Cell Culture Characterization of Prooxidative Chain-Transfer Agents as Novel Cytostatic Drugs
Abstract
:1. Introduction
2. Results
2.1. Comparative Evaluation of Chain-Transfer Agents as Anti-Proliferative Drugs in Four Human Tumor Cells Lines
2.2. Effect of Cellular Differentiation on Chain-Transfer Agent Cytotoxicity
2.3. Potential Limitations of Chain-Transfer Agents as Cytostatic Drugs
2.4. Comparison of 12SH and 18SH with Four Clinically Established Cytostatic Drugs
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Lines and Their Cultivation
4.3. Cell Proliferation and Cytotoxicity
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolgin, E. Bringing down the cost of cancer treatment. Nature 2018, 555, S26–S29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sessa, C.; Gianni, L.; Garassino, M.; van Halteren, H. ESMO Handbook of Clinical Pharmacology of Anticancer Agents; European Society for Medical Oncology (ESMO): Lugano, Switzerland, 2012. [Google Scholar]
- Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef]
- Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev. 2013, 12, 376–390. [Google Scholar] [CrossRef]
- Doskey, C.M.; Buranasudja, V.; Wagner, B.A.; Wilkes, J.G.; Du, J.; Cullen, J.J.; Buettner, G.R. Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy. Redox Biol. 2016, 10, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Szatrowski, T.P.; Nathan, C.F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991, 51, 794–798. [Google Scholar]
- Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R.B.; Koul, H.K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008, 68, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.W. Do antioxidants interfere with radiation therapy for cancer? Integr. Cancer Ther. 2007, 6, 281–292. [Google Scholar] [CrossRef]
- Barker, H.E.; Paget, J.T.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409–425. [Google Scholar] [CrossRef]
- Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Toler, S.M.; Noe, D.; Sharma, A. Selective enhancement of cellular oxidative stress by chloroquine: Implications for the treatment of glioblastoma multiforme. Neurosurg. Focus 2006, 21, E10. [Google Scholar] [CrossRef] [Green Version]
- Cui, Q.; Wen, S.; Huang, P. Targeting cancer cell mitochondria as a therapeutic approach: Recent updates. Future Med. Chem. 2017, 9, 929–949. [Google Scholar] [CrossRef]
- Kubli, S.P.; Bassi, C.; Roux, C.; Wakeham, A.; Göbl, C.; Zhou, W.; Jafari, S.M.; Snow, B.; Jones, L.; Palomero, L.; et al. AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 3604–3613. [Google Scholar] [CrossRef] [Green Version]
- Kunath, S.; Schindeldecker, M.; De Giacomo, A.; Meyer, T.; Sohre, S.; Hajieva, P.; von Schacky, C.; Urban, J.; Moosmann, B. Prooxidative chain transfer activity by thiol groups in biological systems. Redox Biol. 2020, 36, 101628. [Google Scholar] [CrossRef]
- Gridnev, A.A.; Ittel, S.D. Catalytic chain transfer in free-radical polymerizations. Chem. Rev. 2001, 101, 3611–3660. [Google Scholar] [CrossRef]
- Dietrich, B.K.; Pryor, W.A.; Wu, S.J. Chain transfer constants of mercaptans in the emulsion polymerization of styrene. J. Appl. Polym. Sci. 1988, 36, 1129–1141. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process—A Third Update. Aust. J. Chem. 2012, 65, 985–1076. [Google Scholar] [CrossRef]
- Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63–235. [Google Scholar] [CrossRef]
- Odian, G. Radical chain polymerization. In Principles of Polymerization; Odian, G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Moosmann, B. Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging. Exp. Gerontol. 2011, 46, 164–169. [Google Scholar] [CrossRef]
- Moosmann, B.; Schindeldecker, M.; Hajieva, P. Cysteine, glutathione and a new genetic code: Biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation. Biol. Chem. 2020, 401, 213–231. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmeister, J.; Tews, M.; Kromer, A.; Moosmann, B. Prooxidative toxicity and selenoprotein suppression by cerivastatin in muscle cells. Toxicol. Lett. 2012, 215, 219–227. [Google Scholar] [CrossRef]
- Hughes, V.S.; Wiggins, J.M.; Siemann, D.W. Tumor oxygenation and cancer therapy-then and now. Br. J. Radiol. 2019, 92, 20170955. [Google Scholar] [CrossRef]
- Brizel, D.M.; Scully, S.P.; Harrelson, J.M.; Layfield, L.J.; Bean, J.M.; Prosnitz, L.R.; Dewhirst, M.W. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996, 56, 941–943. [Google Scholar]
- Monteiro, A.R.; Hill, R.; Pilkington, G.J.; Madureira, P.A. The role of hypoxia in glioblastoma invasion. Cells 2017, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Lohitesh, K.; Chowdhury, R.; Mukherjee, S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: An insight. Cancer Cell Int. 2018, 18, 44. [Google Scholar] [CrossRef]
- Pacifici, G.M.; Santerini, S.; Giuliani, L.; Rane, A. Thiol methyltransferase in humans: Development and tissue distribution. Dev. Pharmacol. Ther. 1991, 17, 8–15. [Google Scholar] [CrossRef]
- Lipton, S.A. Pathologically activated therapeutics for neuroprotection. Nat. Rev. Neurosci. 2007, 8, 803–808. [Google Scholar] [CrossRef]
- Negre-Salvayre, A.; Auge, N.; Ayala, V.; Basaga, H.; Boada, J.; Brenke, R.; Chapple, S.; Cohen, G.; Feher, J.; Grune, T.; et al. Pathological aspects of lipid peroxidation. Free Radic. Res. 2010, 44, 1125–1171. [Google Scholar] [CrossRef] [PubMed]
- Tudek, B.; Zdżalik-Bielecka, D.; Tudek, A.; Kosicki, K.; Fabisiewicz, A.; Speina, E. Lipid peroxidation in face of DNA damage, DNA repair and other cellular processes. Free Radic. Biol. Med. 2017, 107, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Kunath, S.; Moosmann, B. What is the rate-limiting step towards aging? Chemical reaction kinetics might reconcile contradictory observations in experimental aging research. Geroscience 2020, 42, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Moosmann, B. Flux control in the aging cascade. Aging 2021, 13, 6233–6235. [Google Scholar] [CrossRef] [PubMed]
- Moosmann, B.; Behl, C. Mitochondrially encoded cysteine predicts animal lifespan. Aging Cell 2008, 7, 32–46. [Google Scholar] [CrossRef]
- Pradas, I.; Huynh, K.; Cabré, R.; Ayala, V.; Meikle, P.J.; Jové, M.; Pamplona, R. Lipidomics reveals a tissue-specific fingerprint. Front. Physiol. 2018, 9, 1165. [Google Scholar] [CrossRef] [Green Version]
- Jové, M.; Mota-Martorell, N.; Pradas, I.; Galo-Licona, J.D.; Martín-Gari, M.; Obis, È.; Sol, J.; Pamplona, R. The lipidome fingerprint of longevity. Molecules 2020, 25, 4343. [Google Scholar] [CrossRef]
- Bartoli, G.M.; Bartoli, S.; Galeotti, T.; Bertoli, E. Superoxide dismutase content and microsomal lipid composition of tumours with different growth rates. Biochim. Biophys. Acta 1980, 620, 205–211. [Google Scholar] [CrossRef]
- Peck, B.; Schug, Z.T.; Zhang, Q.; Dankworth, B.; Jones, D.T.; Smethurst, E.; Patel, R.; Mason, S.; Jiang, M.; Saunders, R.; et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Szlasa, W.; Zendran, I.; Zalesińska, A.; Tarek, M.; Kulbacka, J. Lipid composition of the cancer cell membrane. J. Bioenerg. Biomembr. 2020, 52, 321–342. [Google Scholar] [CrossRef]
- n-Dodecyl Mercaptan. Safety Data Sheet, Version 4.14; SDS Number 100000068622; Chevron Phillips Chemical: The Woodlands, TX, USA, 2019. [Google Scholar]
- Fluorouracil Injection. Safety Data Sheet, Version 1.1; Pfizer: New York City, NY, USA, 2012. [Google Scholar]
- Actinomycin, D. Safety Data Sheet, Version 7.0; Merck: Darmstadt, Germany, 2021. [Google Scholar]
- Bekbulat, F.; Schmitt, D.; Feldmann, A.; Huesmann, H.; Eimer, S.; Juretschke, T.; Beli, P.; Behl, C.; Kern, A. RAB18 loss interferes with lipid droplet catabolism and provokes autophagy network adaptations. J. Mol. Biol. 2020, 432, 1216–1234. [Google Scholar] [CrossRef]
- Hajieva, P.; Bayatti, N.; Granold, M.; Behl, C.; Moosmann, B. Membrane protein oxidation determines neuronal degeneration. J. Neurochem. 2015, 133, 352–367. [Google Scholar] [CrossRef]
Compound | Abbreviation | Purity | Lipophilicity (logP) |
---|---|---|---|
Octane-1-thiol | 8SH | 98.5% | 3.47 |
Decane-1-thiol | 10SH | 99% | 4.30 |
Dodecane-1-thiol | 12SH | 98% | 5.14 |
Tetradecane-1-thiol | 14SH | 98% | 5.97 |
Hexadecane-1-thiol | 16SH | 97% | 6.80 |
Octadecane-1-thiol | 18SH | 98% | 7.64 |
1-Methylsulfanyldodecane | 12SMe | 97% | 5.39 |
Compound | SY5Y | SY5Y, 1% O2 | Hela | HEK293 | MCF7 | C2C12 | C2C12, Differ. | HepG2 |
---|---|---|---|---|---|---|---|---|
8SH | >100 | >100 | - | - | >100 | - | - | - |
10SH | 5 ± 1 | 4 ± 2 | 5 ± 3 | 20 ± 8 | 9 ± 1 | 5 ± 1 | 60 ± 40 | >100 |
12SH | 4 ± 1 | 4 ± 1 | 1 ± 0.2 | 4 ± 1 | 9 ± 1 | 0.7 ± 0.2 | >100 | >100 |
14SH | 2 ± 0.5 | 2 ± 0.5 | 2 ± 0.5 | 9 ± 5 | 6 ± 2 | 3 ± 1 | 10 ± 2 | 90 ± 40 |
16SH | 2 ± 0.5 | 4 ± 1 | 2 ± 1 | - | - | - | - | - |
18SH | 0.8 ± 0.5 | 6 ± 4 | 1 ± 0.2 | 4 ± 3 | 2 ± 1 | 30 ± 8 | >100 | >100 |
12SMe | >100 | >100 | >100 | >100 | 40 ± 10 | >100 | >100 | >100 |
Dox | 0.05 ± 0.01 | - | <0.01 | - | - | - | - | - |
Act | 2 ± 1 | - | 0.3 ± 0.1 | - | - | - | - | - |
FU | 5 ± 1 | - | 0.8 ± 0.2 | - | - | - | - | - |
HU | 80 ± 20 | - | 70 ± 20 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heymans, V.; Kunath, S.; Hajieva, P.; Moosmann, B. Cell Culture Characterization of Prooxidative Chain-Transfer Agents as Novel Cytostatic Drugs. Molecules 2021, 26, 6743. https://doi.org/10.3390/molecules26216743
Heymans V, Kunath S, Hajieva P, Moosmann B. Cell Culture Characterization of Prooxidative Chain-Transfer Agents as Novel Cytostatic Drugs. Molecules. 2021; 26(21):6743. https://doi.org/10.3390/molecules26216743
Chicago/Turabian StyleHeymans, Victoria, Sascha Kunath, Parvana Hajieva, and Bernd Moosmann. 2021. "Cell Culture Characterization of Prooxidative Chain-Transfer Agents as Novel Cytostatic Drugs" Molecules 26, no. 21: 6743. https://doi.org/10.3390/molecules26216743
APA StyleHeymans, V., Kunath, S., Hajieva, P., & Moosmann, B. (2021). Cell Culture Characterization of Prooxidative Chain-Transfer Agents as Novel Cytostatic Drugs. Molecules, 26(21), 6743. https://doi.org/10.3390/molecules26216743