Simultaneous Determination of Ciprofloxacin and Ofloxacin in Animal Tissues with the Use of Capillary Electrophoresis with Transient Pseudo-Isotachophoresis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Electrophoretic Conditions
2.1.1. Optimization of BGE Concentration and pH of BGE
2.1.2. Selection of the Sample Volume Introduced to the Capillary
2.1.3. Optimization of Capillary Temperature and Separation Voltage
2.1.4. Sample Stacking by Transient Pseudo-Isotachophoresis
2.2. Optimization of Extraction Procedure
2.2.1. Selection of Buffer pH for Sample Preparation
2.2.2. Tissue to Buffer Ratio
2.2.3. Selection of Organic Solvent
2.2.4. Selection of Organic Solvent Volume
2.2.5. Optimization of Extraction Time
2.2.6. The Number of Extractions
2.3. Calibration and Other Validation Data
2.4. Determination of Cpx and Ofx in Meat Tissue
3. Materials and Methods
3.1. Apparatus
3.2. Chemicals
3.3. Capillary Preconditioning
3.4. Electrophoretic Conditions
3.5. Sample Collection and Preparation
3.6. Calibration of the Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mohamed Derayea, S.; Ahmed Omar, M.; Abdelkhalek Hammad, M.; Farag Hassan, Y.; Badr El-Din, K.M. Augmented spectrofluorimetric determination of certain fluoroquinolones via micellar—Metal complex connection: Application to pharmaceuticals and biological fluids. Microchem. J. 2021, 160, 105717. [Google Scholar] [CrossRef]
- Yıldırım, S.; Karakoç, H.N.; Yaşar, A.; Köksal, İ. Determination of levofloxacin, ciprofloxacin, moxifloxacin and gemifloxacin in urine and plasma by HPLC–FLD–DAD using pentafluorophenyl core–shell column: Application to drug monitoring. Biomed. Chromatogr. 2020, 34, e4925. [Google Scholar] [CrossRef]
- Guan, S.; Wu, H.; Yang, L.; Wang, Z.; Wu, J. Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample. J. Sep. Sci. 2020, 43, 3775–3784. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, X.Y.; Tian, H.; Wei, Q.H.; Liu, B.S.; Bao, G.M.; Liao, M.L.; Peng, J.L.; Huang, X.Q.; Wang, L.Q. High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Chemosphere 2019, 230, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Liu, T.; Mu, G.; Chen, F.; He, M.; You, S.; Yang, M.; Li, Y.; Zhang, F. Rapid and sensitive determination of trace fluoroquinolone antibiotics in milk by molecularly imprinted polymer-coated stainless steel sheet electrospray ionization mass spectrometry. Talanta 2020, 219, 121282. [Google Scholar] [CrossRef]
- Yu, L.; Yue, M.E.; Xu, J.; Jiang, T.F. Determination of fluoroquinolones in milk, honey and water samples by salting out-assisted dispersive liquid-liquid microextraction based on deep eutectic solvent combined with MECC. Food Chem. 2020, 332, 127371. [Google Scholar] [CrossRef] [PubMed]
- Cairoli, S.; Simeoli, R.; Tarchi, M.; Dionisi, M.; Vitale, A.; Perioli, L.; Dionisi-Vici, C.; Goffredo, B.M. A new HPLC–DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed. Chromatogr. 2020, 34, e4880. [Google Scholar] [CrossRef]
- Maia, A.S.; Paíga, P.; Delerue-Matos, C.; Castro, P.M.L.; Tiritan, M.E. Quantification of fluoroquinolones in wastewaters by liquid chromatography-tandem mass spectrometry. Environ. Pollut. 2020, 259, 113927. [Google Scholar] [CrossRef]
- Ziarrusta, H.; Val, N.; Dominguez, H.; Mijangos, L.; Prieto, A.; Usobiaga, A.; Etxebarria, N.; Zuloaga, O.; Olivares, M. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 6359–6370. [Google Scholar] [CrossRef]
- Magalhães, D.; Freitas, A.; Sofia Vila Pouca, A.; Barbosa, J.; Ramos, F. The use of ultra-high-pressure-liquid-chromatography tandem time-of-flight mass spectrometry as a confirmatory method in drug residue analysis: Application to the determination of antibiotics in piglet liver. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1153, 122264. [Google Scholar] [CrossRef]
- Li, J.; Ren, X.; Diao, Y.; Chen, Y.; Wang, Q.; Jin, W.; Zhou, P.; Fan, Q.; Zhang, Y.; Liu, H. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 257, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Chen, G.; Chen, Y.; Zhang, X.; Yin, Y.; Hu, Z. Application of single drop liquid-liquid-liquid microextraction for the determination of fluoroquinolones in human urine by capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Vera-Candioti, L.; Teglia, C.M.; Cámara, M.S. Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design. Electrophoresis 2016, 37, 2670–2677. [Google Scholar] [CrossRef] [PubMed]
- Baciu, T.; Borrull, F.; Neusüß, C.; Aguilar, C.; Calull, M. Capillary electrophoresis combined in-line with solid-phase extraction using magnetic particles as new adsorbents for the determination of drugs of abuse in human urine. Electrophoresis 2016, 37, 1232–1244. [Google Scholar] [CrossRef]
- Kubalczyk, P.; Bald, E. Methods of analyte concentration in a capillary. Springer Ser. Chem. Phys. 2013, 105, 215–235. [Google Scholar]
- Zhang, H.; Deng, Y.; Zhao, M.Z.; Zhou, Y.L.; Zhang, X.X. Highly-sensitive detection of eight typical fluoroquinolone antibiotics by capillary electrophoresis-mass spectroscopy coupled with immunoaffinity extraction. RSC Adv. 2018, 8, 4063–4071. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Perez-Cejuela, H.; Benavente, F.; Simo-Alfonso, E.F.; Herrero-Martinez, J.M. A hybrid nano-MOF/polymer material for trace analysis of fluoroquinolones in complex matrices at microscale by on-line solid-phase extraction capillary electrophoresis. Talanta 2021, 233, 122529. [Google Scholar] [CrossRef]
- FDA, Cder, Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Contains Nonbinding Recommendations. 2018. Available online: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htmand/orhttp://www.fda.gov/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/default.htm (accessed on 8 April 2020).
- Sun, H.-W.; He, P.; Lv, Y.-K.; Liang, S.-X. Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, I.; Stepanova, K.; Shishov, A.; Nugbienyo, L.; Moskvin, L.; Bulatov, A. Fluoroquinolones extraction from meat samples based on deep eutectic solvent formation. J. Food Compos. Anal. 2020, 93, 103589. [Google Scholar] [CrossRef]
- Van Hoof, N.; De Wasch, K.; Okerman, L.; Reybroeck, W.; Poelmans, S.; Noppe, H.; De Brabander, H. Validation of a liquid chromatography-tandem mass spectrometric method for the quantification of eight quinolones in bovine muscle, milk and aquacultured products. Anal. Chim. Acta 2005, 529, 265–272. [Google Scholar] [CrossRef]
- Biselli, S.; Schwalb, U.; Meyer, A.; Hartig, L. A multi-class, multi-analyte method for routine analysis of 84 veterinary drugs in chicken muscle using simple extraction and LC-MS/MS. Food Addit. Contam. Part A 2013, 30, 921–939. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Xu, Y.; Wang, J.; Lyu, W.; Li, R.; Tan, S.; Xiao, Y.; Tang, B.; Yang, H.; Qian, M. Multiresidue determination of antibiotics in ready-to-eat duck eggs marketed through e-commerce stores in China and subsequent assessment of dietary risks to consumers. J. Food Sci. 2021, 86, 2145–2162. [Google Scholar] [CrossRef]
- Wei, D.; Guo, M. Facile preparation of magnetic graphene oxide/nanoscale zerovalent iron adsorbent for magnetic solid-phase extraction of ultra-trace quinolones in milk samples. J. Sep. Sci. 2020, 43, 3093–3102. [Google Scholar] [CrossRef]
- Ouyang, Y.-Z.; Wu, H.-L.; Fang, H.; Wang, T.; Sun, X.-D.; Chang, Y.-Y.; Ding, Y.-J.; Yu, R.-Q. Rapid and simultaneous determination of three fluoroquinolones in animal-derived foods using excitation-emission matrix fluorescence coupled with second-order calibration method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117458. [Google Scholar] [CrossRef]
- Shihabi, Z.K. Stacking and discontinuous buffers in capillary zone electrophoresis. Electrophoresis 2000, 21, 2872–2878. [Google Scholar] [CrossRef]
- Shihabi, Z.K.; Hinsdale, M.E.; Cheng, C.P. Analysis of glutathione by capillary electrophoresis based on sample stacking. Electrophoresis 2001, 22, 2351–2354. [Google Scholar] [CrossRef]
- Shihabi, Z.K. Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis. Electrophoresis 2002, 23, 1612–1617. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Zhang, L.; Chen, G. Separation and determination of peptide hormones by capillary electrophoresis with laser-induced fluorescence coupled with transient pseudo-isotachophoresis preconcentration. Anal. Biochem. 2008, 380, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Kubalczyk, P.; Bald, E. Analysis of orange juice for total cysteine and glutathione content by CZE with UV-absorption detection. Electrophoresis 2009, 30, 2280–2283. [Google Scholar] [CrossRef] [PubMed]
- Kubalczyk, P.; Bald, E. Method for determination of total cysteamine in human plasma by high performance capillary electrophoresis with acetonitrile stacking. Electrophoresis 2008, 29, 3636–3640. [Google Scholar] [CrossRef]
- Botello, I.; Borrull, F.; Calull, M.; Aguilar, C. Simultaneous determination of weakly ionizable analytes in urine and plasma samples by transient pseudo-isotachophoresis in capillary zone electrophoresis. Anal. Bioanal. Chem. 2011, 400, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Yu Kong Feng, H.; Yang, G.; Kong, L.; Hou, L.; Li, H.; Gao, M. Stacking and Detecting Blood Glutathione as a Cation under Strong Acidic Conditions by Capillary Electrophoresis using Acetonitrile-salt Stacking Method. J. Anal. Chem. 2020, 75, 225–230. [Google Scholar] [CrossRef]
Added * [nmol/g Tissue] | Intra-Day | Inter-Day | ||||
---|---|---|---|---|---|---|
Found ± SD [nmol/g Tissue] | RSD [%] | Accuracy [%] | Found ± SD [nmol/g Tissue] | RSD [%] | Accuracy [%] | |
Ciprofloxacin | ||||||
3.00 | 3.14 ± 0.37 | 11.79 | 104.57 | 3.14 ± 0.33 | 10.63 | 104.57 |
5.00 | 4.92 ± 0.56 | 11.32 | 98.49 | 5.17 ± 0.40 | 7.79 | 103.42 |
9.00 | 8.87 ± 0.09 | 1.04 | 98.54 | 8.62 ± 0.53 | 6.10 | 95.81 |
Ofloxacin | ||||||
3.00 | 2.71 ± 0.18 | 6.56 | 90.39 | 2.72 ± 0.31 | 11.33 | 90.61 |
5.00 | 4.74 ± 0.53 | 11.15 | 94.71 | 4.80 ± 0.46 | 9.57 | 96.00 |
9.00 | 8.66 ± 0.97 | 11.15 | 96.22 | 8.21 ± 0.79 | 9.60 | 91.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kośka, I.; Purgat, K.; Głowacki, R.; Kubalczyk, P. Simultaneous Determination of Ciprofloxacin and Ofloxacin in Animal Tissues with the Use of Capillary Electrophoresis with Transient Pseudo-Isotachophoresis. Molecules 2021, 26, 6931. https://doi.org/10.3390/molecules26226931
Kośka I, Purgat K, Głowacki R, Kubalczyk P. Simultaneous Determination of Ciprofloxacin and Ofloxacin in Animal Tissues with the Use of Capillary Electrophoresis with Transient Pseudo-Isotachophoresis. Molecules. 2021; 26(22):6931. https://doi.org/10.3390/molecules26226931
Chicago/Turabian StyleKośka, Izabella, Krystian Purgat, Rafał Głowacki, and Paweł Kubalczyk. 2021. "Simultaneous Determination of Ciprofloxacin and Ofloxacin in Animal Tissues with the Use of Capillary Electrophoresis with Transient Pseudo-Isotachophoresis" Molecules 26, no. 22: 6931. https://doi.org/10.3390/molecules26226931
APA StyleKośka, I., Purgat, K., Głowacki, R., & Kubalczyk, P. (2021). Simultaneous Determination of Ciprofloxacin and Ofloxacin in Animal Tissues with the Use of Capillary Electrophoresis with Transient Pseudo-Isotachophoresis. Molecules, 26(22), 6931. https://doi.org/10.3390/molecules26226931