Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: A Systematic Review
Abstract
:1. Introduction
2. Trichothecenes in Food and Feed
2.1. Type A Trichothecenes
2.2. Type B Trichothecenes
3. Trichothecenes: Human and Animal Health
4. Detection of Trichothecenes in Food and Feed
5. Chromatographic Methods
6. Ion-Mobility Spectrometry
7. Immunochemical Method
8. Legislation on Trichothecenes in Food and Feed
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khaneghah, A.M.; Farhadi, A.; Nematollahi, A.; Vasseghian, Y.; Fakhri, Y. A systematic review and meta-analysis to investigate the concentration and prevalence of trichothecenes in the cereal-based food. Trends Food Sci. Technol. 2020, 102, 193–202. [Google Scholar] [CrossRef]
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef] [PubMed]
- Sudakin, D.L. Toxigenic fungi in a water – damaged building: An intervention study. Am J Ind Med. 1998, 34(2), 183–190. [Google Scholar] [CrossRef]
- Bhat, R.; Reddy, K.R. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade. Food Chem. 2017, 215, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Creppy, E.E. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol. Lett. 2002, 127, 19–28. [Google Scholar] [CrossRef]
- Restuccia, C.; Conti, G.O.; Zuccarello, P.; Parafati, L.; Cristaldi, A.; Ferrante, M. Efficacy of different citrus essential oils to inhibit the growth and B1 aflatoxin biosynthesis of Aspergillus flavus. Environ. Sci. Pollut. Res. 2019, 26, 31263–31272. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, J.; Graziani, G.; Gaspari, A.; Chianese, D.; Ferrer, E.; Manes, J.; Ritieni, A. Multi-Mycotoxin Analysis in Durum Wheat Pasta by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins 2017, 9, 59. [Google Scholar] [CrossRef][Green Version]
- Andrade, P.D.; Dantas, R.R.; da Silva de Moura-Alves, T.L.; Caldas, E.D. Determination of multi-mycotoxins in cereals and of total fumonisins in maize products using isotope labeled internal standard and liquid chromatography/tandem mass spectrometry with positive ionization. J. Chromatogr. A 2017, 1490, 138–147. [Google Scholar] [CrossRef]
- Restuccia, C.; Giusino, F.; Licciardello, F.; Randazzo, C.; Caggia, C.; Muratore, G. Biological control of peach fungal pathogens by commercial products and indigenous yeasts. J Food Prot. 2006, 69, 2465–2470. [Google Scholar] [CrossRef]
- Amirahmadi, M.; Shoeibi, S.; Rastegar, H.; Elmi, M.; Khangeghah, A.M. Simultaneous analysis of mycotoxins in corn flour using LC/MS-MS combined with a modified QuEChERS procedure. Toxin Rev. 2018, 37, 187–195. [Google Scholar] [CrossRef]
- Coppa, C.F.S.C.; Khaneghah, A.M.; Alvito, P.; Assunção, R.; Martins, C.; Eş, I.; Gonçalves, B.L.; Valganon de Neeff, D.; Sant’Ana, A.S.; Corassini, C.H.; et al. The occurrence of mycotoxins in breast milk, fruit products and cereal—based infant formula: A review. Trends Food Sci. Technol. 2019, 92, 81–93. [Google Scholar] [CrossRef]
- Ji, F.; Xu, J.; Liu, X.; Yin, X.; Shi, J. Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. Food Chem. 2014, 157, 393–397; [Google Scholar] [CrossRef] [PubMed]
- Zaki, M. Mycotoxins in animals: Occurrence, effects, prevention and management. J. Toxicol. Environ. Health Sci. 2012, 4, 13–28. [Google Scholar] [CrossRef]
- Haque, M.D.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 2011, 2481–2668. [Google Scholar] [CrossRef]
- Zhu, M.; Cen, Y.; Ye, W.; Li, S.; Zhang, W. Recent Advances on Macrocyclic Trichothecenes, Their Bioactivities and Biosynthetic Pathway. Toxins 2020, 12, 417. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA J. 2014, 12, 3916–4023. [Google Scholar]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014, 12, 3802. [Google Scholar] [CrossRef]
- Pinton, P.; Oswald, I.P. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: A review. Toxins 2014, 6, 1615–1643. [Google Scholar] [CrossRef]
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From simple to complex mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Xiang, B.; Shi, H.; Yu, P.; Song, Y.; Li, S. Recent advances on type A trichothecenes in food and feed: Analysis, prevalence, toxicity, and decontamination techniques. Food Control 2020, 118, 107–371. [Google Scholar] [CrossRef]
- Thrane, U.; Adler, A.; Clasen, P.E.; Galvano, F.; Langseth, W.; Lew, H.; Logrieco, A.; Nielsen, K.F.; Ritieni, A. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int. J. Food Microbiol. 2004, 95, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Piec, J.; Pallez, M.; Beyer, M.; Vogelgsang, S.; Hoffmann, L.; Pasquali, M. The Luxembourg database of trichothecene type B F. graminearum and F. culmorum producers. Bioinformation 2016, 12, 1–3. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shank, R.A.; Foroud, N.A.; Hazendonk, P.; Eudes, F.; Blackwell, B.A. Current and future experimental strategies for structural analysis of trichothecene mycotoxins-a prospectus. Toxins 2011, 3, 1518–1553. [Google Scholar] [CrossRef][Green Version]
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- Rocha, O.; Ansari, K.; Doohan, F.M. Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Addit. Contam. 2005, 22, 369–378. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Jestoi, M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef]
- Berthiller, F.; Schuhmacher, R.; Adam, G.; Krska, R. Formation, determination and significance of masked and other conjugated mycotoxins. Anal. Bioanal. Chem. 2009, 395, 1243–1252. [Google Scholar] [CrossRef]
- Berthiller, F.; Crews, C.; Dall’Asta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Tericiolo, C.; Maresca, M.; Pinton, P.; Oswald, I.P. Role of satiety hormones in anorexia induction by Trichothecene mycotoxins. Food Chem. Toxicol. 2018, 121, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef] [PubMed][Green Version]
- He, J.; Zhou, T.; Young, J.C.; Boland, G.J.; Scott, P.M. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: A review. Trends Food Sci. Technol. 2010, 21, 67–76. [Google Scholar] [CrossRef]
- Ji, F.; He, D.; Olaniran, A.O.; Mokoena, M.P.; Xu, J.; Shi, J. Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Prod. Process. Nutr. 2019, 1, 1–14. [Google Scholar] [CrossRef]
- Sudakin, D.L. Trichothecenes in the environment: Relevance to human health. Toxicol. Lett. 2020, 143, 97–107. [Google Scholar] [CrossRef]
- Haschek, W.M.; Beasley, V.R. Trichothecene Mycotoxins. Handb. Toxicol. Chem. Warf. Agents 2009, 353–369. [Google Scholar] [CrossRef]
- Kanora, A.; Maes, D. The role of mycotoxins in pig reproduction: A review. Vet. Med-Czech 2009, 54, 565576. [Google Scholar] [CrossRef][Green Version]
- Adhikari, M.; Negi, B.; Kaushik, N.; Adhikari, A.; Al-Khedhairy, A.A.; Nagendra Kumar Kaushik, N.K.; Ha Choi, E. T-2 mycotoxin: Toxicological effects and decontamination strategies. Oncotarget 2017, 8, 33933–33952. [Google Scholar] [CrossRef][Green Version]
- Adegoke, G.O.; Letuma, P. Strategies for the Prevention and Reduction of Mycotoxins in Developing Countries, Mycotoxin and Food Safety in Developing Countries. Makun HA InTech Croat. 2013, 123–136. [Google Scholar]
- Magan, N.V.; Aldred, D. Role of spoilage fungi in seed deterioration. In Fungal Biotechnology in Agricultural, Food and Environmental Applications; Aurora, D.K., Ed.; Marcell Dekker: New York, NY, USA, 2004; pp. 311–323. [Google Scholar]
- Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulation relating to mycotoxins in food. Perspectives in a global and European context. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Toregeani-Mendes, K.A.; Arroteia, C.C.; Kemmelmeier, C.; Dalpasquale, V.A.; Bando, É.; Alves, A.F.; Marques, O.J.; Nishiyama, P.; Mossini, S.A.; Machinski, M., Jr. Application of hazard analysis critical control points system for the control of aflatoxins in the Brazilian groundnut-based food industry. Int. J. Food Sci. Technol. 2011, 46, 2611–2618. [Google Scholar] [CrossRef]
- Fink-Gremmels, J.; Van der Merwe, D. Mycotoxins in the Food Chain: Contamination of Foods of Animal Origin. In Chemical Hazards in Foods of Animal Origin. Food Safety Assurance and Veterinary Public Health; Smulders, F.J.M., Rietjens, I.M.C.M., Rose, M.D., Eds.; ©Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 241–261. [Google Scholar]
- Ojuri, O.T.; Ezekiel, C.N.; Eskola, M.K.; Šarkanj, B.; Babalola, A.D.; Sulyok, M.; Hajšlová, J.; Elliott, C.T.; Krska, R. Mycotoxin co-exposures in infants and young children consuming household- and industrially-processed complementary foods in Nigeria and risk management advice. Food Control 2019, 98, 312–322. [Google Scholar] [CrossRef]
- Oliveira, M.; Vasconcelos, V. Occurrence of mycotoxins in fish feed and its effects: A review. Toxins 2020, 12, 160. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Taheur, F.B.; Fedhila, K.; Chaieb, K.; Kouidhi, B.; Bakhrouf, A.; Abrunhosa, L. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. Int. J. Food Microbiol. 2017, 251, 1–7. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Verheecke, C.; Choque, E.; Mathieu, F. Application of Fungal Metabolites Against Mycotoxins Production. In Fungal Metabolites. Reference Series in Phytochemistry; Merillon, J.M., Ramawat, K., Eds.; Springer: Cham, Germany, 2016. [Google Scholar]
- Asam, S.; Habler, K.; Rychlik, M. Fusarium Mycotoxins in food—chapter 14 in: Chemical Contaminants and Residues in Food. Woodhead Publishing Series in Food Science. Technol. Nutr. 2017, 295–336. [Google Scholar]
- Pestka, J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- Pitt, J.I.; Wild, C.P.; Baan, R.A.; Gelderblom, W.C.A.; Miller, J.D.; Riley, R.T.; Wu, F. Improving public health through mycotoxin control. In IARC Scientific Publication 158; Geneva World Organization Press: Lyon, France, 2012. [Google Scholar]
- Marroquín-Cardona, A.G.; Johnson, N.M.; Phillips, T.D.; Hayes, A.W. Mycotoxins in a Changing Global Environment—A Review. Food Chem. Toxicol. 2014, 69, 220–230. [Google Scholar] [CrossRef]
- Awad, A.; Hess, M.; Twarużek, M.; Grajewski, J.; Kosicki, R.; Böhm, J.; Zentek, J. The impact of the Fusarium mycotoxin deoxynivalenol on the health and performance of broiler chickens. Int. J. Mol. Sci. 2011, 12, 7996–8012. [Google Scholar] [CrossRef]
- Wan, L.Y.; Turner, P.C.; El-Nezami, H. Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells. Food Chem Toxicol. 2013, 57, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Cinar, A.; Onbasi, E. Mycotoxins: The hidden danger in food. Mycotoxins Food Saf. 2019. [Google Scholar] [CrossRef][Green Version]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef][Green Version]
- Krska, R.; Malachova, A.; Berthiller, F.; Egmond, H.P.V. Determination of T-2 and HT-2 toxins in food and feed: An update. World Mycotoxin. J. 2014, 18, 131–142. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Human and animal dietary exposure to T-2 and HT-2 toxin. EFSA J. 2017, 15, 1–57. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. Eur. Food Saf. Auth. 2017, 15, e04718. [Google Scholar] [CrossRef]
- Brera, C.; De Santis, B.; Debegnach, F.; Miano, B.; Moretti, G.; Lanzone, A. Experimental study of deoxynivalenol biomarkers in urine. EFSA Supp. Publ. 2015, 12, 143A. [Google Scholar] [CrossRef][Green Version]
- EFSA. European Food Safety Authority. Scientific opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA J. 2013, 11, 326. [Google Scholar]
- EFSA. European Food Safety Authority. Evaluation of the increase of risk for public health related to a possible temporary derogation from the maximum level of deoxynivalenol, zearalenone and fumonisins for maize and maize products. EFSA J. 2014, 12, 165–261. [Google Scholar]
- Freire, L.; Sant’Ana, A.S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem. Toxicol. 2018, 111, 189–205. [Google Scholar] [CrossRef]
- Lee, S.Y.; Woo, S.Y.; Tian, F.; Song, J.; Michlmayr, H.; Kim, J.B.; Chun, H.S. Occurrence of Deoxynivalenol, Nivalenol, and Their Glucosides in Korean Market Foods and Estimation of Their Population Exposure through Food Consumption. Toxins 2020, 12, 89. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Darwish, A.M.G. Fungal mycotoxins and natural antioxidants: Two sides of the same coin and significance in food safety. Microb. Biosyst. J. 2019, 4, 1–16. [Google Scholar]
- Mwihia, E.W.; Lyche, J.L.; Mbuthia, P.G.; Ivanova, L.; Uhlig, S.; Gathumbi, J.K.; Maina, J.G.; Eshitera, E.E.; Eriksen, G.S. Co-Occurrence and Levels of Mycotoxins in Fish Feeds in Kenya. Toxins 2020, 12, 627. [Google Scholar] [CrossRef]
- Mahdjoubi, C.K.; Arroyo-Manzanares, N.; Hamini-Hadar, N.; García-Campaña, A.M.; Mebrouk, K.; Gámiz-Gracia, L. Multi-Mycotoxin Occurrence and Exposure Assessment Approach in Foodstuffs from Algeria. Toxins 2020, 12, 194. [Google Scholar] [CrossRef][Green Version]
- Bryła, M.; Ksieniewicz-Woźniak, E.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Natural occurrence of nivalenol, deoxynivalenol, and deoxynivalenol-3-glucoside in polish winter wheat. Toxins 2018, 10, 81. [Google Scholar] [CrossRef][Green Version]
- Zhao, Y.; Guan, X.; Zong, Y.; Hua, X.; Xing, F.; Wang, Y.; Wang, F.; Liu, Y. Deoxynivalenol in wheat from the Northwestern region in China. Food Addit. Contam. Part B Surveill. 2018, 11, 281–285. [Google Scholar] [CrossRef]
- Silva, M.V.; Pante, G.C.; Romoli, J.C.Z.; de Souza, A.P.M.; da Rocha, G.H.O.; Ferreira, F.D.; Feijó, A.L.R.; Moscardi, S.M.P.; de Paula, K.R.; Bando, E.; et al. Occurrence and risk assessment of population exposed to deoxynivalenol in foods derived from wheat flour in Brazil. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 546–554. [Google Scholar] [CrossRef]
- de Lima Rocha, D.F.; dos Santos Oliveira, M.; Furlong, E.B.; Junges, A.; Paroul, N.; Valduga, E.; Toniazzo, G.B.; Zeni, J.; Cansian, R.L. Evaluation of the TLC quantification method and occurrence of deoxynivalenol in wheat flour of southern Brazil. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 2220–2229. [Google Scholar] [CrossRef]
- Savi, G.D.; Piacentini, K.C.; Tibola, C.S.; Scussel, V.M. Mycoflora and deoxynivalenol in whole wheat grains (Triticum aestivum L.) from Southern. Food Addit. Contam. Part B 2014, 7, 232–237. [Google Scholar] [CrossRef] [PubMed][Green Version]
- De Almeida, A.P.; Lamardo, L.C.A.; Shundo, L.; da Silva, S.A.; Navas, S.A.; Alaburda, J.; Ruvieri, V.; Sabino, M. Occurrence of deoxynivalenol in wheat flour, instant noodle and biscuits commercialised in Brazil. Food Addit. Contam. Part B Surveill. 2016, 9, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Calori-Domingues, M.A.; Bernardi, C.M.G.; Nardin, M.S.; de Souza, G.V.; dos Santos, F.G.R.; de Abreu Stein, M.; da Gloria, E.M.; dos Santos Dias, C.T.; de Camargo, A.C. Co-occurrence and distribution of deoxynivalenol, nivalenol and zearalenone in wheat from Brazil. Food Addit. Contam. Part B Surveill. 2016, 9, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Urusov, A.E.; Gubaidullina, M.K.; Petrakova, A.V.; Zherdev, A.V.; Dzantiev, B.B. A new kind of highly sensitive competitive lateral flow immunoassay displaying direct analyte-signal dependence. Application to the determination of the mycotoxin deoxynivalenol. Microchim. Acta 2018, 185, 29. [Google Scholar] [CrossRef] [PubMed]
- Majeed, S.; De Boevre, M.; De Saeger, S.; Rauf, W.; Tawab, A.; Habib, F.-E.; Rahman, M.; Iqbal, M. Multiple mycotoxins in rice: Occurrence and health risk assessment in children and adults of Punjab, Pakistan. Toxins 2018, 10, 77. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bertuzzi, T.; Leggieri, M.C.; Battilani, P.; Pietri, A. Co-occurrence of type A and B trichothecenes and zearalenone in wheat grown in northern Italy over the years 2009–2011. Food Addit. Contam. Part B Surveill. 2014, 7, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, Y.; Wang, L.; Chang, F.; Yang, L. Survey of 11 mycotoxins in wheat flour in Hebei province, China. Food Addit. Contam. Part B Surveill. 2015, 8, 250–254. [Google Scholar] [CrossRef]
- Nathanail, A.V.; Syvähuoko, J.; Malachová, A.; Jestoi, M.; Varga, E.; Michlmayr, H.; Adam, G.; Sieviläinen, E.; Berthiller, F.; Peltonen, K. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatographytandem mass spectrometric method. Anal. Bioanal. Chem. 2015, 407, 4745–4755. [Google Scholar] [CrossRef][Green Version]
- Tima, H.; Brückner, A.; Mohácsi-Farkas, C.; Kiskó, G. Fusarium mycotoxins in cereals harvested from Hungarian fields. Food Addit. Contam. Part B Surveill. 2016, 9, 127–131. [Google Scholar] [CrossRef]
- Palacios, S.A.; Erazo, J.G.; Ciasca, B.; Lattanzio, V.M.T.; Reynoso, M.M.; Farnochi, M.C.; Torres, A.M. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chem. 2017, 230, 728–734. [Google Scholar] [CrossRef]
- Vogelgsang, S.; Musa, T.; Bänziger, I.; Kägi, A.; Bucheli, T.D.; Wettstein, F.E.; Pasquali, M.; Forrer, H.-R. Fusarium mycotoxins in Swiss wheat: A survey of growers’ samples between 2007 and 2014 shows strong year and minor geographic effects. Toxins 2017, 9, 9080246. [Google Scholar]
- Hietaniemi, V.; Rämö, S.; Yli-Mattila, T.; Jestoi, M.; Peltonen, S.; Kartio, M.; Sieviläinen, E.; Koivisto, T.; Parikka, P. Updated survey of Fusarium species and toxins in Finnish cereal grains. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 831–848. [Google Scholar] [CrossRef] [PubMed]
- Bryła, M.; Waśkiewicz, A.; Podolska, G.; Szymczyk, K.; Jędrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Edwards, S.G. Impact of agronomic and climatic factors on the mycotoxin content of harvested oats in the United Kingdom. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 2230–2241. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, K.C.; Rocha, L.O.; Savi, G.D.; Carnielli-Queiroz, L.; Almeida, F.G.; Minella, E.; Corrêa, B. Occurrence of deoxynivalenol and zearalenone in brewing barley grains from Brazil. Mycotoxin Res. 2018, 34, 173–178. [Google Scholar] [CrossRef]
- Gummadidala, P.M.; Omebeyinje, M.H.; Burch, J.A.; Chakraborty, P.; Biswas, P.K.; Banerjee, K.; Wang, Q.; Jesmin, R.; Mitra, C.; Moeller, P.D.R.; et al. Complementary feeding may pose a risk of simultaneous exposures to aflatoxin M1 and deoxynivalenol in Indian infants and toddlers: Lessons from a mini-survey of food samples obtained from Kolkata, India. Food Chem. Toxicol. 2019, 123, 9–15. [Google Scholar] [CrossRef]
- Torović, L. Fusarium toxins in corn food products: A survey of the Serbian retail market. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 1596–1609. [Google Scholar] [CrossRef]
- Elaridi, J.; Yamani, O.; Al Matari, A.; Dakroub, S.; Attieh, Z. Determination of Ochratoxin A (OTA), Ochratoxin B (OTB), T-2, and HT-2 Toxins in Wheat Grains, Wheat Flour, and Bread in Lebanon by LC MS/MS. Toxins 2019, 11, 471. [Google Scholar] [CrossRef][Green Version]
- Cano-Sancho, D.G.; Valle-Algarra, F.M.; Jiménez, M.; Burdaspal, P.; Legarda, T.M.; Ramos, A.J.; Sanchis, V.; Marín, S. Presence of trichothecenes and co-occurrence in cereal-based food from Catalonia (Spain). Food Control 2011, 22, 490–495. [Google Scholar] [CrossRef]
- Ueno, Y.; Nakajima, M.; Sakai, K.; Ishii, K.; Sato, N. Comparative toxicology of trichothec mycotoxins: Inhibition of protein synthesis in animal cells. J. Biochem. 1973, 74, 285–296. [Google Scholar]
- Escriva, L.; Font, G.; Manyes, L. In vivo toxicity studies of Fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, X.; Nepovimova, E.; Miron, A.; Liu, Q.; Wang, Y.; Su, D.; Yang, H.; Li Li, L.; Kuca, K. Trichothecenes: Immunomodulatory effects, mechanisms, and anticancer potential. Arch. Toxicol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cuff, C.F.; Pestka, J. Modulation of murine host response to enteric reovirus infection by the trichothecene deoxynivalenol. Toxicol. Sci. 2005, 87, 134–145. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wannemacher, R.W., Jr.; Wiener, S.L. Trichothecene mycotoxins. Med. Asp. Chem. Biol. Warf. 1997, 6, 655–676. [Google Scholar]
- Akbari, P.; Braber, S.; Varasteh, S.; Alizadeh, A.; Garssen, J.; Fink-Gremmels, J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch. Toxicol. 2016, 91, 1007–1029. [Google Scholar] [CrossRef][Green Version]
- Bol-Schoenmakers, M.; Braber, S.; Akbari, P.; De Graaff, P.; Van Roest, M.; Kruijssen, L.; Smit, J.; Van Esch, B.C.A.M.; Jeurink, P.J.; Garssen, J.; et al. The mycotoxin deoxynivalenol facilitates allergic sensitization to whey in mice. Mucosal. Immunol. 2016, 9, 1477–1486. [Google Scholar] [CrossRef]
- Ghareeb, K.; Awad, W.A.; Böhm, J.; Zebeli, Q. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: Poultry and swine. J. Appl. Toxicol. 2014, 35, 27–37. [Google Scholar] [CrossRef]
- Robert, H.; Payros, D.; Pinton, P.; Théodorou, V.; Mercier-Bonin, M.; Oswald, I.P. Impact of mycotoxins on the intestine: Are mucus and microbiota new targets? J. Toxicol. Environ. Health B 2017, 20, 249–275. [Google Scholar] [CrossRef]
- Taheur, F.B.; Kouidhi, B.; Al Qurashi, J.M.A.; Salah-Abbès, J.B.; Chaieb, K. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019, 160, 12–22. [Google Scholar] [CrossRef]
- Kalantari, H.; Zong, M.S.; Chang, I.M. Assay of T-2 toxin contamination in domestic and imported agricultural products in Korea. Proc. Jpn Assoc. Mycotoxicol. 1989, 30, 32–34. [Google Scholar] [CrossRef][Green Version]
- Kalantari, H.; Hematti, A.A. Antidote for T-2 toxin from medicinal plants in mice. Hakim Res. J. Nat. Res. Center Med. Sci. 2000, 4. [Google Scholar] [CrossRef][Green Version]
- Drakulic, J.; Ajigboye, O.; Swarup, R.; Bruce, T.; Ray, R.V. Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat. Appl. Environ. Microbiol. 2016, 22, 6548–6556. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Murugesan, G.R.; Ledoux, D.R.; Naehrer, K.; Berthiller, F.; Applegate, T.J.; Grenier, B.; Schatzmayr, G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Sci. 2015, 94, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Mengelers, M.; Yang, S.; De Saeger, S.; De Boevre, M. Mycotoxin biomarkers of exposure: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1127–1155. [Google Scholar] [CrossRef][Green Version]
- Liew, W.-P.-P.; Mohd-Redzwan, S. Mycotoxin: Its impact on gut health and microbiota. Front. Cell Infect. Microbiol. 2018, 8. [Google Scholar] [CrossRef][Green Version]
- Martin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Strader, A.D.; Woods, S.C. Gastrointestinal hormones and food intake. Gastroenter 2005, 128, 175–191. [Google Scholar] [CrossRef]
- Hussain, S.S.; Bloom, S. The regulation of food intake by the gut-brain axis: Implications for obesity. Int. J. Obes. (Lond) 2013, 37, 625–633. [Google Scholar] [CrossRef][Green Version]
- Savard, C.; Provost, C.; Alvarez, F.; Pinilla, V.; Music, N.; Jacques, M.; Gagnon, C.A.; Chorfi, Y. Effect of deoxynivalenol (DON) mycotoxin on in vivo and in vitro porcine circovirus type 2 infections. Vet. Microbiol. 2015, 176, 257–267. [Google Scholar] [CrossRef]
- Savard, C.; Gagnona, C.A.; Chorfi, Y. Deoxynivalenol (DON) naturally contaminated feed impairs the immune respo70nse induced by porcine reproductive and respiratory syndrome virus (PRRSV) live attenuated vaccine. Vaccine 2015, 33, 3881–3886. [Google Scholar] [CrossRef][Green Version]
- Luo, Y.; Liu, X.; Li, J. Updating techniques on controlling mycotoxins—A review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Zhou, H.; George, S.; Li, C.; Gurusamy, S.; Sun, X.; Gong, Z.; Qian, H. Combined toxicity of prevalent mycotoxins studied in fish cell line and zebrafish larvae revealed that type of interactions is dose-dependent. Aquat. Toxicol. 2017, 193, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Ünüsan, N. Systematic review of mycotoxins in food and feeds in Turkey. Food Control 2019, 97, 1–14. [Google Scholar] [CrossRef]
- De Santis, B.; Debegnach, F.; Gregori, E.; Russo, S.; Merchegnini, F.; Morracci, G.; Brera, C. Development of a LC-MS/MS Method for the Multi-Mycotoxin Determination in Composite Cereal-Based Samples. Toxins 2017, 9, 169. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pallarés, N.; Font, G.; Manes, J.; Ferrer, E. Multimycotoxin LC-MS/MS Analysis in Tea Beverages after Dispersive Liquid-Liquid Microextraction (DLLME). J. Agric. Food Chem. 2017, 65, 10282–10289. [Google Scholar] [CrossRef]
- Haidukowski, M.; Visconti, A.; Perrone, G.; Vanadia, S.; Pancaldi, D.; Covarelli, L.; Balestrazzi, R.; Pascale, M. Effect of prothioconazole-based fungicides on Fusarium head blight, grain yield and deoxynivalenol accumulation in wheat under field conditions. Phytopathol. Mediterr. 2012, 51, 236–246. [Google Scholar]
- Li, C.; Oliveri Conti, G.; Yu, Q.; Wen, K.; Shen, J.; Ferrante, W.; Wang, Z. Development of a screening fluorescence polarization immunoassay for the simultaneous detection of fumonisin B1 and B2 in maize. J. Agric. Food Chem. 2015, 63, 4940–4946. [Google Scholar] [CrossRef]
- Dellafiora, L.; Dall’Asta, C. Masked mycotoxins: An emerging issue that makes renegotiable what is ordinary. Food Chem. 2016, 213, 534–535. [Google Scholar] [CrossRef]
- Anfossi, L.; Giovannoli, C.; Baggiani, C. Mycotoxin detection. Curr. Opin. Biotechnol. 2016, 37, 120–126. [Google Scholar] [CrossRef]
- Kachuei, R.; Rezaie, S.; Yadegari, M.H.; Safaie, N.; Allameh, A.A.; Aref-poor, M.A.; Fooladi, A.A.I.; Riazipour, M.; Abadi, H.M.M. Determination of T-2 Mycotoxin in Fusarium strains by HPLC with fluorescence detector. J. Appl. Biotech. Rep. 2014, 1, 38–43. [Google Scholar]
- Lippolis, V.; Pascale, M.; Maragos, C.M.; Visconti, A. Improvement of detection sensitivity of T-2 and HT-2 toxins using different fluorescent labeling reagents by high-performance liquid chromatography. Talanta 2008, 74, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Visconti, A.; De Girolamo, A. Fitness for purpose--ochratoxin an analytical developments. Food Add. Contam. 2005, 1 (Suppl. 22), 37–44. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Elliott, T. Current methods of analysis for the determination of trichothecene mycotoxins in food. TrAC Trends Anal. Chem. 2011, 30, 12–19. [Google Scholar]
- Andre, P.D.; Pompinato, R.F.; Francisco, J.G.; Monteiro, S.; Calori-Domingues, M.A.; Tornisielo, V.L. Evaluation of mycotoxins and their estimated daily intake in popcorn and cornflakes using LC-MS techniques. LWT-Food Sci. Technol. 2018, 95, 240–246. [Google Scholar] [CrossRef]
- Aniołowska, M.; Steiniger, M. Determination of trichothecenes and zearalenone in different corn (Zea mays) cultivars for human consumption in Poland. J. Food Comp. Anal. 2014, 33, 14–19. [Google Scholar] [CrossRef]
- Zweigenbaum, J. (Ed.) Mass Spectrometry in Food Safety: Methods and Protocols; Springer Protocols; Humana Press: Totova, TX, USA, 2011. [Google Scholar]
- Girolamo, A.; Ciasca, B.; Pascale, M.; Lattanzio, V. Determination of Zearalenone and Trichothecenes, Including Deoxynivalenol and Its Acetylated Derivatives, Nivalenol, T-2 and HT-2 Toxins, in Wheat and Wheat Products by LC-MS/MS: A Collaborative Study. Toxins 2020, 12, 786. [Google Scholar] [CrossRef]
- Gonçalves, C.; Mischke, C.; Stroka, J. Determination of deoxynivalenol and its major conjugates in cereals using an organic solvent-free extraction and IAC clean-up coupled in-line with HPLC-PCD-FLD. Food Add. Contam. Part A 2020, 37, 1765–1776. [Google Scholar] [CrossRef]
- Feltrin, A.C.P.; Sibaja, K.V.M.; Tusnski, C.; Caldas, S.S.; Primel, E.G.; Garda-Buffon, J. Evaluation of the Suitability of Analytical Methods in Trichothecene A and B Degradation. J. Brazil Chem. Soc. 2018, 29, 2117–2126. [Google Scholar] [CrossRef]
- Righetti, L.; Bergmann, A.; Galaverna, G.; Rolfsson, O.; Paglia, G.; Dall’Asta, C. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Anal. Chim. Acta 2018, 104, 50–57. [Google Scholar] [CrossRef]
- Zherdev, V. Immunochromatographic methods in food analysis. TrAC Trends Anal Chem 2014, 55, 13–19. [Google Scholar]
- Chauhan, R.; Singh, J.; Sachdev, T.; Basu, T.; Malhotra, B.D. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016, 81, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Torres-Chavolla, E.; Alocilja, E.C. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 2009, 24, 3175–3182. [Google Scholar] [CrossRef] [PubMed]
- Jodra, A.; López, M.A.; Escarpa, A. Disposable and reliable electrochemical magnetoimmunosensor for Fumonisins simplified determination in maize-based foodstuffs. Biosens. Bioelectron. 2015, 64, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chao, Y.; Cao, W.; Wang, Y.; Luo, C.; Pang, X.; Fan, D.; Wei, Q. A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon. Anal. Chim. Acta 2014, 847, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Oswald, S.; Karsunke, X.Y.Z.; Dietrich, R.; Martlbauer, E.; Niessner, R.; Knopp, D. Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal. Bioanal. Chem. 2013, 405, 6405–6415. [Google Scholar] [CrossRef]
- Song, S.; Liu, N.; Zhao, Z.; Ediage, E.N.; Wu, S.; Sun, C.; De Saeger, S.; Wu, A. Multiplex Lateral Flow Immunoassay for Mycotoxin Determination. Anal. Chem. 2014, 86, 4995–5001. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Li, H.P.; Qu, B.; Zhang, J.B.; Huang, T.; Chen, F.F.; Liao, Y.C. Development of a generic PCR detection of 3-acetyldeoxy-nivalenol-, 15- acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum clade. Int. J. Mol. Sci. 2008, 9, 2495–2504. [Google Scholar] [CrossRef]
- Santini, A.; Ferracane, R.; Carmela Somma, M.; Aragon, A.; Ritieni, A. Multitoxin extraction and detection of trichothecenes in cereals: An improved LC-MS/MS approach. J. Sci. Food Agric. 2009, 89, 1145–1153. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Z.B.; He, Q.H.; Deng, S.Z.; Li, L.S.; Li, Y.P. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize. Food Chem. 2010, 119, 834–839. [Google Scholar] [CrossRef]
- Olcer, Z.; Esen, E.; Muhammad, T.; Ersoy, A.; Budak, S.; Uludag, Y. Fast and sensitive detection of mycotoxins in wheat using microfluidics based real-time electrochemical profiling. Biosens. Bioelectron. 2014, 62, 163–169. [Google Scholar] [CrossRef]
- Schollenberger, M.; Lauber, U.; Terry Jara, H.; Suchy, S.; Drochner, W.; Müller, H.-M. Determination of eight trichothecenes by gas chromatography–mass spectrometry after sample clean-up by a two-stage solid-phase extraction. J. Chromatogr. A 1998, 815, 123–132. [Google Scholar] [CrossRef]
- Tanaka, T.; Yoneda, A.; Inoue, S.; Sugiura, Y.; Ueno, Y. Simultaneous determination of trichothecene mycotoxins and zearalenone in cereals by gas chromatography-mass spectrometry. J. Chromatogr. A 2000, 882, 23–28. [Google Scholar] [CrossRef]
- MacDonald, S.J.; Anderson, S.; Brereton, P.; Wood, R. Determination of zearalenone in cereals and cereal products by immunoaffinity column cleanup with liquid chromatography: Interlboratory study. J. AOAC Int. 2005, 88, 1733–1740. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stroka, J.; Derbyshire, M.; Mischke, C.; Ambrosio, M.; Kroeger, K.; Arranz, I.; Sizoo, E.; van Egmond, H. Liquid chromatographic determination of deoxynivalenol in baby food and animal feed: Interlaboratory study. J. AOAC Int. 2006, 89, 1012–1020. [Google Scholar] [CrossRef][Green Version]
- Mateo, J.J.; Mateo, R.; Jiménez, M. Accumulation of type A trichothecenes in maize, wheat and rice by Fusarium sporotrichioides isolates under diverse culture conditions. Int. J. Food Microbiol. 2002, 72, 115–123. [Google Scholar] [CrossRef]
- Pascale, M.; Panzarini, G.; Powers, S.; Visconti, A. Determination of Deoxynivalenol and Nivalenol in Wheat by Ultra-Performance Liquid Chromatography/Photodiode-Array Detector and Immunoaffinity Column Cleanup. Food Anal. Methods 2014, 7, 555–562. [Google Scholar] [CrossRef]
- Visconti, A.; Lattanzio, V.M.T.; Pascale, M.; Haidukowski, M. Analysis of T-2 and HT-2 toxins in cereal grains by immunoaffinity clean-up and liquid chromatography with fluorescence detection. J. Chromatogr. A 2005, 1075, 151–158. [Google Scholar] [CrossRef]
- Trebstein, A.; Seefelder, W.; Lauber, U.; Humpf, H.-U. Determination of T-2 and HT-2 Toxins in Cereals Including Oats after Immunoaffinity Cleanup by Liquid Chromatography and Fluorescence Detection. J. Agric. Food Chem. 2008, 56, 4968–4975. [Google Scholar] [CrossRef]
- Razzazi-Fazeli, E.; Rabus, B.; Cecon, B.; Böhm, J. Simultaneous quantification of A-trichothecene mycotoxins in grains using liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 2002, 968, 129–142. [Google Scholar] [CrossRef]
- Laganà, A.; Durini, R.; D’A´scenzo, G.; De Leva, I.; Faberi, A.; Pastorini, E. Liquid chromatography/tandem mass spectrometry for the identification and determination of trichothecenes in maize. Rapid Commun. Mass Spectrom. 2003, 17, 1037–1043. [Google Scholar]
- Berthiller, F.; Schuhmacher, R.; Buttinger, G.; Krska, R. Rapid simultaneous determination of major type A- and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2005, 1062, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Biselli, S.; Hummert, C. Development of a multicomponent method for Fusarium toxins using LC-MS/MS and its application during a survey for the content of T-2 toxin and deoxynivalenol in various feed and food samples. Food Addit. Contam. 2005, 22, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.M.T.; Ciasca, B.; Terzi, V.; Ghizzoni, R.; McCormick, S.P.; Pascale, M. Study of the natural occurrence of T-2 and HT-2 toxins and their glucosyl derivatives from field barley to malt by high-resolution Orbitrap mass spectrometry. Food Add. Contam. Part A 2015, 32, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Safety Evaluation of Certain Contaminants in Food: 72nd Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization (WHO Food Additives Series 63): Geneva, Switzerland, 2011. [Google Scholar]
- EFSA. European Food Safety Authority. Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J. 2013, 11, 3379. [Google Scholar] [CrossRef]
- World Health Organization. Evaluation of certain mycotoxins in food. In Fifty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series 906; World Health Organization: Geneva, Switzerland, 2002; p. 70. [Google Scholar]
- Munkvold, G.P. Fusarium species and their associated mycotoxins. In Mycotoxigenic Fungi: Methods and Protocols, Methods in Molecular Biology; Moretti, A., Susca, A., Eds.; Springer Science + Business Media LLC; Humana Press: New York, NY, USA, 2017; Volume 1542, pp. 51–106. [Google Scholar] [CrossRef]
- Munkvold, G.P. Cultural and genetic approaches to managing mycotoxins in maize. Ann. Rev. Phyt. 2003, 41, 99–116. [Google Scholar] [CrossRef]
- EC. Commission Regulation No 1126/2007 of 28 September 2007 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Fusarium Toxins in Maize and Maize Products. 2007. Available online: https://deputyprimeminister.gov.mt/en/environmental/Legislation/Pages/Food-Legislation/EU/Maximum-levels-of-certain-contaminants-in-foodstuffs.aspx (accessed on 10 January 2021).
- EC. Commission Regulation No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Brussels, Belgium. 2006. Available online: https://www.fsai.ie/uploadedFiles/Consol_Reg1881_2006.pdf (accessed on 20 May 2020).
- Kumar, V.; Basu, M.S.; Rajendran, T.P. Mycotoxin research and mycoflora in some commercially important agricultural commodities. Crop Prot. 2008, 27, 891–905. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef][Green Version]
- Peraica, M.; Radic, B.; Lucic, A.; Pavlovic, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766. [Google Scholar]
- Shanakhat, H.; Sorrentino, A.; Raiola, A.; Romano, A.; Masi, P.; Cavella, S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: An overview. J. Sci. Food Agric. 2018, 98, 4003–4013. [Google Scholar] [CrossRef]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef]
- Xing, F.; Liu, X.; Wang, L.; Selvaraj, J.N.; Jin, N.; Wang, Y.; Zhao, Y.; Liu, Y. Distribution and variation of fungi and major mycotoxins in pre- and post-nature drying maize in North China Plain. Food Control 2017, 80, 244–251. [Google Scholar] [CrossRef]
- Oueslati, S.; Berrada, H.; Mañes, J.; Juan, C. Presence of mycotoxins in Tunisian infant foods samples and subsequent risk assessment. Food Control 2018, 84, 362–369. [Google Scholar] [CrossRef]
- Gab-Allah, M.A.; Choi, K.; Kim, B. Accurate determination of type B trichothecenes and conjugated deoxynivalenol in grains by isotope dilution–liquid chromatography tandem mass spectrometry. Food Control 2021, 121, 107557. [Google Scholar] [CrossRef]
- Richard-Forget, F.; Atanasova, V.; Chéreau, S. Using metabolomics to guide strategies to tackle the issue of the contamination of food and feed with mycotoxins: A review of the literature with specific focus on Fusarium mycotoxins. Food Control 2021, 121, 107610. [Google Scholar] [CrossRef]
Food/Feed Matrix | Country | TCT | N Samples | % Positive Samples | Mean [µg/kg] | Range [µg/kg] | Detection Technique | Reference |
---|---|---|---|---|---|---|---|---|
Barley, maize, rice and wheat grains | Algeria | DON | 120 | 33.3 | 588 | 48–2055 | UHPLC-MS/MS | [70] |
HT-2 | 23 | 18.1 | 8.4–36.7 | |||||
T-2 | 100 | 24.9 | 16.6–47.2 | |||||
Wheat | Poland | DON | 92 | 83 | 140 | 10–1265 | HPLC | [71] |
Wheat | China | DON | 181 | 82 | 500 | 33–3030 | HPLC | [72] |
Wheat | Brazil | DON | 172 | 77 | 234 | 73–2794 | HPLC | [73] |
Wheat | Brazil | DON | 48 | 100 | 2398 | 1329–3937 | HPLC | [74] |
Wheat | Brazil | DON | 53 | 47 | 641 | 243–2281 | HPLC | [75] |
Wheat | Brazil | DON | 58 | 91 | 360 | NA–1310 | HPLC | [76] |
Wheat | Brazil | DON | 745 | 86 | 1690 | NA–8501 | HPLC | [77] |
Wheat | Romania | DON | 31 | 26 | 748 | 110–1787 | LC-MS/MS | [78] |
Flour | Romania | DON | 35 | 3 | 190 | NA–190 | LC-MS/MS | [78] |
Rice | Pakistan | DON | 180 | 8 | 6.99 | <LOD | LC-MS/MS | [79] |
Wheat | Italy | DON | 293 | 97 | NA | 56–27088 | GC-MS | [80] |
Wheat | Italy | T-2 | 47 | 70.2 | 2.3 | 0.7–13 | LC-MS/MS | [80] |
HT-2 | 47 | 85.1 | 5.7 | 3–32 | ||||
Wheat | China | DON | 348 | 91 | 240 | 240–1129 | LC-MS/MS | [81] |
Wheat | Finland | DON | 30 | NA | 866 | NA–5510 | LC-MS/MS | [82] |
Wheat | Hungary | DON | 29 | 72 | NA | NA–1880 | ELISA | [83] |
Wheat | Argentina | DON | 84 | 100 | 1750 | NA–9480 | LC-MS/MS | [84] |
Wheat | Switzeland | DON | 686 | 80 | 607 | NA–10600 | LC-MS/MS | [85] |
Maize | Hungary | DON | 29 | 86 | 1872 | 225–2963 | ELISA | [83] |
T-2 | 29 | 55 | 69 | NA–146 | ||||
Oat | Finland | DON | 31 | 100 | NA | NA–23800 | LC-MS/MS | [82] |
Oat | Finland | DON | 1672 | 79 | NA | NA–21608 | GC-MS | [86] |
Oat | Poland | DON | 147 | 31 | NA | NA–2975 | HPLC-HRMS | [87] |
Oat | UK | DON | 303 | 32 | 28 | NA–1866 | LC-MS/MS | [88] |
Barley | Brazil | DON | 76 | 94 | 310–15500 | 1700–7500 | LC-MS/MS | [89] |
Infant foods | India | DON | 29 | 66 | NA | 5–228 | ELISA | [90] |
Corn flour | Serbia | DON | 56 | 42.90 | 101 | NA–931 | HPLC | [91] |
Pasta and noodles | Germany | DON | 40 | 97 | 387 | 60–1609 | HPLC | [76] |
Cereal-based products | Tunisia | HT-2 | 32 | 3 | 1 | <LOD-209 | LC-MS/MS | [92] |
Bread, wheat grains, wheat flour | Lebanon | HT-2/T-2 | 137 | 0 | -- | -- | LC-MS/MS | [92] |
Beer, cereal-based food | Spain | HT-2 | 479 | NA | 0.047–0.214 | NA | GC-ECD | [93] |
T-2 | 479 | 0.006 | 0.215–0.072 | NA |
Regulated Mycotoxins | Source | Toxicity | References |
---|---|---|---|
Type A trichothecenes (T-2 and HT-2 toxin, DAS, NEO) | Fusarium sporotrichioides, F. graminearum, F. moniliforme, F. myrothecium, F. acuminatum, F. culmorum, F. equiseti, Cephalosporium sp., Trichoderma sp. | Immunodepressants, gastrointestinal, mutagenic induction of apoptosis in haemopoietic progenitor cells, effect on protein synthesis, abnormal changes to immunoglobulins | [94] |
Type B trichothecenes (NIV, DON, 3-AcDON, 15-AcDON, FUS X) | Fusarium graminearum,
F. culmorum, F. sporotrichioides, F. cerealis, F. lunulosporum | Immunodepressants, neurotoxic, mutagenic, gastrointestinal. | [56,57] |
Toxin | Matrix | Analytical Method | Detection | Limit of Detection | Reference |
---|---|---|---|---|---|
TCT | Wheat and maize grains | LC | MS2 | 0.2–3.30 µg/kg | [144] |
DON | Wheat and maize | Immunochromatographic strip | 50 ng/mL | [145] | |
DON | Wheat | Direct binding | Electrochemical | 6.25 ng/mL | [146] |
NEO | Corn | LC | MS2 | 0.90 µg/kg | [130] |
T-2 | 0.40 µg/kg | ||||
T-2 triol | 0.20 µg/kg | ||||
DAS | 0.65 µg/kg | ||||
3-AcDON | 0.75 µg/kg | ||||
15-AcDON | 1.60 µg/kg | ||||
NIV | 3.00 µg/kg | ||||
FUS X | 1.55 µg/kg | ||||
DON, FUS X, 3-AcDON, 15-AcDON, NIV, T-2, HT-2 | Cereals, food, feed | GC | MS | 2–12 µg/kg | [147] |
DON, FUS X, 3-AcDON, NIV, T-2 | Wheat, corn | GC | MS | 5–10 µg/kg | [148] |
DON | Cereals, cereal products | HPLC | UV | 30 µg/kg | [149] |
DON | Baby food, animal feed | HPLC | UV | 6 µg/kg baby food 20 µg/kg feed | [150] |
T-2, HT-2, NEO, DAS, DON, NIV, 3-AcDON, 15-AcDON | Maize | HPLC | FLD | 10–50 µg/kg | [151] |
DON, NIV | Wheat, | UPLC | DAD | 20–30 µg/kg | [152] |
T-2, HT-2 | Wheat, maize, barley | HPLC | FLD | 5 µg/kg T-2 3 µg/kg HT-2 | [153] |
T-2, HT-2 | Oats, infant food, muesli, corn grits, breakfast cereals | HPLC | FLD | 3 µg/kg | [154] |
T-2, HT-2, DAS, MAS, NEO | Oats | LC | APCI-MS | 50–85 µg/kg | [155] |
NIV, DON, FUS X, 3-AcDON | Maize | LC | ESI-MS2 | 1.5–10 µg/kg | [156] |
NIV, DON, FUS X, 3-AcDON, 15-AcDON, DAS, T-2, HT-2 | Maize | LC | APCI-MS2 | 0.30–3.80 µg/kg | [157] |
NIV, DON, HT-2, T-2, FUS X, 3-AcDON, 15-AcDON, DAS | wheat flour | LC | ESI-MS2 | 10 µg/kg | [158] |
HT-2, T-2 | Barley | LC | HRMS | 5 µg/kg | [159] |
DON, 3-AcDON, 15-AcDON, | maize, wheat, barley | HPLC | FLD | 3 µg/kg | [133] |
DON, T-2, HT-2, FUS-X | Barley, wheat, maize, rice | UHPLC | MS/MS | 1–7 µg/kg | [70] |
Mycotoxin | TDI or PMTDI | Type | Basis | References |
---|---|---|---|---|
Deoxynivalenol and acetylated derivatives | 1.0 µg/kg body weight/day | PMTDI | Rodent nephrotoxicity | [160] |
Nivalenol | 1.2 µg/kg body weight/day | TDI | White blood cell reduction-rats | [161] |
T-2 + HT-2 toxins | 0.06 µg/kg body weight/day | PMTDI | White and red blood cell reduction-swine | [162] |
Mycotoxin | Cereal And Cereal Products | Maximum Levels [ug/kg] |
---|---|---|
Human Consumption | ||
DON | Unprocessed cereals other than durum wheat, oats and maize | 1250 |
Unprocessed durum wheat and oats | 1750 | |
Unprocessed maize, with the exception of unprocessed maize intended to be processed by wet milling | 1750 | |
Cereals intended for direct human consumption, cereal flour, bran and germ as end product marketed for direct human consumption | 750 | |
Sum T-2 and HT-2 toxin (*) | Unprocessed cereals | |
Barley and maize | 200 | |
Oats | 1000 | |
Wheat, rye and other cereals | 100 | |
Sum T-2 and HT-2 toxin (*) | Cereals grains for direct human consumption | --- |
Oats | 200 | |
Maize | 100 | |
Other cereals | 50 | |
Animal Feed | ||
DON | Feed materials | --- |
Cereals and cereal products with the exception of maize byproducts | 8 | |
Maize byproducts | 12 | |
Complementary and complete feedstuffs with the exception of: Complementary and complete feedstuffs for pigs Complementary and complete feedstuffs for calves (<4 months), lambs and kids | 5 | |
0.9 | ||
2 | ||
Sum T-2 and HT-2 toxin | Cereal products for feed and complementary feed | --- |
Oat milling products | 2000 | |
Other cereal products | 500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak-Śliwińska, M.; Paszczyk, B. Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: A Systematic Review. Molecules 2021, 26, 454. https://doi.org/10.3390/molecules26020454
Polak-Śliwińska M, Paszczyk B. Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: A Systematic Review. Molecules. 2021; 26(2):454. https://doi.org/10.3390/molecules26020454
Chicago/Turabian StylePolak-Śliwińska, Magdalena, and Beata Paszczyk. 2021. "Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: A Systematic Review" Molecules 26, no. 2: 454. https://doi.org/10.3390/molecules26020454