Treatment of Benign Prostatic Hyperplasia by Natural Drugs
Abstract
:1. Introduction
2. Medical Therapy of BPH
2.1. α1-Adrenoceptor Antagonists and 5α-Reductase Inhibitors
2.2. Other Medicaments and Combination Therapy in BPH Treatment
2.3. Surgical Therapy
3. Medicinal Plants Widely Used in the Treatment of BPH
3.1. Cucurbita pepo
3.1.1. Preclinical Studies
3.1.2. Clinical Studies
3.2. Epilobium parviflorum and E. angustifolium
3.2.1. Preclinical Studies
3.2.2. Clinical Studies
3.3. Hypoxis hemerocallidea
3.3.1. Preclinical Studies
3.3.2. Clinical Studies
3.4. Solanum lycopersicum
3.4.1. Preclinical Studies
3.4.2. Clinical Studies
3.5. Pinus pinaster
3.5.1. Preclinical Studies
3.5.2. Clinical Studies
3.6. Roystonea regia
3.6.1. Preclinical Studies
3.6.2. Clinical Studies
3.7. Prunus africana
3.7.1. Preclinical Studies
3.7.2. Clinical Studies
3.8. Secale cereale
3.8.1. Preclinical Studies
3.8.2. Clinical Studies
3.9. Serenoa repens
Clinical Studies
3.10. Urtica dioica
3.10.1. Preclinical Studies
3.10.2. Clinical Studies
4. Pharmaceutical Care
- Men over 45 years of age who consult a pharmacist about lower urinary tract complaints;
- Men over 45 years of age who purchase medication for the treatment of BPH;
- Men over 45 years of age who have inadequate patient co-morbidity for BPH, in terms of medication management [11].
- Interviewing (in regard to the symptoms);
- Questions related to the diagnosis;
- Filling out the IPSS questionnaire;
- Lifestyle advice;
- Advice on OTC medicines;
- Adherence (patient cooperation) questions;
- Information on prescription medicines;
- Referral to a doctor.
- Men with BPH-like symptoms. Patients should be interviewed about their symptoms, in this case, it is important to know if the urine stream is thinner, if it is intermittent or how often the patients have to get up to urinate at night. In addition, patients should be asked if they have ever seen a urologist or general practitioner about these symptoms. It is advisable at this time for patients to complete the IPSS questionnaire. This specific questionnaire based on the frequency and severity of symptoms can be used to assess the probability of mild, moderate, and severe BPH. Three categories of symptoms were described using the IPSS: mild 0–7, moderate 8–19, and severe 20–35. It is important to stress that an accurate diagnosis can only be made by a specialist after other tests have been carried out [10,11];
- For patients diagnosed by a doctor with BPH, the pharmacist should inform the patient about safe medication use in the context of prescribed therapy. It is important to identify problems with safe medication use if they arise, and emphasis should be placed on increasing patient adherence;
- There may be cases where patients present with other, non-BPH-like symptoms. Such cases are usually associated with alarm symptoms and should be referred to a doctor immediately. Alarm symptoms include painful urination, fever, bloody or cloudy urine in the last 3 months and urinary incontinence. These symptoms may indicate a urinary tract infection or chronic obstruction of the bladder. Thus, they definitely require medical attention.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Madersbachera, S.; Alivizatosb, G.; Nordling, J.; Nordling, J.; Sanz, C.R.; Emberton, M.; Rosette, J. EAU 2004 Guidelines on Assessment, Therapy and Follow-Up of Men with Lower Urinary Tract Symptoms Suggestive of Benign Prostatic Obstruction (BPH Guidelines). Eur. Urol. 2004, 46, 547–554. [Google Scholar] [CrossRef] [PubMed]
- De la Rosettea, J.J.M.C.H.; Alivizatosb, G.; Madersbacher, S. EAU Guidelines on Benign Prostatic Hyperplasia (BPH). Eur. Urol. 2001, 40, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Yanoshak, S.; Roehrborn, C.; Girman, C.; Jaffe, J.S.; Ginsberg, P.C.; Harkaway, R.C. Use of a prostate model to assist in training for digital rectal examination. Urology 2000, 55, 690–693. [Google Scholar] [CrossRef]
- Allkanjari, O.; Vitalone, A. What do we know about phytotherapy of benign prostatic hyperplasia? Life Sci. 2015, 126, 42–56. [Google Scholar] [CrossRef]
- Jonler, M.; Riehmann, M.; Brinkmann, R.; Bruskewitz, R.C. Benign prostatic hyperplasia. Endocrinol. Metab. Clin. N. Am. 1994, 4, 795–807. [Google Scholar] [CrossRef][Green Version]
- Anderson, J.B.; Roehrborn, C.G.; Schalken, J.A.; Emberton, M. The progression of benign prostatic hyperplasia: Examining the evidence and determining the risk. Eur. Urol. 2001, 39, 390–399. [Google Scholar] [CrossRef]
- Isaacs, J.T. Etiology of benign prostatic hyperplasia. Eur. Urol. 1994, 25, 6–9. [Google Scholar] [CrossRef]
- Grant, E.S.; Brown, T.; Roach, A.; Williams, B.C.; Habib, F.K. In vitro expression of endothelin-1 (ET-1) and the ETA and ETB ET receptors by the prostatic epithelium and stroma. J. Clin. Endocrinol. Metab. 1997, 82, 508–513. [Google Scholar] [CrossRef]
- Fagelman, E.; Lowe, F.C. Herbal medications in the treatment of benign prostatic hyperplasia (BPH). Urol. Clin. N. Am. 2002, 29, 23–29. [Google Scholar] [CrossRef]
- Oelke, M.; Bachmann, A.; Descazeaud, A.; Emberton, M.; Gravas, S.; Michel, M.C.; N’Dow, J.; Nordling, J.; de la Rosette, J.J. Europe protocol: Guidelines EAU Guidelines on the Treatment and Follow-up of-neurogenic Male Lower Urinary Tract Symptoms Including Benign Prostatic Obstruction. Eur. Urol. 2013, 64, 118–140. [Google Scholar] [CrossRef]
- The Ministry of Human Resources’ Professional Guideline on Pharmacist Advice on Self-Management of Benign Prostatic Hyperplasia. Available online: https://www.hbcs.hu/uploads/jogszabaly/2695/fajlok/EMMI_szakmai_iranyelve_prosztatamegnagyobbodas.pdf (accessed on 21 January 2021).
- American Urological Association Guideline: Management of Benign Prostatic Hyperplasia (BPH). 2010. Available online: http://www.auanet.org/education/guidelines/benign-prostatic-hyperplasia.cfm (accessed on 28 January 2021).
- Rosette, J.; Alivizatos, G.; Madersbacher, S.; Sanz, S.R.; Emberton, M.; Nordling, J. Guidelines on Benign Prostatic Hyperplasia. European Association of Urology. 2004. Available online: https://uroweb.org/wp-content/uploads/EAU-Guidelines-BPH-2004.pdf (accessed on 21 January 2021).
- McVary, K.T. Surgical Treatment of Benign Prostatic Hyperplasia (BPH). Available online: https://www.uptodate.com/contents/surgical-treatment-of-benign-prostatic-hyperplasia-bph/print?search=BPH%20dietary&topicRef=6891&source=see_link (accessed on 21 January 2021).
- McVary, K.T. Medical Treatment of Benign Prostatic Hyperplasia. Available online: https://www.uptodate.com/contents/medical-treatment-of-benign-prostatic-hyperplasia?search=BPH&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1 (accessed on 21 January 2021).
- Pagano, E.; Laudato, M.; Griffo, M.; Capasso, R. Phytotherapy of Benign Prostatic Hyperplasia. A Minireview. Phytother. Res 2014, 28, 949–955. [Google Scholar] [CrossRef]
- Tacklind, J.; MacDonald, R.; Rutks, I.; Stanke, J.U.; Wilt, T.J. Serenoa repens for benign prostatic hyperplasia (Review). Cochrane Database Syst. Rev. 2012, 12, 14–23. [Google Scholar]
- Wilt, T.J.; Ishani, A.; MacDonald, R.; Stark, G.; Mulrow, C.D.; Lau, J. Beta-sitosterols for benign prostatic hyperplasia (Review). Cochrane Database Syst. Rev. 1999, 3, 10–43. [Google Scholar]
- Wilt, T.; Ishani, A.; Mac Donald, R.; Rutks, I.; Stark, G. Pygeum africanum for benign prostatic hyperplasia. Cochrane Database Syst. Rev. 2002, 1998, CD001044. [Google Scholar] [CrossRef]
- Miao, L.; Yun, X.; Yang, X.; Jia, S.; Jiao, C.; Shao, R.; Hao, J.; Chang, Y.; Fan, G.; Zhang, J.; et al. An inhibitory effect of Berberine from herbal Coptis chinensis Franch on rat detrusor contraction in benign prostatic hyperplasia associated with lower urinary tract symptoms. J. Ethnopharmacol. 2021, 268, 113666. [Google Scholar] [CrossRef]
- Ma, X.; Meredith, J. Chapter 5.5: Herbal medicine for the treatment of andrological diseases: Traditional Chinese Medicine. In Herbal Medicine in Andrology. An Evidence-Based Update, 1st ed.; Henkel, R., Agarwal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 147–163. [Google Scholar]
- Skinner, M. Encyclopedia of Reproduction, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 336–339.
- Lepor, H. Medical Treatment of Benign Prostatic Hyperplasia. Rev. Urol. 2011, 13, 20–33. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151584/ (accessed on 21 January 2021).
- Zitoun, O.A.; Farhat, A.M.N.; Mohamed, M.A.; Mohammad Hamad, M.R.; Aramini, B.; Haider, K.H. Management of benign prostate hyperplasia (BPH) by combinatorial approach using alpha-1-adrenergic antagonists and 5-alpha-reductase inhibitors. Eur. J. Pharmacol. 2020, 883, 173301. [Google Scholar] [CrossRef]
- Pattanaik, S.; Mavuduru, R.S.; Panda, A.; Mathew, J.L.; Agarwal, M.M.; Hwang, E.C.; Lyon, J.A.; Singh, S.K.; Mandal, A.K. Phosphodiesterase inhibitors for lower urinary tract symptoms consistent with benign prostatic hyperplasia (Review). Cochrane Database Syst. Rev. 2018, 11, CD010060. [Google Scholar]
- Reich, O.; Seitz, M.; Gratzke, C.; Schlenker, B.; Walther, S.; Stief, C. Benignes Prostatasyndrom. Urologe 2010, 49, 113–125. [Google Scholar] [CrossRef]
- Jung, J.H.; Reddy, B.; McCutcheon, K.A.; Borofsky, M.; Narayan, V.; Kim, M.H.; Dahm, P. Prostatic urethral lift for the treatment of lower urinary tract symptoms in men with benign prostatic hyperplasia (Review). Cochrane Database Syst. Rev. 2019, 5, 128–132. [Google Scholar]
- Kang, T.W.; Jung, J.H.; Hwang, E.C.; Borofsky, M.; Kim, M.H.; Dahm, P. Convective radiofrequency water vapour thermal therapy for lower urinary tract symptoms in men with benign prostatic hyperplasia (Review). Cochrane Database Syst. Rev. 2020, 3, 132–151. [Google Scholar]
- Dotto, J.M.; Chacha, J.S. The potential of pumpkin seeds as a functional food ingredient: A review. Sci. Afr. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- PDR for Herbal Medicines, 3rd. ed.; Thomson PDR: Montvale, NJ, USA, 2004.
- Stovel, D.D. Pumpkin: A Super Food for All 12 Months of the Year; Storey Publishing LLC: North Adams, MA, USA, 2005. [Google Scholar]
- Whitaker, T.W.; Davis, G.N. Cucurbits: Botany, Cultivation and Utilization; Interscience Publication Inc.: New York, NY, USA, 1962. [Google Scholar]
- Lloyd, J.U.; Felter, H.W. King’s American Dispensatory, 18th ed.; Eclectic Medical Publications: Sandy, OR, USA, 1998; pp. 1655–1659. [Google Scholar]
- Caili, F.; Huan, S.; Quanhong, L. A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods Hum. Nutr. 2006, 61, 73–80. [Google Scholar] [CrossRef]
- Matus, Z.; Molnar, P.; Szabo, L.G. Main carotenoids in pressed seeds (Cucurbitae semen) of oil pumpkin (Cucurbita pepo convar. pepo var. styriaca) (article in Hungarian). Acta Pharm. Hung. 1993, 63, 247–256. [Google Scholar]
- Mansour, E.H.; Dworschak, E.; Gergely, A.; Hóvári, J.; Pollhamer, Z. Pumpkin and canola seed proteins and bread quality. Acta Aliment. 1999, 28, 59–70. [Google Scholar]
- Glew, R.H.; Glew, R.S.; Chuang, L.T.; Huang, Y.S.; Millson, M.; Constans, D.; Vanderjagt, D.J. Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp.) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum. Nutr. 2006, 61, 51–56. [Google Scholar] [CrossRef]
- Yadav, M.; Jain, S.; Tomar, R.; Prasad, G.B.K.; Yadav, H. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 2010, 23, 184–190. [Google Scholar] [CrossRef][Green Version]
- Broznic, D.; Canadi Jurešic, G.; Milin, C. Involvement of α-, γ-and δ-tocopherol isomers from pumpkin (Cucurbita pepo L.) seed oil or oil mixtures in the biphasic DPPH disappearance kinetics. Food Technol. Biotechnol. 2016, 54, 200–210. [Google Scholar] [CrossRef]
- Naziri, E.; Mitic, M.N.; Tsimidou, M.Z. Contribution of tocopherols and squalene to the oxidative stability of cold-pressed pumkin seed oil (Cucurbita pepo L.). Eur. J. Lipid Sci. Technol. 2016, 118, 898–905. [Google Scholar] [CrossRef]
- Abou-Zeid, S.M.; Abu Bakr, H.O.; Mohamed, M.A.; El-Bahrawy, A. Ameliorative effect of pumpkin seed oil against emamectin induced toxicity in mice. Biomed. Pharmacother. 2018, 98, 242–251. [Google Scholar] [CrossRef]
- Akta, N.; Uzla, T.; Tunçil, Y.E. Pre-roasting treatments significantly impact thermal and kinetic characteristics of pumpkin seed oil. Thermochim. Acta 2018, 669, 109–115. [Google Scholar] [CrossRef]
- Aghaei, S.; Nikzad, H.; Taghizadeh, M.; Tameh, A.; Taherian, A.; Moravveji, A. Protective effect of Pumpkin seed extract on sperm characteristics, biochemical parameters and epididymal histology in adult male rats treated with Cyclophosphamide. Andrologia 2014, 8, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasam, B.; Seeram, N.P.; Nair, M.G. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett. 2003, 189, 11–16. [Google Scholar] [CrossRef]
- Balbino, S.; Doric, M.; Vidakovic, S.; Kraljic, K.; Škevin, D.; Drakula, S.; Voucko, B.; Cukelj, N.; Obranovic, M.; Curic, D. Application of cryogenic grinding pretreatment to enhance extractability of bioactive molecules from pumpkin seed cake. J. Food Process Eng. 2019, 42, 13–30. [Google Scholar] [CrossRef]
- Cho, Y.H.; Lee, S.Y.; Jeong, D.W.; Choi, E.J.; Kim, Y.J.; Lee, J.G.; Cha, H.S. Effect of pumpkin seed oil on hair growth in men with androgenetic alopecia: A randomized, double-blind, placebo-controlled trial. Evid.-Based Compl. Alt. Med. 2014, 2014, 1–7. [Google Scholar] [CrossRef][Green Version]
- Ezea, B.O.; Ogbole, O.O.; Ajaiyeoba, E.O. In vitro anthelmintic properties of root extracts of three Musa species. J. Pharm. Bioresour. 2019, 16, 145–151. [Google Scholar] [CrossRef]
- Fruhwirth, G.O.; Wenzl, T.; El-Toukhy, R.; Wagner, F.S.; Hermetter, A. Fluorescence screening of antioxidant capacity in pumpkin seed oils and other natural oils. Eur. J. Lipid Sci. Technol. 2003, 105, 266–274. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Fahmy, U.A.; Ahmed, O.A.A. Attenuation of benign prostatic hyperplasia by optimized tadalafil loaded pumpkin seed oil-based self nanoemulsion: In vitro and in vivo evaluation. Pharmaceutics 2019, 12, 640. [Google Scholar] [CrossRef][Green Version]
- Gossell-Williams, M.; Davis, A.; O’Connor, N. Inhibition of testosterone-induced hyperplasia of the prostate of sprague-dawley rats by pumpkin seed oil. J. Med. Food 2006, 9, 284–286. [Google Scholar] [CrossRef]
- Ren, S.; Ouyang, D.Y.; Saltis, M.; Xu, L.H.; Zha, Q.B.; Cai, Y.Y.; He, X.H. Anti-proliferative effect of 23, 24-dihydrocucurbitacin F on human prostate cancer cells through induction of actin aggregation and cofilin-actin rod formation. Cancer Chemother. Pharmacol. 2012, 70, 415–424. [Google Scholar] [CrossRef]
- Zhang, X.; Ouyang, J.Z.; Zhang, Y.S.; Tayalla, B.; Zhou, X.C.; Zhou, S.W.; Tongii, J. Effect of the extracts of pumpkin seeds on the urodynamics of rabbits: An experimental study. Med. Univ. 1994, 14, 235–238. [Google Scholar]
- Fornara, P.; Madersbacher, S.; Vahlensieck, W.; Bracher, F.; Romics, I.; Kil, P. Phytotherapy adds to the therapeutic armamentarium for the treatment of mild-to-moderate lower urinary tract symptoms in men. Urol. Int. 2020, 104, 333–342. [Google Scholar] [CrossRef]
- Gazova, A.; Valaskova, S.; Zufkova, V.; Castejon, A.M.; Kyselovic, J. Clinical study of effectiveness and safety of CELcomplex((R)) containing Cucurbita Pepo Seed extract and Flax and Casuarina on stress urinary incontinence in women. J. Tradit. Complement. Med. 2019, 9, 138–142. [Google Scholar] [CrossRef]
- Lower, C.F. Phytotherapy in the management of benign prostatic hyperplasia. Urology 2001, 58, 71–77. [Google Scholar]
- Tsai, Y.S.; Tong, Y.C.; Cheng, J.T.; Lee, C.H.; Yang, F.S.; Lee, H.Y. Pumpkin seed oil and phytosterol-F can block testosterone/prazosin-induced prostate growth in rats. Urol. Int. 2006, 77, 269–274. [Google Scholar] [CrossRef]
- Steenkamp, V. Phytomedicines for the prostate. Fitoterapia 2003, 74, 545–552. [Google Scholar] [CrossRef]
- Vahlensieck, W.J.; Fabricius, P.G.; Hell, U. Drug therapy of benign prostatic hyperplasia. Fortschritte der Medizin 1996, 114, 407–411. [Google Scholar]
- Carbin, B.E.; Larson, B.; Lindahl, O. Treatment of benign prostatic hyperplasia with phytosterols. Br. J. Urol. 1990, 66, 639–641. [Google Scholar] [CrossRef]
- Blumenthal, M. The Complete German Commission E Monographs; American Botanical Council: Austin, TX, USA, 1998. [Google Scholar]
- Schiebel-Schlosser, G.; Friederich, M. Phytotherapy of BPH with pumpkin seeds-a multicenter clinical trial. Z. Phytother. 1998, 19, 71–76. [Google Scholar]
- Vahlensieck, W.; Theurer, C.; Pfitzer, E.; Patz, B.; Banik, N.; Engelmann, U. Effects of pumpkin seed in men with lower urinary tract symptoms due to benign prostatic hyperplasia in the one-year, randomized, placebo-controlled GRANU study. Urol. Int. 2015, 94, 286–295. [Google Scholar] [CrossRef]
- Coulson, S.; Rao, A.; Beck, S.L.; Steels, E.; Gramotnev, H.; Vitetta, L. A phase II randomised double-blind placebo-controlled clinical trial investigating the efficacy and safety of ProstateEZE Max: A herbal medicine preparation for the management of symptoms of benign prostatic hypertrophy. Complement. Ther. Med. 2013, 21, 172–179. [Google Scholar] [CrossRef]
- Leibbrand, M.; Siefer, S.; Schön, C.; Perrinjaquet-Moccetti, T.; Kompek, A.; Csernich, A.; Bucar, F.; Kreuter, M.H. Effects of an oil-free hydroethanolic pumpkin seed extract on symptom frequency and severity in men with benign prostatic hyperplasia: A pilot study in humans. J. Med. Food 2019, 22, 551–559. [Google Scholar] [CrossRef][Green Version]
- Shirvan, M.K.; Mahboob, M.R.; Masuminia, M.; Mohammadi, S. Pumpkin seed oil (prostafit) or prazosin? Which one is better in the treatment of symptomatic benign prostatic hyperplasia. J. Pak. Med. Assoc. 2014, 64, 683–685. [Google Scholar]
- Hong, H.; Kim, C.S.; Maeng, S. Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia. Nutr. Res. Pract. 2009, 4, 323–327. [Google Scholar] [CrossRef]
- Friederich, M.; Theurer, C.; Schiebel-Schlosser, G. Prosta Fink Forte capsules in the treatment of benign prostatic hyperplasia. Multicentric surveillance study in 2245 patients. Forsch Komplementarmed Klass Naturheilkd 2000, 7, 200–204. [Google Scholar]
- Dvorkin, L.; Song, K.Y. Herbs for benign prostatic hyperplasia. Ann. Farmacother. 2002, 36, 1443–1452. [Google Scholar] [CrossRef]
- EU Herbal Monograph: Cucurbitae semen. Available online: https://www.ema.europa.eu/en/medicines/herbal/cucurbitae-semen (accessed on 20 May 2021).
- Granica, S.; Piwowarski, J.P.; Czerwińska, M.E.; Kiss, A.K. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J. Ethnopharmacol. 2014, 156, 316–346. [Google Scholar] [CrossRef]
- Vitalone, A.; Allkanjari, O. Epilobium spp: Pharmacology and Phytochemistry. Phytother. Res. 2018, 32, 1229–1240. [Google Scholar] [CrossRef]
- Dreger, M.; Adamczak, A.; Seidler-Łożykowska, K.; Wielgus, K. Pharmacological properties of fireweed (Epilobium angustifolium L.) and bioavailability of ellagitannins. A review. Herba Polonica 2020, 66, 52–64. [Google Scholar] [CrossRef]
- Kadam, P.; Patil, M.; Yadav, K. A Review on Phytopharmacopial Potential of Epilobium angustifolium. Pharm. J. 2018, 10, 1076–1078. [Google Scholar] [CrossRef][Green Version]
- Schepetkin, I.A.; Ramstead, A.G.; Kirpotina, L.N.; Voyich, J.M.; Jutila, M.A.; Quinn, M.T. Therapeutic Potential of Polyphenols from Epilobium angustifolium (Fireweed). Phytother. Res. 2016, 30, 1287–1297. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Karakaya, S.; Süntar, I.; Yakinci, O.F.; Sytar, O.; Ceribasi, S.; Dursunoglu, B.; Ozbek, H.; Guvenalp, Z. In vivo bioactivity assessment on Epilobium species: A particular focus on Epilobium angustifolium and its components on enzymes connected with the healing process. J. Ethnopharmacol. 2020, 262, 113207. [Google Scholar] [CrossRef] [PubMed]
- Dacrema, M.; Sommella, E.; Santarcangelo, C.; Bruno, B.; Marano, M.G.; Insolia, V.; Saviano, A.; Campiglia, P.; Stornaiuolo, M.; Daglia, M. Metabolic profiling, in vitro bioaccessibility and in vivo bioavailability of a commercial bioactive Epilobium angustifolium L. extract. Biomed Pharmacother. 2020, 131, 110670. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Yoshimura, M.; Amakura, Y. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure. Molecules 2018, 23, 552. [Google Scholar] [CrossRef][Green Version]
- Kujawski, R.P.M.; Mrozikiewicz, P.Ł.; Mikołajczak, G.; Kuzio, A.; Bogacz, J.; Cichocka, J.; Bartkowiak-Wieczorek, E.; Grześkowiak, I.; Bobkiewicz-Kozłowska, U.T.; Czerny, B. Influence of Epilobium angustifolium and Serenoa repens extracts on cytochrome 2D2 and 3A1 expression level in rats. Herba Polonica 2010, 56, 39–51. [Google Scholar]
- Karakurt, S.; Semiz, A.; Celik, G.; Gencler-Ozkan, A.M.; Sen, A.; Adali, O. Epilobium hirsutum alters xenobiotic metabolizing CYP1A1, CYP2E1, NQO1 and GPx activities, mRNA and protein levels in rats. Pharm. Biol. 2013, 51, 650–658. [Google Scholar] [CrossRef]
- Celik, G.; Semiz, A.; Karakurt, S.; Gencler-Ozkan, A.M.; Arslan, S.; Adali, O.; Sen, A. Inhibitory action of Epilobium hirsutum extract and its constituent ellagic acid on drug-metabolizing enzymes. Eur. J. Drug Metab. Pharmacokinet. 2016, 2, 109–116. [Google Scholar] [CrossRef]
- Bassey, K.; Viljoen, A.; Combrinck, S.; Choi, Y.H. New phytochemicals from the corms of medicinally important South African Hypoxis species. Phytochem. Lett. 2014, 10, 119–125. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Khan, S.I.; Ali, Z.; Wang, Y.-H.; Ross, S.A.; Viljoen, A.M.; Khan, I.A. Norlignan glucosides from Hypoxis hemerocallidea and their potential in vitro anti-inflammatory activity via inhibition of iNOS and NF-κB. Phytochemistry 2020, 172, 112273. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170457/nutrients (accessed on 19 May 2021).
- Stahl, W.; Sies, H. Lycopene: A biologically important carotenoid for humans? Arch. Biochem. Biophys. 1996, 336, 1–9. [Google Scholar] [CrossRef]
- Jhou, B.Y.; Song, T.Y.; Lee, I.; Hu, M.L.; Yang, N.C. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression. J. Agric. Food Chem. 2017, 65, 6893–6903. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, R.; Sharopov, F.; Namiesnik, J.; Roointan, A.; Kamle, M.; Kumar, P.; Martins, N.; Sharifi-Rad, J. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 2019, 62, 201–208. [Google Scholar] [CrossRef]
- Gulati, O.P. Pycnogenol(R) in metabolic syndrome and related disorders. Phytother. Res. 2015, 29, 949–968. [Google Scholar] [CrossRef]
- Schoonees, A.; Visser, J.; Musekiwa, A.; Volmink, J. Pycnogenol® (extract of French maritime pine bark) for the treatment of chronic disorders (Review). Cochrane Datab System Rev. 2012, 4, 1–81. [Google Scholar] [CrossRef]
- D’Andrea, G. Pycnogenol: A blend of procyanidins with multifaceted therapeutic applications? Fitoterapia 2010, 81, 724–736. [Google Scholar] [CrossRef]
- Mei, L.; Mochizuki, M.; Hasegawa, N. Protective effect of Pycnogenol® on ovariectomyinduced bone loss in rats. Phytother. Res. 2012, 26, 153–155. [Google Scholar] [CrossRef]
- Je-Won, K.; So-Won, P.; Na-Rae, S.; Woong-Il, K.; Jong-Choon, K.; In-Sik, S.; Dong-Ho, S. Inhibitory effects of Pycnogenol®, a pine bark extract, in a rat model of testosterone propionate-induced benign prostatic hyperplasia. Lab. Anim. Res. 2018, 34, 111–117. [Google Scholar]
- Stanislavov, R.; Rohdewald, P. Sperm quality in men is improved by supplementation with a combination of l-arginine, l-citrullin, roburins and Pycnogenol(R). Ital. J. Urol. Nephrol. 2014, 66, 217–223. [Google Scholar]
- Gutiérrez, A.; Gámez, R.; Mas, R.; Noa, M.; Pardo, B.; Marrero, G.; Pérez, Y.; González, R.; Curveco, D.; García, H. Oral Subchronic Toxicity of a Lipid Extract from Roystonea regia Fruits in Mice. Drug Chem. Toxicol. 2008, 31, 217–228. [Google Scholar] [CrossRef]
- Stewart, K. Effects of bark harvest and other human activity on populations of the African cherry (Prunus africana) on Mount Oku, Cameroon. For. Ecol. Manag. 2009, 258, 1121–1128. [Google Scholar] [CrossRef]
- Maiyoa, F.; Moodleyb, R.; Singha, M. Phytochemistry, cytotoxicity and apoptosis studies of β-sitosterol-3-Oglucoside and β-amyrin from Prunus africa. Afr. J. Tradit. Complement Altern. Med. 2016, 13, 105–112. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Papaioannou, M.; Schleich, S.; Prade, I.; Degen, S.; Roell, D.; Schubert, U.; Tanner, T.; Claessens, F.; Matusch, R.; Baniahmad, A. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. J. Cell Mol. Med. 2009, 13, 2210–2223. [Google Scholar] [CrossRef] [PubMed]
- Fourneau, C.; Hocquemiller, R.; Cavé, A. Triterpenes from Prunus africana bark. Phytochemistry 1996, 42, 1387–1389. [Google Scholar] [CrossRef]
- Capasso, C.; Gaginella, T.S.; Grandolini, G.; Izzo, A.A. Phytotherapy—A Quick Reference to Herbal Medicine; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Andro, M.C.; Riffaud, J.P. Pygeum africanum extract for the treatment of patients with benign prostatic hyperplasia: A review of 25 years of published experience. Curr. Ther. Res. 1995, 56, 796–817. [Google Scholar] [CrossRef]
- Kalkman, C. The Old-World species of Prunus subg. Laurocerasus including those formerly referred to Pygeum. Blumea 1965, 13, 1–174. [Google Scholar]
- Paubert-Braquet, M.; Cave, A.; Hocquemiller, R.; Delacroix, D.; Dupont, C.; Hedef, N.; Borgeat, P. Effect of Pygeum africanum extract on A23187-stimulated production of lipoxygenase metabolites from human polymorphonuclear cells. J. Lipid Mediat. Cell Signal. 1994, 9, 285–290. [Google Scholar]
- Paubert-Braquet, M.; Monboisse, J.; Servent-Saez, N.; Serikoff, A.; Cavé, A.; Hocquemiller, R.; Dupont, C.; Fourneau, C.; Borel, J. Inhibition of bFGF and EGF-induced proliferation of 3T3 fibroblasts by extract of Pygeum africanum (Tadenan®). Biomed. Pharmacother. 1994, 48, 43s–47s. [Google Scholar] [CrossRef]
- Zu, P.; Koch, H.; Schwery, O.; Pironon, S.; Phillips, C.; Ondo, I.; Farrell, I.W.; Nes, W.D.; Moore, E.; Wright, G.A.; et al. Pollen sterols are associated with phylogeny and environment but not with pollinator guilds. New Phytol. 2021, 230, 1169–1184. [Google Scholar] [CrossRef]
- Montero, M.T.; Alonso, E.; Sainz, T. Allergens from rye pollen (Secale cereale): I. Study of protein release by rye pollen during a 19-hour extraction process. Allergen identification. Allergy 1992, 47, 22–25. [Google Scholar] [CrossRef]
- Kenđel, A.; Zimmermann, B. Chemical Analysis of Pollen by FT-Raman and FTIR Spectroscopies. Front. Plant Sci. 2020, 31, 352. [Google Scholar] [CrossRef][Green Version]
- Schulz, V.; Hänsel, R.; Blumenthal, M.; Tyler, V.E. Rational Phytotherapy; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Kimura, M.; Kimura, I.; Nakase, K.; Sonobe, T.; Mori, N. Micturition activity of pollen extract: Contractile effects on bladder and inhibitory effects on urethral smooth muscle of mouse and pig. Planta Med. 1986, 2, 148–151. [Google Scholar] [CrossRef][Green Version]
- Rugendorff, E.W.; Weidner, W.; Ebeling, L.; Buck, A.C. Results of Treatment with Pollen Extract (CerniltonR N) in Chronic Prostatitis and Prostatodynia. Br. J. Urol. 1993, 71, 433–438. [Google Scholar] [CrossRef]
- Yasumoto, R.; Kawanishi, H.; Tsujino, T.; Tsujita, M.; Nishisaka, N.; Horii, A.; Kishimoto, T. Clinical evaluation of long-term treatment using cernitin pollen extract in patients with benign prostatic hyperplasia. Clin. Ther. 1995, 17, 82–87. [Google Scholar] [CrossRef]
- European Union herbal monograph on Serenoa repens (W. Bartram) Small, fructus. Available online: www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-serenoa-repens-w-bartram-small-fructus_en.pdf (accessed on 21 June 2021).
- Gravas, S.; Samarinas, M.; Zacharouli, K.; Karatzas, A.; Tzortzis, V.; Koukoulis, G.; Melekos, M. The effect of hexanic extract of Serenoa repens on prostatic inflammation: Results from a randomized biopsy study. World J. Urol. 2019, 37, 539–544. [Google Scholar] [CrossRef]
- Ishii, I.; Wada, T.; Takara, T. Effects of saw palmetto fruit extract intake on improving urination issues in Japanese men: A randomized, double-blind, parallel-group, placebo-controlled study. Food Sci. Nutr. 2020, 8, 4017–4026. [Google Scholar] [CrossRef]
- Hass, M.A.; Nowak, D.M.; Leonova, E.; Levin, R.M.; Longhurstl, P.A. Identification of components of Prunus africana extract that inhibit lipid peroxidation. Phytomedicine 1999, 6, 379–388. [Google Scholar] [CrossRef]
- Calvo, M.I.; Akerreta, S.; Cavero, R.Y. Pharmaceutical ethnobotany in the riverside of Navarra (Iberian Peninsula). J. Ethnopharmacol. 2011, 135, 22–33. [Google Scholar] [CrossRef]
- Obertreis, B.; Giller, K.; Teucher, T.; Behnke, B.; Schmitz, H. Anti-inflammatory effect of Urtica dioica folia extract in comparison to caffeic malic acid. Arzneimittelforschung 1996, 46, 52–56. [Google Scholar]
- Konrad, L.; Müller, H.H.; Lenz, C.; Laubinger, H.; Aumüller, G.; Lichius, J.J. Antiproliferative effect on human prostate cancer cells by a stinging nettle root (Urtica dioica) extract. Planta Med. 2000, 66, 44–47. [Google Scholar] [CrossRef]
- Dreikorn, K. Phytotherapeutic agents in the treatment of benign prostatic hyperplasia. Curr. Urol. Rep. 2000, 1, 103–109. [Google Scholar] [CrossRef]
- Durak, I.; Biri, H.; Devrim, E.; Sözen, S.; Avci, A. Aqueous extract of Urtica dioica makes significant inhibition on adenosine deaminase activity in prostate tissue from patients with prostate cancer. Cancer Biol. Ther. 2004, 3, 855–897. [Google Scholar] [CrossRef][Green Version]
- Chung, L.W.; Matsuura, J.; Rocco, A.K.; Thompson, T.C.; Miller, G.J.; Runner, M.N. Tissue interactions and prostatic growth: A new mouse model for prostatic hyperplasia. Ann. N. Y. Acad. Sci. 1984, 438, 394–404. [Google Scholar] [CrossRef]
- Nahata, A.; Dixit, V.K. Ameliorative effects of stinging nettle (Urtica dioica) on testosterone-induced prostatic hyperplasia in rats. Andrologia 2012, 44, 396–409. [Google Scholar] [CrossRef]
- Tutin, T.G. Flora Europaea; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- EU Herbal Monograph: Epilobii Herba. Available online: https://www.ema.europa.eu/en/medicines/herbal/epilobii-herba (accessed on 20 May 2021).
- Piwowarski, J.P.; Granica, S.; Stefańska, J.; Kiss, A.K. Differences in Metabolism of Ellagitannins by Human Gut Microbiota ex Vivo Cultures. J. Nat. Prod. 2016, 79, 3022–3030. [Google Scholar] [CrossRef]
- Piwowarski, J.P.; Bobrowska-Korczak, B.; Stanisławska, I.; Bielecki, W.; Wrzesien, R.; Granica, S.; Krupa, K.; Kiss, A.K. Evaluation of the Effect of Epilobium angustifolium Aqueous Extract on LNCaP Cell Proliferation in In vitro and In Vivo Models. Planta Med. 2017, 83, 1159–1168. [Google Scholar] [CrossRef][Green Version]
- Ferrante, C.; Chiavaroli, A.; Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Brunetti, L.; Petrucci, M.; Politi, M.; Menghini, L.; Leone, S.; et al. Phenolic Content and Antimicrobial and Anti-Inflammatory Effects of Solidago virga-aurea, Phyllanthus niruri, Epilobium angustifolium, Peumus boldus, and Ononis spinosa Extracts. Antibiotics 2020, 11, 783. [Google Scholar] [CrossRef]
- Egil, A.C.; Ozdemir, B.; Gok, B.; Kecel-Gunduz, S.; Budama-Kilinc, Y. Synthesis, characterization, biological activities and molecular docking of Epilobium parviflorum aqueous extract loaded chitosan nanoparticles. Int. J. Biol. Macromol. 2020, 161, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.; Santarcangelo, C.; Masselli, R.; Buonomo, G.; Nicotra, G.; Insolia, V.; D’Avino, M.; Caruso, G.; Buonomo, A.R.; Sacchi, R.; et al. Epilobium angustifolium L. extract with high content in oenothein B on benign prostatic hyperplasia: A monocentric, randomized, double-blind, placebo-controlled clinical trial. Biomed Pharmacother. 2021, 138, 111414. [Google Scholar] [CrossRef] [PubMed]
- Ruszová, E.; Cheel, J.; Pávek, S.; Moravcová, M.; Hermannová, M.; Matějková, I.; Spilková, J.; Velebný, V.; Kubala, L. Epilobium angustifolium extract demonstrates multiple effects on dermal fibroblasts in vitro and skin photo-protection in vivo. Gen. Physiol. Biophys. 2013, 32, 347–359. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Loing, E.; Lamarque, E.; Borel, M. New targets in the battle against dandruff. J. Cosmet. Sci. 2017, 68, 107–113. [Google Scholar] [PubMed]
- Orlando, G.; Chiavaroli, A.; Ferrante, C.; Recinella, L.; Leone, S.; Brunetti, L.; Di Simone, S.C.; Menghini, L.; Petrucci, M.; Zengin, G.; et al. Protective effects induced by the food supplement Fluxonorm® in the lower urinary tract. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3074–3082. [Google Scholar] [CrossRef]
- Hypoxis. The Plant List. Available online: http://www.theplantlist.org/1.1/browse/A/Hypoxidaceae/Hypoxis/ (accessed on 2 May 2021).
- Havenga, K.; Abay, E.; Wiesner, L.; Viljoen, A.; Steyn, D.; Hamman, J. The In vitro and In Vivo Effects of Hypoxis hemerocallidea on Indinavir Pharmacokinetics: Modulation of Efflux. Planta Med. 2018, 84, 895–901. [Google Scholar] [CrossRef][Green Version]
- Gwaza, L.; Aweeka, F.; Greenblatt, R.; Lizak, P.; Huang, L.; Guglielmo, B.J. Co-admini-stration of a commonly used Zimbabwean herbal treatment (African potato) does not alter the pharmacokinetics of lopinavir/ritonavir. Int. J. Infect. Dis. 2013, 17, 1857–1861. [Google Scholar] [CrossRef][Green Version]
- Jordaan, A.E.; du Plessis, S.S.; Aboua, Y.G. The Effects of Wild African Potato (Hypoxis hemerocallidea) Supplementation on Streptozotocin-Induced Diabetic Wistar Rats Reproductive Function. Andrology 2016, 5, 1000165. [Google Scholar] [CrossRef][Green Version]
- Solanum lycopersicum L. Plants of the World Online. Kew Science. Available online: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:316947-2 (accessed on 19 May 2021).
- Russo, A.; Capogrosso, P.; La Croce, G.; Ventimiglia, E.; Boeri, L.; Briganti, A.; Damiano, R.; Montorsi, F.; Salonia, A. Serenoa repens, selenium and lycopene to manage lower urinary tract symptoms suggestive for benign prostatic hyperplasia. Expert Opin. Drug Saf. 2016, 15, 1661–1670. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Allkanjari, O.; Vitalone, A.; Busetto, G.M.; Cai, T.; Larganà, G.; Russo, G.I.; Magri, V.; Perletti, G.; della Cuna, F.S.R.; et al. Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer. Arch. Ital. Urol. Androl. 2019, 91, 139–152. [Google Scholar] [CrossRef]
- Grammatikopoulou, M.G.; Gkiouras, K.; Papageorgiou, S.; Myrogiannis, I.; Mykoniatis, I.; Papamitsou, T.; Bogdanos, D.P.; Goulis, D.G. Dietary factors and supplements influencing prostate specific-antigen (PSA) concentrations in men with prostate cancer and increased cancer risk: An evidence analysis review based on randomized controlled trials. Nutrients 2020, 12, 2985. [Google Scholar] [CrossRef]
- Hwang, E.S.; Bowen, P.E. Cell cycle arrest and induction of apoptosis by lycopene in LNCaP human prostate cancer cells. J. Med. Food 2004, 7, 284–289. [Google Scholar] [CrossRef]
- Da Soares, N.C.P.; Machado, C.L.; Trindade, B.B.; do Lima, I.C.C.; Gimba, E.R.P.; Teodoro, A.J.; Takiya, C.; Borojevic, R. Lycopene extracts from different tomato-based food products induce apoptosis in cultured human primary prostate cancer cells and regulate TP53, Bax and Bcl-2 transcript expression. Asian Pac. J. Cancer Prev. 2017, 18, 339–345. [Google Scholar] [CrossRef]
- Kim, H.S.; Bowen, P.; Chen, L.; Duncan, C.; Ghosh, L.; Sharifi, R.; Christov, K. Effects of Tomato Sauce Consumption on Apoptotic Cell Death in Prostate Benign Hyperplasia and Carcinoma. Nutr. Cancer 2003, 47, 40–47. [Google Scholar] [CrossRef]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.W.; Siervo, M.; Lara, J. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Crit. Rev. Food Sci. Nutr. 2019, 59, 141–158. [Google Scholar] [CrossRef]
- Silaste, M.L.; Alfthan, G.; Aro, A.; Kesäniemi, Y.A.; Hörkkö, S. Tomato juice decreases LDL cholesterol levels and increases LDL resistance to oxidation. Br. J. Nutr. 2007, 98, 1251–1258. [Google Scholar] [CrossRef][Green Version]
- Fuentes, E.J.; Astudillo, L.A.; Gutiérrez, M.I.; Contreras, S.O.; Bustamante, L.O.; Rubio, P.I.; Moore-Carrasco, R.; Alarcón, M.A.; Fuentes, J.A.; González, D.E.; et al. Fractions of aqueous and methanolic extracts from tomato (Solanum lycopersicum L.) present platelet antiaggregant activity. Blood Coagul. Fibrinolysis 2012, 23, 109–117. [Google Scholar] [CrossRef]
- Riso, P.; Visioli, F.; Grande, S.; Guarnieri, S.; Gardana, C.; Simonetti, P.; Porrini, M. Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J. Agric. Food Chem. 2006, 54, 2563–2566. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, F.; Meng, L.; Chen, D.; Wang, M.; Lu, X.; Chen, D.; Jiang, Y.; Xing, N. Lycopene attenuates chronic prostatitis/chronic pelvic pain syndrome by inhibiting oxidative stress and inflammation via the interaction of NF-κB, MAPKs, and Nrf2 signaling pathways in rats. Andrology 2020, 8, 747–755. [Google Scholar] [CrossRef]
- Herzog, A.; Siler, U.; Spitzer, V.; Seifert, N.; Denelavas, A.; Hunziker, P.B.; Hunziker, W.; Goralczyk, R.; Wertz, K. Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate. FASEB J. 2005, 19, 1–24. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Zhang, L. Lycopene/tomato consumption and the risk of prostate cancer: A systematic review and meta-analysis of prospective studie. J. Nutr. Sci. Vitaminol. 2013, 59, 213–223. [Google Scholar] [CrossRef][Green Version]
- Ørsted, D.D.; Bojesen, S.E.; Nielsen, S.F.; Nordestgaard, B.G. Association of clinical benign prostate hyperplasia with prostate cancer incidence and mortality revisited: A nationwide cohort study of 3,009,258 men. Eur. Urol. 2011, 60, 691–698. [Google Scholar] [CrossRef]
- Cormio, L.; Calò, B.; Falagario, U.; Iezzi, M.; Lamolinara, A.; Vitaglione, P.; Silecchia, G.; Carrieri, G.; Fogliano, V.; Iacobelli, S.; et al. Improvement of urinary tract symptoms and quality of life in benign prostate hyperplasia patients associated with consumption of a newly developed whole tomato-based food supplement: A phase II prospective, randomized double-blinded, placebo-controlled st. J. Transl. Med. 2021, 19, 24. [Google Scholar] [CrossRef]
- Edinger, M.S.; Koff, W.J. Effect of the consumption of tomato paste on plasma prostate-specific antigen levels in patients with benign prostate hyperplasia. Braz. J. Med. Biol. Res. 2006, 39, 1115–1119. [Google Scholar] [CrossRef][Green Version]
- Schwarz, S.; Obermüller-Jevic, U.C.; Hellmis, E.; Koch, W.; Jacobi, G.; Biesalski, H.K. Lycopene inhibits disease progression in patients with benign prostate hyperplasia. J. Nutr. 2008, 138, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Veeramachaneni, S.; Ausman, L.M.; Choi, S.W.; Russell, R.M.; Wang, X.D. High dose lycopene supplementation increases hepatic cytochrome P4502E1 protein and inflammation in alcohol-fed rats. J. Nutr. 2008, 138, 1329–1335. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pravettoni, V.; Primavesi, L.; Farioli, L.; Brenna, O.V.; Pompei, C.; Conti, A.; Scibilia, J.; Piantanida, M.; Mascheri, A.; Pastorello, E.A. Tomato allergy: Detection of IgE-binding lipid transfer proteins in tomato derivatives and in fresh tomato peel, pulp, and seeds. J. Agric. Food Chem. 2009, 57, 10749–10754. [Google Scholar] [CrossRef] [PubMed]
- Asero, R. Tomato Allergy: Clinical Features and Usefulness of Current Routinely Available Diagnostic Methods. J. Investig. Allergol. Clin. Immunol. 2013, 23, 37–42. [Google Scholar] [PubMed]
- Maritime Pine. Available online: https://www.drugs.com/npp/maritime-pine.htm (accessed on 19 May 2021).
- Oliff, B.H.S.; Blumenthal, M. Scientific and Clinical Monograph for PYCNOGENOL®; American Botanical Council: Austin, TX, USA, 2019. [Google Scholar]
- Rohdewald, P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medi-cation with a diverse clinical pharmacology. Int. J. Clin. Pharmacol. Ther. 2002, 40, 158–168. [Google Scholar] [CrossRef]
- Robertson, N.U.; Brand, A.; Visser, J. Pine bark (Pinus spp.) extract for treating chronic disorders. Cochrane Datab System Rev. 2020, 9, 82–94. [Google Scholar] [CrossRef]
- Rohdewald, P. Pleiotropic Effects of French Maritime Pine Bark Extract to Promote Healthy Aging. Rejuvenation Res. 2019, 22, 210–217. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, I.C.; Baek, H.S.; Moon, C.; Bae, C.S.; Kim, S.H. Ameliorative effects of pine bark extract on spermatotoxicity by alpha-chlorohydrin in rats. Phytother. Res. 2014, 28, 451–457. [Google Scholar] [CrossRef]
- Stanislavov, R.; Rohdewald, P. Improvement of erectile function by a combination of French maritime pine bark and ro-burins with aminoacids. Ital. J. Urol. Nephrol. 2015, 67, 27–32. [Google Scholar]
- Stanislavov, R.; Nikolova, V.; Rohdewald, P. Improvement of erectile function with Prelox: A randomized, double-blind, placebo-controlled, crossover trial. Int. J. Impot. Res. 2008, 20, 173–180. [Google Scholar] [CrossRef]
- Stanislavov, R.; Nikolova, V. Treatment of erectile dysfunction with pycnogenol and l-arginine. J. Sex Marital Ther. 2003, 29, 207–213. [Google Scholar] [CrossRef]
- Ledda, A.; Belcaro, G.; Feragalli, B.; Cornelli, U.; Dugall, M.; Corsi, M.; Cesarone, M.R. Benign prostatic hypertrophy: Pycnogenol® supplementation improves prostate symptoms and residual bladder volume. Minerva Med. 2018, 109, 280–284. [Google Scholar] [CrossRef]
- Leisegang, K. Chapter 5.6: Herbal medicine used to treat andrological problems. In Europe in Herbal Medicine in Andrology; Henkel, R., Agarwal, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 165–173. [Google Scholar]
- Roystonea. The Plant List. Available online: www.theplantlist.org/tpl1.1/search?q=Roystonea (accessed on 19 June 2021).
- Cuban Royal Palm (Roystonea regia), national tree of Cuba. Available online: www.cubanaturaleza.org/index.php?option=com_content&view=article&id=30&Itemid=31 (accessed on 19 June 2021).
- Arruzazabala, M.L.; Más, R.; Yohani Pérez, Y.; Ravelo, Y.; Molina, V.; Carbajal, D. Effect of D-004, a lipid extract from royal palm (Roystonea regia) fruits, on phenylephrine-induced contractions of isolated rat prostate. Rev. Cuba. Farm. 2009, 43, 1–9. [Google Scholar]
- Gutiérrez, A.; Gámez, R.; Noa, M.; Mas, R.; Arencibia, D.; Pardo, B.; Valle, M.; Oyarzábal, A.; Curveco, D.; García, H.; et al. One year oral Toxicity of D-004, a lipid extract from Roystonea regia fruits, in Sprague Dawley rats. Food Chem. Toxicol. 2011, 49, 2855–2861. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Gámez, R.; Noa, M.; Mas, R.; Valle, M.; Mendoza, N.; Nodal, C.; Pérez, Y.; Oyarzábal, A.; Bucarano, I.; et al. Long-Term (24 Months) Carcinogenicity Study of D-004, a Lipid Extract from Roystonea regia Fruits, in Sprague Dawley Rats. Int. J. Toxicol. 2015, 34, 138–150. [Google Scholar] [CrossRef]
- ArrebolaI, D.F.A.; Martínez, A.G.; Menéndez, R.G.; Acosta, B.P.; Sánchez, D.C.; Cambián, H.G. Genotoxic assessment of D-004, extract from Roystonea regia fruit, by means of micronuclei assays. Rev. Cuba. Farm. 2009, 43, 1–8. [Google Scholar]
- Guzmán, R.; Fernández, J.C.; Pedroso, M.; Fernández, L.; Illnait, J.; Mendoza, S.; Quiala, A.T.; Rodríguez, Z.; Mena, J.; Rodíguez, A.; et al. Efficacy and tolerability of Roystonea regia lipid extract (D-004) and terazosin in men with symptomatic benign prostatic hyperplasia: A 6-month study. Ther. Adv. Urol. 2019, 11, 1–12. [Google Scholar] [CrossRef][Green Version]
- Szendrei, K.; Csupor, D. (Eds.) Gyógynövénytár; Medicina Könyvkiadó Zrt.: Budapest, Hungary, 2009. [Google Scholar]
- Ishani, A.; MacDonald, R.; Nelson, D.; Rutks, I.; Wilt, T.J. Pygeum africanum for the Treatment of Patients with Benign Prostatic Hyperplasia: A Systematic Review and Quantitative Meta-analysis. Am. J. Med. 2000, 109, 654–664. [Google Scholar] [CrossRef]
- Kathambi, V.; Mutie, F.M.; Rono, P.C.; Wei, N.; Munyao, J.N.; Kamau, P.; Gituru, R.W.; Hu, G.-W.; Wang, W.-F. Traditional knowledge, use and conservation of plants by the communities of Tharaka-Nithi County, Kenya. Plant Divers. 2020, 42, 479–487. [Google Scholar] [CrossRef]
- Rasethe, M.T.; Semenya, S.S.; Maroyi, A. Medicinal Plants Traded in Informal Herbal Medicine Markets of the Limpopo Province, South Africa. Evid.-Based Compl. Alt. 2019, 2019, 2609532. [Google Scholar] [CrossRef][Green Version]
- Karani, L.W.; Tolo, F.M.; Karanja, S.M.; Khayeka-Wandabwa, C. Safety of Prunus africana and Warburgia ugandensis in asthma treatment. S. Afr. J. Bot. 2013, 88, 183–190. [Google Scholar] [CrossRef][Green Version]
- Mwitari, P.G.; Ayeka, P.A.; Ondicho, J.; Matu, E.N.; Bii, C.C. Antimicrobial Activity and Probable Mechanisms of Action of Medicinal Plants of Kenya: Withania somnifera, Warbugia ugandensis, Prunus africana and Plectranthus barbatus. PLoS ONE 2013, 8, e65619. [Google Scholar]
- Abera, B. Medicinal plants used in traditional medicine by Oromo people, Ghimbi District, Southwest Ethiopia. J. Ethnobiol. Ethnomed. 2014, 10, 40. [Google Scholar] [CrossRef][Green Version]
- Bandeira, S.O.; Gaspar, F.; Pagula, F.P. African Ethnobotany and Healthcare: Emphasis on Mozambique. Pharm. Biol. 2011, 39, 70–73. [Google Scholar] [CrossRef]
- Omara, T.; Kiprop, A.K.; Ramkat, R.C.; Cherutoi, J.; Kagoya, S.; Nyangena, D.M.; Tebo, T.A.; Nteziyaremye, P.; Karanja, L.N.; Jepchirchir, A.; et al. Medicinal Plants Used in Traditional Management of Cancer in Uganda: A Review of Ethnobotanical Surveys, Phytochemistry, and Anticancer Studies. Evid.-Based Complement Alt. 2020, 2020, 3529081. [Google Scholar] [CrossRef][Green Version]
- Kassa, Z.; Asfaw, Z.; Demissew, S. An ethnobotanical study of medicinal plants in Sheka Zone of Southern Nations Nationalities and Peoples Regional State, Ethiopia. J. Ethnobiol. Ethnomed. 2020, 16, 7. [Google Scholar] [CrossRef]
- Stewart, K.M. The African cherry (Prunus africana): Can lessons be learned from an over-exploited medicinal tree? J. Ethnopharm. 2003, 89, 3–13. [Google Scholar] [CrossRef]
- Stark, D.T.; Mtui, J.D.; Balemba, O.B. Review ethnopharmacological survey of plants used in the traditional treatment of gastrointestinal pain, inflammation and diarrhea in Africa: Future perspectives for integration into modern medicine. Animals 2013, 3, 158–227. [Google Scholar] [CrossRef]
- Maina, J.K.; Kareru, P.G.; Gatebe, E.G.; Rotich, H.; Githira, P.N.; Njonge, F.; Kiman, D.; Mutembei, J.K. Hypoglycemic effects of selected herbal drug formulations from the Kenyan market. J. Nat. Prod. Plant Res. 2014, 4, 10–17. [Google Scholar]
- Ochwang’I, D.O.; Kimwele, C.N.; Oduma, J.A.; Gathumbi, P.K.; Mbaria, J.M.; Kiama, S.G. Medicinal Plants used in treatment and management of cancer in Kakamega County, Kenya. J. Ethnopharmacol. 2014, 151, 1040–1055. [Google Scholar] [CrossRef]
- Koros, H.; Malombe, I.; Mwendwa, K.; Jeruto, P.; Agevi, H.; Konje, M. Indigenous knowledge, uses, and conservation of Prunus africana (Hook. F.) Kalkman in Nandi Forests. J. Nat. Sci. Res. 2016, 6, 2224–3186. [Google Scholar]
- Komakech, R.; Kang, Y.; Lee, J.-H.; Omujal, F. A Review of the Potential of Phytochemicals from Prunus africana (Hook F.) Kalkman Stem Bark for Chemoprevention and Chemotherapy of Prostate Cancer. Evid.-Based Compl. Alt. 2017, 2017, 3014019. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bombardelli, E.; Morazzoni, P. Prunus africana (Hook. F.) Kalm. Fitoterapia 1997, 68, 205–218. [Google Scholar]
- Kadu, C.A.C.; Parich, A.; Schueler, S.; Konrad, H.; Muluvi, G.M.; Eyog-Matig, O.; Muchugi, A.; Williams, V.L.; Ramamonjisoa, L.; Kapinga, C.; et al. Bioactive constituents in Prunus africana: Geographical variation throughout Africa and associations with environmental and genetic parameters. Phytochemistry 2012, 83, 70–78. [Google Scholar] [CrossRef]
- Thompson, R.Q.; Katz, D.; Sheehan, B. Chemical comparison of Prunus africana bark and pygeum products marketed for prostate health. J. Pharmaceut. Biomed. 2019, 163, 162–169. [Google Scholar] [CrossRef]
- Mathé, G.; Hallard, M.; Bourut, C.H.; Chenu, E. A Pygeum africanum extract with so-called phyto-estrogenic action markedly reduces the volume of true and large prostatic hypertrophy. Biomed. Pharmacother. 1995, 49, 341–343. [Google Scholar] [CrossRef]
- Roell, D.; Baniahmad, A. The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Mol. Cell Endocrinol. 2011, 332, 1–8. [Google Scholar] [CrossRef][Green Version]
- Jena, A.K.; Vasisht, K.; Sharma, N.; Kaur, R.; Dhingra, M.S.; Karan, M. Amelioration of testosterone induced benign prostatic hyperplasia by Prunus species. J. Ethnopharmacol. 2016, 190, 33–45. [Google Scholar] [CrossRef]
- Yablonsky, F.; Nicolas, V.; Riffaud, J.P.; Bellamy, F. Antiproliferative effect of Pygeum africanum extract on rat prostatic fibrobalsts. J. Urol. 1997, 157, 2381–2387. [Google Scholar] [CrossRef]
- Levin, R.M.; Whitbeck, C.; Horan, P.; Bellamy, F. Low-dose Tadenan protects the rabbit bladder from bilateral ischemia/reperfusion-induced contractile dysfunction. Phytomedicine 2005, 12, 17–24. [Google Scholar] [CrossRef]
- Quiles, M.T.; Arbós, M.A.; Fraga, A.; de Torres, I.M.; Reventós, J.; Morote, J. Antiproliferative and apoptotic effects of the herbal agent Pygeum africanum on cultured prostate stromal cells from patients with benign prostatic hyperplasia (BPH). Prostate 2010, 70, 1044–1053. [Google Scholar] [CrossRef]
- Morán, E.; Budía, A.; Broseta, E.; Boronat, F. Phytotherapy in urology. Current scientific evidence of its application in benign prostatic hyperplasia and prostate adenocarcinoma. Actas Urológicas Españolas 2013, 37, 114–119. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Yamaguchi, O.; Bellamy, F.; Constantinou, C.E. Effect of Pygeum africanum tadenan on micturition and prostate growth of the rat secondary to coadministered treatment and post-treatment with dihydrotestosterone. Urology 2003, 61, 474–478. [Google Scholar] [CrossRef]
- Choo, M.S.; Bellamy, F.; Constantinou, C.E. Functional evaluation of Tadenan on micturition and experimental prostate growth induced with exogenous dihydrotestosterone. Urology 2000, 55, 292–298. [Google Scholar] [CrossRef]
- Larré, S.; Camparo, P.; Comperat, E.; Boulbe’s, D.; Haddoum, M.; Baulande, S.; Soularue, P.; Costa, P.; Cussenot, O. Biological effect of human serum collected before and after oral intake of Pygeum africanum on various benign prostate cell cultures. Asian J. Androl. 2012, 14, 499–504. [Google Scholar] [CrossRef][Green Version]
- Cristoni, A.; Di Pierro, F.; Bombardelli, E. Botanical derivatives for the prostate. Fitoterapia 2000, 71, 21–28. [Google Scholar] [CrossRef]
- Schmidt, M.; Polednik, C.; Roller, J.; Hagen, R. Cytotoxicity of herbal extracts used for treatment of prostatic disease on head and neck carcinoma cell lines and non-malignant primary mucosal cells. Oncol. Rep. 2012, 29, 628–636. [Google Scholar] [CrossRef]
- Mathé, G.; Orbach-Arbouys, S.; Bizi, E.; Court, B. The so-called phyto-estrogenic action of Pygeum africanum extract. Biomed. Pharmacother. 1995, 49, 339–340. [Google Scholar] [CrossRef]
- Espinosa, G. Nutrition and benign prostatic hyperplasia. Curr. Opin. Urol. 2013, 23, 38–41. [Google Scholar] [CrossRef]
- Wilt, T.J.; Ishani, A.; Stark, G.; MacDonald, R.; Lau, J.; Mulrow, C. Saw palmetto extracts for treatment of benign prostatic hyperplasia: A systematic review. JAMA 1998, 280, 1604–1609. [Google Scholar] [CrossRef]
- Dedhia, R.C.; McVary, K.T. Phytotherapy for Lower Urinary Tract Symptoms Secondary to Benign Prostatic Hyperplasia. J. Urol. 2008, 179, 2119–2125. [Google Scholar] [CrossRef]
- Committee on Herbal Medicinal Products. Overview of Comments Received on European Union Herbal Monograph Prunus africana (Hook f.) Kalkm. Cortex (EMA/HMPC/680626/2013); Committee on Herbal Medicinal Products (HMPC): Vienna, Austria, 2016; pp. 1–19. [Google Scholar]
- Nicholson, T.M.; Ricke, W.A. Androgens and estrogens in benign prostatic hyperplasia: Past, present and future. Differentiation 2011, 82, 184–199. [Google Scholar] [CrossRef][Green Version]
- Dufour, B.; Choquenet, C.; Revol, M.; Faure, G.; Jorest, R. Controlled study of the effects of Pygeum africanum extract on the functional symptoms of prostatic adenoma (French). Ann. Urol. 1984, 18, 193–195. [Google Scholar]
- Barlet, A.; Albrecht, J.; Aubert, A.; Fischer, M.; Grof, F.; Grothuesmann, H.G.; Masson, J.C.; Mazeman, E.; Mermon, R.; Reichelt, H. Wirksamkeit eines extraktes aus Pygeum africanum in der medikamentosen Therapie von Miktionsstorungen infolge einer benignen Prostathyperplasi: Bewertung objektiver und subjektiver Parameter. Wie Klin Wochenschr 1990, 102, 667–673. [Google Scholar]
- Lowe, F.C.; Dreikhorn, K.; Borkowski, A.; Braeckman, J.; Denis, L.; Ferrari, P.; Gerber, G.; Levin, R.; Perrin, P.; Senge, T. Review of recent placebo-controlled trials utilizing phytotherapeutic agents for treatment of BPH. Prostate 1998, 37, 187–193. [Google Scholar] [CrossRef]
- Lowe, F.C.; Fagelman, E. Phytotherapy in the treatment of BPH: An update. Urology 1999, 53, 671–678. [Google Scholar] [CrossRef]
- Chatelain, A.; Autet, W.; Brackman, F. Comparison of once and twice daily dosage forms of Pygeum africanum extract in patients with benign prostatic hyperplasia: A randomized, double-blind study, with long-term open label extension. Urology 1999, 54, 473–478. [Google Scholar] [CrossRef]
- Cornu, J.N.; Cussenot, O.; Haab, F.; Lukacs, B. A Widespread Population Study of Actual Medical Management of Lower Urinary Tract Symptoms Related to Benign Prostatic Hyperplasia Across Europe and Beyond Official Clinical Guidelines. Eur. Urol. 2010, 58, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Lim, H.-J.; Kim, M.-S.; Lee, M.S. Dietary supplements for benign prostatic hyperplasia: An overview of systematic reviews. Maturitas 2012, 73, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Secale cereale L. Plants of the World Online. Kew Science. Available online: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:421164-1 (accessed on 20 May 2021).
- Locatelli, M.; Macchione, N.; Ferrante, C.; Chiavaroli, A.; Recinella, L.; Carradori, S.; Zengin, G.; Cesa, S.; Leporini, L.; Leone, S.; et al. molecules Graminex Pollen: Phenolic Pattern, Colorimetric Analysis and Protective Effects in Immortalized Prostate Cells (PC3) and Rat Prostate Challenged with LPS. Molecules 2018, 23, 1145. [Google Scholar] [CrossRef] [PubMed][Green Version]
- El-Khatib, F.M.; Yafi, N.R.; Yafi, F.A. Over-the-counter supplements and men’s health. In Effects of Lifestyle on Men’s Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 281–300. ISBN 9780128166659. [Google Scholar]
- Ohkoshi, M.; Kawamura, N.; Nagakubo, I. Clinical Evaluation of Cernilton in Chronic Prostatitis. Available online: https://www.graminex.com/wp-content/uploads/2017/11/Clinical-evaluation-of-Cernilton-in-chronic-prostatitis.pdf (accessed on 19 May 2021).
- MacDonald, R.; Ishani, A.; Rutks, I.; Wilt, T.J. A systematic review of Cernilton for the treatment of benign prostatic hyperplasia. BJU Int. 2000, 85, 836–841. [Google Scholar] [CrossRef][Green Version]
- Buck, A.C.; Cox, R.; Rees, R.W.M.; Ebeling, L.; John, A. Treatment of Outflow Tract Obstruction due to Benign Prostatic Hyperplasia with the Pollen Extract Cernilton: A Double-blind, Placebo-controlled Study. Br. J. Urol. 1990, 66, 398–404. [Google Scholar] [CrossRef]
- Roberts, K.P.; Iyer, R.A.; Prasad, G.; Liu, L.T.; Lind, R.E.; Hanna, P.E. Cyclic hydroxamic acid inhibitors of prostate cancer cell growth: Selectivity and structure activity relationships. Prostate 1998, 34, 92–99. [Google Scholar] [CrossRef]
- Habib, F.K.; Ross, M.; Buck, A.C.; Ebeling, L.; Lewenstein, A. In vitro Evaluation of the Pollen Extract Cernitin T-60, in the Regulation of Prostate Cell Growth. Br. J. Urol. 1990, 66, 393–397. [Google Scholar] [CrossRef]
- PubMed. Inhibition of Arachidonic Acid Cascade by Extract of Rye Pollen. Available online: https://pubmed.ncbi.nlm.nih.gov/1904229/ (accessed on 19 May 2021).
- Nakase, K.; Takenaga, K.; Hamanaka, T.; Kimura, M. Inhibitory effect and synergism of cernitin pollen extract on the urethral smooth muscle and diaphragm of the rat. Folia Pharmacol. Jpn. 1988, 91, 385–392. [Google Scholar] [CrossRef][Green Version]
- Asakawa, K.; Nandachi, N.; Satoh, S.; Honma, M.; Namikata, S.; Ishi, M.; Yasumoto, R.; Nishisaka, N.; Masuda, C. Effects of cernitin pollen-extract (Cernilton) on inflammatory cytokines in sex-hormone-induced nonbacterial prostatitis rats. Hinyokika Kiyo 2001, 47, 459–465. [Google Scholar]
- Dizeyi, N.; Mattisson, I.Y.; Ramnemark, L.; Grabe, M.; Abrahamsson, P.A. The effects of Cernitin® on inflammatory parameters and benign prostatic hyperplasia: An in vitro study. Phyther. Res. 2019, 33, 2457–2464. [Google Scholar] [CrossRef]
- PubMed. A Comparative Study on Different Doses of Cernilton for Preventing the Clinical Progression of Benign Prostatic Hyperplasia. Available online: https://pubmed.ncbi.nlm.nih.gov/18649754/ (accessed on 20 May 2021).
- Qian, X.; Kong, X.; Qian, Y.; Xu, D.; Liu, H.; Zhu, Y.; Guan, W.; Zheng, J.; Wang, Z.; Qi, J. Therapeutic efficacy of Cernilton in benign prostatic hyperplasia patients with histological prostatitis after transurethral resection of the prostate. Int. J. Clin. Exp. Med. 2015, 8, 11268–11275. [Google Scholar]
- Wilt, T.J.; MacDonald, R.; Ishani, A.; Rutks, I.; Stark, G. Cernilton for benign prostatic hyperplasia. Cochrane Database Syst. Rev. 2011, 11, CD001042. [Google Scholar] [CrossRef]
- Keehn, A.; Lowe, F.C. Complementary and alternative medications for benign prostatic hyperplasia. Can. J. Urol. 2015, 1, 18–23. [Google Scholar]
- Montero, M.T.; Alonso, E.; Sainz, T. Allergens from rye pollen (Secale cereale): II. Characterization and partial purification. Allergy 1992, 47, 26–29. [Google Scholar] [CrossRef]
- Serenoa. Available online: www.theplantlist.org/tpl1.1/search?q=Serenoa (accessed on 21 June 2021).
- Ross, I.A. Medicinal Plants of the World, Vol. 3: Chemical Constituents, Traditional and Modern Medicinal Uses; Humana Press Inc.: Totowa, NJ, USA, 2005; pp. 461–485. [Google Scholar]
- Council of Europe: European Directorate for the Quality of Medicines and Healthcare; European Pharmacopoeia: Strasbourg, France; Volume 10, p. 1848. 2021. Available online: https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-10th-edition (accessed on 21 June 2021).
- Assessment report on Serenoa repens (W. Bartram) Small, fructus. Available online: www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-serenoa-repens-w-bartram-small-fructus_en.pdf (accessed on 21 June 2021).
- Cai, T.; Cui, Y.; Yu, S.; Li, Q.; Zhou, Z.; Gao, Z. Comparison of Serenoa repens with Tamsulosin in the Treatment of Benign Prostatic Hyperplasia: A Systematic Review and Meta-Analysis. Am. J. Men’s Health 2020, 14, 1557988320905407. [Google Scholar] [CrossRef]
- Russo, G.I.; Scandura, C.; Di Mauro, M.; Cacciamani, G.; Albersen, M.; Hatzichristodoulou, G.; Fode, M.; Capogrosso, P.; Cimino, S.; Marcelissen, T.; et al. Clinical Efficacy of Serenoa repens Versus Placebo Versus Alpha-blockers for the Treatment of Lower Urinary Tract Symptoms/Benign Prostatic Enlargement: A Systematic Review and Network Meta-analysis of Randomized Placebo-controlled Clinical Trials. Eur. Urol. Focus 2021, 7, 420–431. [Google Scholar] [CrossRef]
- Grauso, L.; de Falco, B.; Lanzotti, V.; Motti, R. Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2020, 19, 1341–1377. [Google Scholar] [CrossRef]
- Chrubasik, J.E.; Roufogalis, B.D.; Wagner, H.; Chrubasik, S. A comprehensive review on the stinging nettle effect and efficacy profiles. Part II: Urticae radix. Phytomedicine 2007, 14, 568–579. [Google Scholar]
- Koch, E. Extracts from fruits of saw palmetto (Sabal serrulata) and roots of stinging nettle (Urtica dioica): Viable alternatives in the medical treatment of benign prostatic hyperplasia and associated lower urinary tracts symptoms. Planta Med. 2001, 67, 489–500. [Google Scholar] [CrossRef]
- Hryb, D.J.; Khan, M.S.; Romas, N.A. The effect of extracts of the roots of the stinging nettle (Urtica dioica) on the interaction of SHBG with its receptor on human prostatic membranes. Planta Med. 1995, 61, 31–32. [Google Scholar] [CrossRef]
- Sajfrtova, M.; Sovova, H.; Opletal, L.; Bártlová, M. Near-critical extraction of ß-sitosterol and scopoletin from stinging nettle roots. J. Supercrit. Fluids 2005, 35, 111–118. [Google Scholar] [CrossRef]
- Testai, L.; Chericoni, S.; Calderone, V.; Nencioni, G.; Nieri, P.; Morelli, I.; Martinotti, E. Cardiovascular effects of Urtica dioica L. (Urticaceae) roots extracts: In vitro and in vivo pharmacological studies. J. Ethnopharmacol. 2002, 81, 105–109. [Google Scholar] [CrossRef]
- EU Herbal Monograph: Urticae herba. Available online: https://www.ema.europa.eu/en/medicines/herbal/urticae-herba (accessed on 20 May 2021).
- El Haouari, M.; Bnouham, M.; Bendahou, M.; Aziz, M.; Ziyyat, A.; Legssyer, A.; Mekhfi, H. Inhibition of rat platelet aggregation by Urtica dioica leaves extracts. Phytother. Res. 2006, 20, 568–572. [Google Scholar] [CrossRef]
- Daher, C.F.; Baroody, K.G.; Baroody, G.M. Effect of Urtica dioica extract intake upon blood lipid profile in the rats. Fitoterapia 2006, 77, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Lichius, J.J.; Muth, C. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse. Planta Med. 1997, 63, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Vontobel, H.; Herzog, R.; Rutishauser, G.; Kreis, H. Results of a double-blind study on the effectiveness of ERU (extractum radicis Urticae) capsules in conservative treatment of benign prostatic hyperplasia. Urologe A 1985, 24, 49–51. [Google Scholar] [PubMed]
- Koch, E.; Biber, A. Pharmakologische Wirkungen von Sabal- und Urtikaextrakten als Grundlage für eine rationale medikamentöse Therapie der benignen Prostatahyperplasie. Urologe B 1994, 34, 95–100. [Google Scholar]
- Stahl, H.P. Die Therapie Prostatischer Nykturie. Z. Für Algemeine Med. 1984, 60, 128–132. [Google Scholar]
- Friesen, A. Statistiche Analyse einer Multizenter-Langzeitstudie mit ERD. Beninge Prostata hyperplasie II. J. Klin. Exp. UraZ. 1988, 19, 121–130. [Google Scholar]
- Dhouibi, R.; Affes, H.; Ben Salem, M.; Hammami, S.; Sahnoun, Z.; Zeghal, K.M.; Ksouda, K. Screening of pharmacological uses of Urtica dioica and others benefits. Prog. Biophys. Mol Biol. 2020, 150, 67–77. [Google Scholar] [CrossRef]
- Safarinejad, M.R. Urtica dioica for treatment of benign prostatic hyperplasia: A prospective, randomized, double-blind, placebo-controlled, crossover study. J. Herb. Pharmacother. 2005, 5, 1–11. [Google Scholar] [CrossRef]
- Lopatkin, N.; Sivkov, A.; Schläfke, S.; Funk, P.; Medvedev, A.; Engelmann, U. Efficacy and safety of a combination of Sabal and Urtica extract in lower urinary tract symptoms—Long-term follow-up of a placebo-controlled, double-blind, multicenter trial. Int. Urol. Nephrol. 2007, 39, 1137–1146. [Google Scholar] [CrossRef]
- Mahboubi, M. Urtica dioica in the Management of Benign Prostate Hyperplasia (BPH). Nat. Prod. J. 2020, 10, 535–542. [Google Scholar] [CrossRef]
Active Compound | Pharmacological Effect | Dose (mg) | Administration | Speed of Onset | Interaction May Occur |
---|---|---|---|---|---|
Alfuzosin | α1-adrenoceptor antagonist | 7.5–10 | Immediately following a meal, at the same time each day, depending on the formulation | days | In combination with vasodilators (e.g., PDE5 inhibitors, nitrates), and other antihypertensives. Before cataract surgery, consultation is necessary. In the case of tamsulosin, warfarin and diclofenac co-administration is not recommended. |
Doxazosin | α1-adrenoceptor antagonist | 2–8 (TR) | IR: daily once at bedtime ER: daily once with the first meal | days | |
Silodosin | α1-adrenoceptor antagonist | 4–8 | With a meal, at the same time each day | days | |
Tamsulosin | α1-adrenoceptor antagonist | 0.4–0.8 | 30 min after the first meal | days | |
Terazosin | α1-adrenoceptor antagonist | 5–20 (TR) | Daily once at bedtime | days | |
Dutasteride | 5α-reductase (type 1 and 2) inhibitor | 0.5 | Without chewing, at the same time each day | 6–12 months | In combination with strong CYP3A4 and CYP2D6 inhibitors. |
Finasteride | 5α-reductase (type 2) inhibitor | 5 | Without chewing, at the same time each day | 6–12 months | No drug interactions have been identified. |
Alfuzosin+ Finasteride | combination therapy | 10/5 | Swallow 2 different tablets without chewing, after dinner | days | ama |
Tamsulosin+ Dutasteride | combination therapy | 0.4/0.5 | Swallow 1 tablet without chewing, 30 min after a meal, at the same time each day | days | ama |
Plant Species, Drug Part | Active Compounds | Biological Activities/Supposed Mechanism of Action |
---|---|---|
Cucurbita pepo seed | Polysaccharides, sterols, para-aminobenzoic acid, proteins and peptides, carotenoids, γ-aminobutyric acid [34,35]; seed: fatty acids, phytosterols [36,37] | |
Epilobiumparviflorum and E. angustifolium aerial parts | Polyphenols, steroids, triterpenoids, fatty acids [70] | |
Hypoxis hemerocallidea corm | Phytosterols: hypoxoside, rooperol, β-sitosterol, stigmasterol, stigmastanol; hypoxhemerolosides A–F, curcapicycloside, obtuside A, interjectin, crassifoside F, acuminoside, geraniol glycoside, vanillic acid, β-arbutin, orcinol glycoside [81,82] | |
Solanum lycopersicum fruit | Tetraterpene carotenoids: lycopene, β-carotene, α-carotene; minerals, vitamins [83] | |
Pinus pinaster bark | Procyanidins, taxifolin, cinnamic acid, ferulic acid, caffeic acid, benzoic acid [87,88] | |
Roystonea regia fruit (oil) | D-004 extract (oleic, lauric, palmitic and myristic acids) [4] | |
Prunus africana bark | Phytosterols, fatty acids, triterpenes, proanthocyanidins, atraric acid, lauric acid, myristic acid, ferulic acid, atranorin, cholesterol, N-butylbenzene sulfonamide, hydroxybenzoic, linoleic, stearic, arachidonic, behenic, lignoceric acids [94,95,96,97,98,99] |
|
Secale cereale pollen | Carbohydrates, amino acids, proteins, phenolic compounds, sterols, triglycerides, plant pigments [103,104,105,106] | |
Serenoa repens fruit | Carbohydrates, sterols, flavonoids, triglycerides, fatty acids [110,111] |
|
Urtica dioica root | Sterols, flavonoids, tannins, acids, minerals, lectins, polysaccharides ceramides, monoterpenoids, fatty triterpene, and phenylpropane [4,9,113,114,115,116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csikós, E.; Horváth, A.; Ács, K.; Papp, N.; Balázs, V.L.; Dolenc, M.S.; Kenda, M.; Kočevar Glavač, N.; Nagy, M.; Protti, M.; et al. Treatment of Benign Prostatic Hyperplasia by Natural Drugs. Molecules 2021, 26, 7141. https://doi.org/10.3390/molecules26237141
Csikós E, Horváth A, Ács K, Papp N, Balázs VL, Dolenc MS, Kenda M, Kočevar Glavač N, Nagy M, Protti M, et al. Treatment of Benign Prostatic Hyperplasia by Natural Drugs. Molecules. 2021; 26(23):7141. https://doi.org/10.3390/molecules26237141
Chicago/Turabian StyleCsikós, Eszter, Adrienn Horváth, Kamilla Ács, Nóra Papp, Viktória Lilla Balázs, Marija Sollner Dolenc, Maša Kenda, Nina Kočevar Glavač, Milan Nagy, Michele Protti, and et al. 2021. "Treatment of Benign Prostatic Hyperplasia by Natural Drugs" Molecules 26, no. 23: 7141. https://doi.org/10.3390/molecules26237141