Anti-Herpes Simplex 1 Activity of Simmondsia chinensis (Jojoba) Wax
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Cell and Microbial Cultures
3.3. Minimum Inhibitory Concentration (MIC) and Anti-Fungal Assay
3.4. Cell Viability Assay
3.5. Plaque Reduction Assay
3.6. Jojoba Fatty Acid and Fatty Alcohol Profiling
3.7. Chromatographic Conditions
3.8. RNA Isolation and Real-Time PCR
3.9. Immunofluorescence Assay
3.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gentry, H.S. The natural history of Jojoba (Simmondsia chinensis) and its cultural aspects. Econ. Bot. 1958, 12, 261–295. [Google Scholar] [CrossRef]
- Perry, A.; Tel-Zur, N.; Dag, A. Vegetative and Reproductive Response to Fruit Load in Two Jojoba (Simmondsia chinensis) Cultivars. Agronomy 2021, 11, 889. [Google Scholar] [CrossRef]
- Lazare, S.; Zipori, I.; Cohen, Y.; Haberman, A.; Goldshtein, E.; Ron, Y.; Rotschild, R.; Dag, A. Jojoba pruning: New practices to rejuvenate the plant, improve yield and reduce alternate bearing. Sci. Hortic. 2021, 277, 109793. [Google Scholar] [CrossRef]
- Benzioni, A.; Vaknin, Y. Effect of female and male genotypes and environment on wax composition in jojoba. J. Am. Oil Chem. Soc. 2002, 79, 297–302. [Google Scholar] [CrossRef]
- Agarwal, S.; Arya, D.; Khan, S. Comparative fatty acid and trace elemental analysis identified the best raw material of jojoba (Simmondsia chinensis) for commercial applications. Ann. Agric. Sci. 2018, 63, 37–45. [Google Scholar] [CrossRef]
- Benzioni, A.; Van Boven, M.; Ramamoorthy, S.; Mills, D. Dynamics of fruit growth, accumulation of wax esters, simmondsins, proteins and carbohydrates in jojoba. Ind. Crop. Prod. 2007, 26, 337–344. [Google Scholar] [CrossRef]
- Gad, A.H.; Roberts, A.; Hamzi, S.H.; Gad, H.A.; Touiss, I.; Altyar, A.E.; Kensara, O.A.; Ashour, M.L. Jojoba Oil: An Updated Comprehensive Review on Chemistry, Pharmaceutical Uses, and Toxicity. Polymers 2021, 13, 1711. [Google Scholar] [CrossRef]
- Wisniak, J. The Chemistry and Technology of Jojoba Oil; The American Oil Chemists Society: Champaign, IL, USA, 1987. [Google Scholar]
- McKeon, T.A. Emerging Industrial oil Crops, in Industrial Oil Crops; Elsevier: Amsterdam, The Netherlands, 2016; pp. 275–341. [Google Scholar]
- Picardo, M.; Ottaviani, M.; Camera, E.; Mastrofrancesco, A. Sebaceous gland lipids. Derm. Endocrinol. 2009, 1, 68–71. [Google Scholar] [CrossRef]
- Pazyar, N.; Yaghoobi, R.; Ghassemi, M.R.; Kazerouni, A.; Rafeie, E.; Jamshydian, N. Jojoba in dermatology: A succinct review. G. Ital. Dermatol. Venereol. 2013, 148, 687–691. [Google Scholar]
- Dary, D. Frontier Medicine; Random House, Inc: New York, NY, USA, 2008. [Google Scholar]
- Hobacare. HobaCare Blog. Available online: https://jojobacompany.com/blog/ (accessed on 7 August 2021).
- Patzelt, A.; Lademann, J.; Richter, H.; Darvin, M.E.; Schanzer, S.; Thiede, G.; Sterry, W.; Vergou, T.; Hauser, M. In vivo investigations on the penetration of various oils and their influence on the skin barrier. Ski. Res. Technol. 2011, 18, 364–369. [Google Scholar] [CrossRef]
- Stamatas, G.N.; de Sterke, J.; Hauser, M.; von Stetten, O.; van der Pol, A. Lipid uptake and skin occlusion following topical application of oils on adult and infant skin. J. Dermatol. Sci. 2008, 50, 135–142. [Google Scholar] [CrossRef]
- Draelos, Z.D. The science behind skin care: Moisturizers. J. Cosmet. Dermatol. 2018, 17, 138–144. [Google Scholar] [CrossRef]
- Habashy, R.R.; Abdel-Naim, A.B.; Khalifa, A.; Al-Azizi, M.M. Anti-inflammatory effects of jojoba liquid wax in experimental models. Pharmacol. Res. 2005, 51, 95–105. [Google Scholar] [CrossRef]
- Meier, L.; Stange, R.; Michalsen, A.; Uehleke, B. Clay jojoba oil facial mask for lesioned skin and mild acne—Results of a prospective, observational pilot study. Complement. Med. Res. 2012, 19, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Mosovich, B. Treatment of acne and psoriasis. In Jojoba: Proceedings of the Sixth International Conference on Jojoba and Its Uses, Beer-Sheva, Israel, 21–26 October 1984; Wisniak, J., Zabicky, J., Eds.; Ben-Gurion University of the Negev: Beer-Sheva, Israel, 1985. [Google Scholar]
- Michalak, M.; Pierzak, M.; Kręcisz, B.; Suliga, E. Bioactive Compounds for Skin Health: A Review. Nutrients 2021, 13, 203. [Google Scholar] [CrossRef]
- Brandwein, M.; Fuks, G.; Israel, A.; Sabbah, F.; Hodak, E.; Szitenberg, A.; Harari, M.; Steinberg, D.; Bentwich, Z.; Shental, N.; et al. Skin Microbiome Compositional Changes in Atopic Dermatitis Accompany Dead Sea Climatotherapy. Photochem. Photobiol. 2020, 96, 450. [Google Scholar] [CrossRef] [Green Version]
- Brandwein, M.; Fuks, G.; Israel, A.; Al-Ashhab, A.; Nejman, D.; Straussman, R.; Hodak, E.; Harari, M.; Steinberg, D.; Bentwich, Z.; et al. Temporal stability of the healthy human skin microbiome following dead sea climatotherapy. Acta Derm. Venereol. 2018, 98, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.M.; Horswill, A.R. Staphylococcus epidermidis—Skin friend or foe? PLoS Pathog. 2020, 16, e1009026. [Google Scholar] [CrossRef]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Huemer, M.; Shambat, S.M.; Bergada-Pijuan, J.; Söderholm, S.; Boumasmoud, M.; Vulin, C.; Gómez-Mejia, A.; Varela, M.A.; Tripathi, V.; Götschi, S.; et al. Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success. Proc. Natl. Acad. Sci. USA 2021, 118, e2014920118. [Google Scholar] [CrossRef]
- Poh, S.E.; Goh, J.P.Z.; Fan, C.; Chua, W.; Gan, S.Q.; Lim, P.L.K.; Sharma, B.; Leavesley, D.; Dawson, T.L.J.; Li, H. Identification of Malassezia furfur secreted aspartyl protease 1 (MfSAP1) and its role in extracellular matrix degradation. Front. Cell. Infect. Microbiol. 2020, 10, 148. [Google Scholar] [CrossRef]
- Saunte, D.M.L.; Gaitanis, G.; Hay, R.J. Malassezia-associated skin diseases, the use of diagnostics and treatment. Front. Cell. Infect. Microbiol. 2020, 10, 112. [Google Scholar] [CrossRef]
- Laokor, N.; Juntachai, W. Exploring the antifungal activity and mechanism of action of Zingiberaceae rhizome extracts against Malassezia furfur. J. Ethnopharmacol. 2021, 279, 114354. [Google Scholar] [CrossRef]
- Marcocci, M.E.; Napoletani, G.; Protto, V.; Kolesova, O.; Piacentini, R.; Puma, D.D.L.; Lomonte, P.; Grassi, C.; Palamara, A.T.; De Chiara, G. Herpes simplex Virus-1 in the brain: The dark side of a sneaky infection. Trends Microbiol. 2020, 28, 808–820. [Google Scholar] [CrossRef]
- Saleh, D.; Yarrarapu, S.N.S.; Sharma, S. Herpes Simplex Type 1; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Al-Ghamdi, A.; Elkholy, T.; Abuhelal, S.; Al-Abbadi, H.; Qahwaji, D.; Khalefah, N.; Sobhy, H.; Abu-Hilal, M. Antibacterial and Antifungal Activity of Jojoba Wax Liquid (Simmondsia chinensis). Pharmacogn. J. 2019, 11, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Elnimiri, K.; Nimir, H. Biological and chemical assessment of the Sudanese jojoba (Simmondsia chinensis) oil. Int. J. Nat. Prod. Pharm. Sci. 2011, 2, 28–39. [Google Scholar]
- Yarmolinsky, L.; Zaccai, M.; Ben-Shabat, S.; Huleihel, M. Anti-herpetic activity of Callissia fragrans and Simmondsia chinensis leaf extracts in vitro. Open Virol. J. 2010, 4, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Purcell, H. Method for Treatment of Enveloped Viruses Using Jojoba Oil Esters. U.S. Patent 6,559,182, 6 May 2003. [Google Scholar]
- Verbiscar, A.J. Long Chain Monounsaturated Alcohol Mixtures. U.S. Patent 6703052B2, 9 March 2004. [Google Scholar]
- Melamed, S.; Cohen, G.; Dag, A.; Tietel, Z. Small scale, low-cost and fast method for formulating jojoba (Simmondsia chinensis L.) wax for increased anti-inflammatory bioactivity. In preparation.
- Shah, S.N.; Sharma, B.K.; Moser, B.; Erhan, S.Z. Preparation and Evaluation of Jojoba Oil Methyl Esters as Biodiesel and as a Blend Component in Ultra-Low Sulfur Diesel Fuel. BioEnergy Res. 2009, 3, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Purcell, H.C.; Abbott, T.P.; Holser, R.A.; Phillips, B.S. Simmondsin and wax ester levels in 100 high-yielding jojoba clones. Ind. Crop. Prod. 2000, 12, 151–157. [Google Scholar] [CrossRef]
- Tietel, Z.; Kahremany, S.; Cohen, G.; Ogen-Shtern, N. Medicinal properties of jojoba (Simmondsia chinensis). Isr. J. Plant Sci. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Pazyar, N.; Yaghoobi, R. The Potential Anti-Psoriatic Effects of Jojoba Extract. J. Dermatol. Res. 2016, 1, 14–15. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denaro, M.; Smeriglio, A.; Barreca, D.; De Francesco, C.; Occhiuto, C.; Milano, G.; Trombetta, D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Res. 2020, 34, 742–768. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2020, 10, 354–367. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.J.; Danciu, C.; Ashraf, S.A.; Moin, A.; Singh, R.; Alreshidi, M.; Patel, M.; Jahan, S.; Kumar, S.; Alkhinjar, M.I.M.; et al. Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses. Plants 2020, 9, 1244. [Google Scholar] [CrossRef]
- Trifonov, L.; Chumin, K.; Gvirtz, R.; Afri, M.; Korshin, E.E.; Cohen, G.; Gruzman, A. Novel sulfamoylbenzoates as antifungal agents against Malassezia furfur. Mendeleev Commun. 2020, 30, 709–711. [Google Scholar] [CrossRef]
- Canoira, L.; Alcántara, R.; Martínez, M.J.G.; Carrasco, J. Biodiesel from Jojoba oil-wax: Transesterification with methanol and properties as a fuel. Biomass Bioenergy 2006, 30, 76–81. [Google Scholar] [CrossRef]
- Cappillino, P.; Kleiman, R.; Botti, C. Composition of Chilean jojoba seeds. Ind. Crop. Prod. 2003, 17, 177–182. [Google Scholar] [CrossRef]
- Singh, M.P.; Ram, J.; Kumar, A.; Khurana, J.; Marbaniang, M.; Ratho, R.K. Infectious agents in congenital cataract in a tertiary care referral center in North India. Diagn. Microbiol. Infect. Dis. 2016, 85, 477–481. [Google Scholar] [CrossRef]
C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C20:1 | C22:1 | C24:1 | C18:1 OH | C20:1 OH | C22:1 OH | C24:1 OH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JD1 | 0.03 ± 0.0 | 0.15 ± 0.0 | 0.08 ± 0.0 | 12.54 ± 0.3 | 0.46 ± 0.1 | 71.9 ± 0.3 | 13.85 ± 0.6 | 0.98 ± 0.0 | 0.24 ± 0.0 | 45.3 ± 0.3 | 48.7 ± 0.5 | 5.77 ± 0.2 |
JD2 | 0.04 ± 0.0 | 0.21 ± 0.0 | 0.06 ± 0.0 | 13.21 ± 0.1 | 0.41 ± 0.0 | 72.5 ± 0.4 | 12.75 ± 0.6 | 0.86 ± 0.0 | 0.21 ± 0.0 | 50.6 ± 0.1 | 44.1 ± 0.1 | 5.04 ± 0.0 |
JD3 | 0.06 ± 0.0 | 0.24 ± 0.0 | 0.05 ± 0.0 | 10.73 ± 0.2 | 0.44 ± 0.1 | 73.2 ± 0.4 | 14.15 ± 0.4 | 1.09 ± 0.1 | 0.19 ± 0.1 | 47.2 ± 0.2 | 47.0 ± 0.6 | 5.63 ± 0.2 |
JD4 | 0.02 ± 0.0 | 0.37 ± 0.0 | 0.03 ± 0.0 | 8.39 ± 0.1 | 0.26 ± 0.0 | 79.1 ± 0.1 | 10.84 ± 0.1 | 0.94 ± 0.1 | 0.21 ± 0.1 | 43.2 ± 0.7 | 49.0 ± 0.9 | 7.53 ± 0.1 |
Benzioni | 0.94 ± 0.0 | 0.26 ± 0.0 | 0.05 ± 0.0 | 6.19 ± 0.1 | 0.02 ± 0.0 | 76.0 ± 0.4 | 14.21 ± 0.5 | 1.78 ± 0.1 | 0.07 ± 0.0 | 43.4 ± 0.5 | 49.6 ± 0.7 | 6.91 ± 0.0 |
Shiloah | 0.90 ± 0.0 | 0.22 ± 0.0 | 0.05 ± 0.0 | 5.30 ± 0.2 | 0.11 ± 0.0 | 76.2 ± 0.1 | 14.98 ± 0.1 | 2.18 ± 0.1 | 0.08 ± 0.0 | 38.9 ± 0.2 | 52.3 ± 0.9 | 8.71 ± 0.2 |
Hatzerim | 1.15 ± 0.0 | 0.20 ± 0.0 | 0.06 ± 0.0 | 7.32 ± 0.3 | 0.05 ± 0.0 | 72.8 ± 0.1 | 16.29 ± 0.4 | 2.00 ± 0.1 | 0.12 ± 0.0 | 44.0 ± 0.3 | 48.0 ± 0.8 | 7.09 ± 0.1 |
Sheva | 0.97 ± 0.0 | 0.25 ± 0.0 | 0.05 ± 0.0 | 5.61 ± 0.2 | 0.00 ± 0.0 | 78.0 ± 0.3 | 13.53 ± 0.2 | 1.55 ± 0.1 | 0.05 ± 0.0 | 43.6 ± 0.6 | 49.7 ± 0.2 | 6.64 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tietel, Z.; Melamed, S.; Eretz-Kdosha, N.; Guetta, A.; Gvirtz, R.; Ogen-Shtern, N.; Dag, A.; Cohen, G. Anti-Herpes Simplex 1 Activity of Simmondsia chinensis (Jojoba) Wax. Molecules 2021, 26, 6059. https://doi.org/10.3390/molecules26196059
Tietel Z, Melamed S, Eretz-Kdosha N, Guetta A, Gvirtz R, Ogen-Shtern N, Dag A, Cohen G. Anti-Herpes Simplex 1 Activity of Simmondsia chinensis (Jojoba) Wax. Molecules. 2021; 26(19):6059. https://doi.org/10.3390/molecules26196059
Chicago/Turabian StyleTietel, Zipora, Sarit Melamed, Noy Eretz-Kdosha, Ami Guetta, Raanan Gvirtz, Navit Ogen-Shtern, Arnon Dag, and Guy Cohen. 2021. "Anti-Herpes Simplex 1 Activity of Simmondsia chinensis (Jojoba) Wax" Molecules 26, no. 19: 6059. https://doi.org/10.3390/molecules26196059
APA StyleTietel, Z., Melamed, S., Eretz-Kdosha, N., Guetta, A., Gvirtz, R., Ogen-Shtern, N., Dag, A., & Cohen, G. (2021). Anti-Herpes Simplex 1 Activity of Simmondsia chinensis (Jojoba) Wax. Molecules, 26(19), 6059. https://doi.org/10.3390/molecules26196059