Thermomechanical Buckling Analysis of the E&P-FGM Beams Integrated by Nanocomposite Supports Immersed in a Hygrothermal Environment
Abstract
:1. Introduction
2. Analytical Model
3. Governing Equations
4. Analytical Solution Procedure
5. Numerical Results and Discussions
6. Conclusions
- (a)
- The use of a P-FGC model obtains a higher stiffness and buckling load with respect to an E-FGC model.
- (b)
- The presence of clusters or CNTs’ concentrated regions has a beneficial effect on the mechanical behavior of such models.
- (c)
- TSDT and HSDT provide the highest and lowest values of dimensionless critical buckling load, respectively, where SSDT and ESDT always produce intermediate results.
- (d)
- The presence of a hygrothermal environment delivers lower levels of stiffness and critical buckling load on the system, whose results appear reasonable and consistent from a physical standpoint.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, M.; Bever, M.B. Gradients in polymeric materials. J. Mater. Sci. 1972, 7, 741–746. [Google Scholar] [CrossRef]
- Niino, M.; Hirai, T.; Watanabe, R. Functionally gradient materials. In pursuit of super heat resisting materials for spacecraft. J. Jpn. Soc. Compos. Mater. 1987, 13, 257–264. [Google Scholar] [CrossRef]
- Fu, T.; Wu, X.; Xiao, Z.; Chen, Z. Thermoacoustic response of porous FGM cylindrical shell surround by elastic foundation subjected to nonlinear thermal loading. Thin-Walled Struct. 2020, 156, 106996. [Google Scholar] [CrossRef]
- Duc, N.D.; Cong, P.H. Nonlinear vibration of thick FGM plates on elastic foundation subjected to thermal and mechanical loads using the first-order shear deformation plate theory. Cogent Eng. 2015, 2. [Google Scholar] [CrossRef]
- Shen, H.-S. A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators. Compos. Struct. 2009, 91, 375–384. [Google Scholar] [CrossRef]
- Zenkour, A. Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations. Compos. Struct. 2010, 93, 234–238. [Google Scholar] [CrossRef]
- Phung-Van, P.; Thai, C.H.; Ferreira, A.; Rabczuk, T. Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads. Thin-Walled Struct. 2020, 148, 106497. [Google Scholar] [CrossRef]
- Kiani, Y.; Eslami, M.R. Thermal buckling and post-buckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation. Arch. Appl. Mech. 2012, 82, 891–905. [Google Scholar] [CrossRef]
- Jakkamputi, L.P.; Rajamohan, V. Dynamic characterization of CNT-reinforced hybrid polymer composite beam under elevated temperature—An experimental study. Polym. Compos. 2017, 40, 464–470. [Google Scholar] [CrossRef]
- Kundalwal, S.I.; Rathi, A. Improved mechanical and viscoelastic properties of CNT-composites fabricated using an innovative ultrasonic dual mixing technique. J. Mech. Behav. Mater. 2020, 29, 77–85. [Google Scholar] [CrossRef]
- Pan, S.; Dai, Q.; Safaei, B.; Qin, Z.; Chu, F. Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams. Thin-Walled Struct. 2021, 166, 108127. [Google Scholar] [CrossRef]
- Fattahi, A.M.; Safaei, B.; Qin, Z.; Chu, F. Experimental studies on elastic properties of high density polyethylene-multi walled car-bon nanotube nanocomposites. Steel Compos. Struct. 2021, 38, 177–178. [Google Scholar] [CrossRef]
- Arshid, E.; Amir, S.; Loghman, A. Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int. J. Mech. Sci. 2020, 180, 105656. [Google Scholar] [CrossRef]
- Foroutan, K.; Carrera, E.; Ahmadi, H. Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations. Eur. J. Mech.-A/Solids 2021, 85, 104107. [Google Scholar] [CrossRef]
- Arshid, H.; Khorasani, M.; Soleimani-Javid, Z.; Dimitri, R.; Tornabene, F. Quasi-3D Hyperbolic Shear Deformation Theory for the Free Vibration Study of Honeycomb Microplates with Graphene Nanoplatelets-Reinforced Epoxy Skins. Molecules 2020, 25, 5085. [Google Scholar] [CrossRef]
- Safaei, B. The effect of embedding a porous core on the free vibration behavior of laminated composite plates. Steel Compos. Struct. 2020, 35, 659–670. [Google Scholar]
- Moradi-Dastjerdi, R.; Behdinan, K.; Safaei, B.; Qin, Z. Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers. Eng. Struct. 2020, 222, 111141. [Google Scholar] [CrossRef]
- Kamarian, S.; Shakeri, M.; Yas, M.; Bodaghi, M.; Pourasghar, A. Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs. J. Sandw. Struct. Mater. 2015, 17, 632–665. [Google Scholar] [CrossRef]
- Dabbagh, A.; Rastgoo, A.; Ebrahimi, F. Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory. Eng. Comput. 2020, 37, 2225–2244. [Google Scholar] [CrossRef]
- Khorasani, M.; Soleimani-Javid, Z.; Arshid, E.; Lampani, L.; Civalek, Ö. Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced Epoxy skins with stretching effect. Compos. Struct. 2021, 258, 113430. [Google Scholar] [CrossRef]
- Batou, B.; Nebab, M.; Bennai, R.; Atmane, H.A.; Tounsi, A.; Bouremana, M. Wave dispersion properties in imperfect sigmoid plates using various HSDTs. Steel Compos. Struct. 2019, 33, 699–716. [Google Scholar] [CrossRef]
- Amir, S.; Khorasani, M.; BabaAkbar-Zarei, H. Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory. J. Sandw. Struct. Mater. 2018, 22, 2186–2209. [Google Scholar] [CrossRef]
- Arshid, E.; Amir, S.; Loghman, A. Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers. J. Sandw. Struct. Mater. 2020, 1099636220955027. [Google Scholar] [CrossRef]
- Khorasani, M.; Eyvazian, A.; Karbon, M.; Tounsi, A.; Lampani, L.; Sebaey, T.A. Magneto-electro-elastic vibration analysis of modi-fied couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects. Smart Struct. Syst. 2020, 26, 331–343. [Google Scholar] [CrossRef]
- Tang, Y.; Ding, Q. Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads. Compos. Struct. 2019, 225, 111076. [Google Scholar] [CrossRef]
- Khorasani, M.; Elahi, H.; Eugeni, M.; Lampani, L.; Civalek, O. Vibration of FG Porous Three-Layered Beams Equipped by Agglomerated Nanocomposite Patches Resting on Vlasov’s Foundation. Transp. Porous Media 2021, 1–30. [Google Scholar] [CrossRef]
- Moradi-Dastjerdi, R.; Behdinan, K.; Safaei, B.; Qin, Z. Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces. Int. J. Mech. Sci. 2020, 188, 105966. [Google Scholar] [CrossRef]
- Amir, S.; Soleimani-Javid, Z.; Arshid, E. Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. ZAMM 2019, 99, e201800334. [Google Scholar] [CrossRef]
- Fantuzzi, N.; Tornabene, F.; Bacciocchi, M.; Dimitri, R. Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates. Compos. Part B Eng. 2017, 115, 384–408. [Google Scholar] [CrossRef]
- Dabbagh, A.; Rastgoo, A.; Ebrahimi, F. Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory. Mech. Based Des. Struct. Mach. 2021, 49, 403–429. [Google Scholar] [CrossRef]
- Kamarian, S.; Salim, M.; Dimitri, R.; Tornabene, F. Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes. Int. J. Mech. Sci. 2016, 108-109, 157–165. [Google Scholar] [CrossRef]
- Zhang, L.; Lai, S.; Wang, C.; Yang, J. DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load. Compos. Struct. 2021, 255, 112865. [Google Scholar] [CrossRef]
- Eyvazian, A.; Hamouda, A.M.; Tarlochan, F.; Mohsenizadeh, S.; Dastjerdi, A.A. Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core. Steel Compos. Struct. 2019, 33, 891–906. [Google Scholar]
- Arshid, E.; Khorasani, M.; Soleimani-Javid, Z.; Amir, S.; Tounsi, A. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput. 2021, 1–22. [Google Scholar] [CrossRef]
- Arshid, E.; Kiani, A.; Amir, S. Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 2140–2159. [Google Scholar] [CrossRef]
- Arshid, E.; Kiani, A.; Amir, S.; Dehaghani, M.Z. Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 5659–5675. [Google Scholar] [CrossRef]
- Li, S.-R.; Batra, R.C. Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams. Compos. Struct. 2013, 95, 5–9. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, P.; Chauhan, P.S.; Bhadoria, S. Study on Harmonic Analysis of Functionally Graded Plates Using Fem. Int. J. Appl. Mech. Eng. 2018, 23, 941–961. [Google Scholar] [CrossRef] [Green Version]
- Eyvazian, A.; Moeinifard, M.; Musharavati, F.; Taghizadeh, S.A.; Mahdi, E.; Hamouda, A.M.; Tran, T.N. Mechanical behavior of resin pin-reinforced composite sandwich panels under quasi-static indentation and three-point bending loading conditions. J. Sandw. Struct. Mater. 2021, 23, 2127–2145. [Google Scholar] [CrossRef]
- Feng, P.; Chang, H.; Liu, X.; Ye, S.; Shu, X.; Ran, Q. The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Mater. Des. 2020, 186, 108320. [Google Scholar] [CrossRef]
- Soleimani-Javid, Z.; Arshid, E.; Khorasani, M.; Amir, S.; Tounsi, A. Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions. Adv. Nano Res. 2021, 10, 449–460. [Google Scholar]
- Li, X.; Yang, H.; Zhang, J.; Qian, G.; Yu, H.; Cai, J. Time-Domain Analysis of Tamper Displacement during Dynamic Compaction Based on Automatic Control. Coatings 2021, 11, 1092. [Google Scholar] [CrossRef]
- Kargar, S.; Baniamerianb, Z.; Mehdipourb, R. Desalination Using Nanoporous Graphene; International Conference of Nanostructures, Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology: Tehran, Iran, 2020; pp. 678–680. [Google Scholar]
- Hu, L.-B.; Huang, X.-Y.; Zhang, S.; Chen, X.; Dong, X.-H.; Jin, H.; Jiang, Z.-Y.; Gong, X.-R.; Xie, Y.-X.; Li, C.; et al. MoO3 structures transition from nanoflowers to nanorods and their sensing performances. J. Mater. Sci. Mater. Electron. 2021, 32, 23728–23736. [Google Scholar] [CrossRef]
- Amir, S.; BabaAkbar-Zarei, H.; Khorasani, M. Flexoelectric vibration analysis of nanocomposite sandwich plates. Mech. Based Des. Struct. Mach. 2019, 48, 146–163. [Google Scholar] [CrossRef]
- Li, Y.; Macdonald, D.D.; Yang, J.; Qiu, J.; Wang, S. Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics. Corros. Sci. 2020, 163, 108280. [Google Scholar] [CrossRef]
- Khorasani, M.; Soleimani-Javid, Z.; Arshid, E.; Amir, S.; Civalek, Ö. Vibration analysis of graphene nanoplatelets’ reinforced composite plates integrated by piezo-electromagnetic patches on the piezo-electromagnetic media. Waves Random Complex Media 2021, 1–31. [Google Scholar] [CrossRef]
- Eyvazian, A.; Zhang, C.; Musharavati, F.; Khan, A.; Sebaey, T.A. Forced resonance vibration analysis in advanced polymeric nanocomposite plate surrounded by an elastic medium. Compos. Struct. 2021, 275, 114389. [Google Scholar] [CrossRef]
- Mou, B.; Bai, Y. Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone. Eng. Struct. 2018, 168, 487–504. [Google Scholar] [CrossRef]
Case | Result |
---|---|
No-agglomerated composite. | |
The whole composite layer serves as a big agglomerated region. | |
There is no CNT inside the clusters. | |
All CNTs are agglomerated inside the clusters. | |
Fully CNTs agglomerated composite. |
S | a/h = 5 | a/h = 10 | ||||||
---|---|---|---|---|---|---|---|---|
EBB | TB | EBB | TB | |||||
Ref. [37] | Present | Ref. [37] | Present | Ref. [37] | Present | Ref [37] | Present | |
0 | 0.535 | 0.566 | 0.488 | 0.521 | 0.535 | 0.566 | 0.523 | 0.554 |
0.5 | 0.347 | 0.365 | 0.319 | 0.340 | 0.347 | 0.365 | 0.340 | 0.359 |
1 | 0.267 | 0.282 | 0.246 | 0.263 | 0.267 | 0.282 | 0.261 | 0.277 |
2 | 0.208 | 0.220 | 0.192 | 0.205 | 0.208 | 0.220 | 0.204 | 0.216 |
5 | 0.176 | 0.186 | 0.160 | 0.171 | 0.176 | 0.186 | 0.171 | 0.182 |
7 | 0.169 | 0.178 | 0.152 | 0.163 | 0.169 | 0.178 | 0.164 | 0.174 |
10 | 0.160 | 0.169 | 0.144 | 0.154 | 0.160 | 0.169 | 0.156 | 0.165 |
Material | ρ (Kg/m3) | ν | E (GPa) | β (10−3/K) | α (10−6/K) | θ (10−6/K) |
---|---|---|---|---|---|---|
Al2O3 | 3800 | 0.3 | 380 | 1 | 8.3 | 8.3 |
ZrO2 | 3000 | 0.3 | 151 | 0 | 10 | 10 |
Si3N4 | 2370 | 0.24 | 322.27 | 0 | 5.87 | 5.87 |
Al | 2707 | 0.3 | 70 | 440 | 24 | 24 |
Material | ρ (Kg/m3) | E (GPa) | β (10−4/K) | α (10−6/K) | K (GPa) | G (GPa) |
---|---|---|---|---|---|---|
PMMA | 1150 | 2.5 | 20 | 45 | 2.6 | 0.93 |
CNT | 1400 | 5646.6 | 3 | 3.45 | - | - |
FGC Material | CNTRC Material | hc (mm) | ht = hb (mm) | a (mm) |
---|---|---|---|---|
Al & ZrO2 | CNTs & PMMA | 5 | 2 | 30 |
N* | μ | η | V* | s |
= | 0.3 | 0.4 | 0.2 | 2 |
Hb (wt%H2O) | Tb (K) | L1 (GN/m3) | L2 (KN/m) | |
0.1 | 300 | 5 | 50 |
Theory | E-FGC | P-FGC | ||||
---|---|---|---|---|---|---|
μ = 0.1 | μ = 0.2 | μ = 0.3 | μ = 0.1 | μ = 0.2 | μ = 0.3 | |
HSDT | 0.3981 | 0.6916 | 0.8487 | 2.3511 | 2.6438 | 2.8015 |
SSDT | 0.4017 | 0.6957 | 0.8528 | 2.3527 | 2.6458 | 2.8036 |
ESDT | 0.4059 | 0.7005 | 0.8579 | 2.3547 | 2.4684 | 2.8064 |
TSDT | 0.4163 | 0.7237 | 0.8897 | 2.3685 | 2.6702 | 2.8336 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khorasani, M.; Lampani, L.; Dimitri, R.; Tornabene, F. Thermomechanical Buckling Analysis of the E&P-FGM Beams Integrated by Nanocomposite Supports Immersed in a Hygrothermal Environment. Molecules 2021, 26, 6594. https://doi.org/10.3390/molecules26216594
Khorasani M, Lampani L, Dimitri R, Tornabene F. Thermomechanical Buckling Analysis of the E&P-FGM Beams Integrated by Nanocomposite Supports Immersed in a Hygrothermal Environment. Molecules. 2021; 26(21):6594. https://doi.org/10.3390/molecules26216594
Chicago/Turabian StyleKhorasani, Mohammad, Luca Lampani, Rossana Dimitri, and Francesco Tornabene. 2021. "Thermomechanical Buckling Analysis of the E&P-FGM Beams Integrated by Nanocomposite Supports Immersed in a Hygrothermal Environment" Molecules 26, no. 21: 6594. https://doi.org/10.3390/molecules26216594
APA StyleKhorasani, M., Lampani, L., Dimitri, R., & Tornabene, F. (2021). Thermomechanical Buckling Analysis of the E&P-FGM Beams Integrated by Nanocomposite Supports Immersed in a Hygrothermal Environment. Molecules, 26(21), 6594. https://doi.org/10.3390/molecules26216594