 0.07 | 1.34 ± 0.46 | 19.77 ± 0.61 |
Sample Code | Surface Content of LO in Microparticles Calculated as Percentage of: | Total Amount of LO, % | Surface Content of LO Relative to the Total Amount, % | |
---|---|---|---|---|
Linalool, % | Camphor, % | |||
LO-5-AG-20 | 0.21 | 0.22 | 10.62 | 2.07 |
LO-2.5-AG-10 | 0.11 | 0.08 | 5.31 | 1.51 |
LO-5-AG-MD-15/5 | 0.22 | 0.20 | 10.55 | 1.90 |
LO-5-AG-MD-10/10 | 0.10 | 0.10 | 8.85 | 1.13 |
LO-5-AG-MD-5/15 | 0.10 | 0.10 | 7.08 | 1.41 |
LO-5-MD-20 | 0.10 | 0.10 | 10.80 | 0.93 |
Sample Code | Surface Content of PO in Microparticles Calculated as Percentage of: Menthol, % | Total Amount of PO, % | Surface Content of PO Relative to the Total Amount, % |
---|---|---|---|
PO-5-AG-20 | 0.11 | 7.18 | 1.53 |
PO-2.5-AG-10 | 0.02 | 1.34 | 1.49 |
Sample Code | Moisture Content, % ± SD | Angle of Repose, ° ± SD | Hausner Ratio ± SD |
---|---|---|---|
LO-5-AG-20 | 5.51 ± 0.23 | 49.48 ± 0.24 | 1.875 ± 0.03 |
LO-2.5-AG-10 | 4.39 ± 0.10 | 53.57 ± 0.51 | 1.852 ± 0.05 |
LO-5-AG-MD-15/5 | 4.05 ± 0.06 | 50.16 ± 0.68 | 1.816 ± 0.08 |
LO-5-AG-MD-10/10 | 3.74 ± 0.12 | 45.78 ± 1.08 | 1.592 ± 0.06 |
LO-5-AG-MD-5/15 | 3.65 ± 0.14 | 43.55 ± 0.40 | 1.518 ± 0.10 |
LO-5-MD-20 | 3.58 ± 0.03 | 39.00 ± 0.99 | 1.432 ± 0.07 |
PO-5-AG-20 | 4.78 ± 0.18 | 46.61 ± 1.13 | 1.687 ± 0.02 |
PO-2.5-AG-10 | 4.36 ± 0.21 | 44.96 ± 1.37 | 1.514 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilicheva, B.; Uzunova, Y.; Katsarov, P. Comparative Study on Microencapsulation of Lavender (Lavandula angustifolia Mill.) and Peppermint (Mentha piperita L.) Essential Oils via Spray-Drying Technique. Molecules 2021, 26, 7467. https://doi.org/10.3390/molecules26247467
Pilicheva B, Uzunova Y, Katsarov P. Comparative Study on Microencapsulation of Lavender (Lavandula angustifolia Mill.) and Peppermint (Mentha piperita L.) Essential Oils via Spray-Drying Technique. Molecules. 2021; 26(24):7467. https://doi.org/10.3390/molecules26247467
Chicago/Turabian StylePilicheva, Bissera, Yordanka Uzunova, and Plamen Katsarov. 2021. "Comparative Study on Microencapsulation of Lavender (Lavandula angustifolia Mill.) and Peppermint (Mentha piperita L.) Essential Oils via Spray-Drying Technique" Molecules 26, no. 24: 7467. https://doi.org/10.3390/molecules26247467
APA StylePilicheva, B., Uzunova, Y., & Katsarov, P. (2021). Comparative Study on Microencapsulation of Lavender (Lavandula angustifolia Mill.) and Peppermint (Mentha piperita L.) Essential Oils via Spray-Drying Technique. Molecules, 26(24), 7467. https://doi.org/10.3390/molecules26247467