Simultaneous Analysis of Fenpropimorph and Fenpropimorph Acid in Six Different Livestock Products Using a Single-Sample Preparation Method Followed by Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Instrumental Conditions
2.2. Sample Extraction and Cleanup Methods
2.3. Method Validation
2.4. Inter-Institutional Validation of the Established Method
2.5. Application of the Established Method
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Preparation
3.3. Method Validation
3.4. Instruments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gordon, I.J. Review: Livestock production increasingly influences wildlife across the globe. Animal 2018, 12, s372–s382. [Google Scholar] [CrossRef] [Green Version]
- Charles, H.; Godfray, J.; Aveyyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehymbert, R.T.; Scarborough, P.; Springmann, M.; et al. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [Green Version]
- Bedi, J.S.; Gill, J.P.S.; Kaur, P.; Aulakh, R.S. Pesticide residues in milk and their relationship with pesticide contamination of feedstuffs supplied to dairy cattle in Punjab (India). J. Anim. Feed Sci. 2018, 27, 18–25. [Google Scholar] [CrossRef]
- Kumar, A.; Thakur, A.; Sharma, V.; Koundal, S. Pesticide residues in animal feed: Status, Safety, and Scope. J. Anim. Feed Sci. Technol. 2019, 7, 73–80. [Google Scholar] [CrossRef]
- Nag, S.K.; Raikwar, M.K. Persistent organochlorine pesticide residues in animal feed. Environ. Monit. Assess. 2010, 174, 327–335. [Google Scholar] [CrossRef]
- Belinato, J.R.; Grandy, J.J.; Khaled, A.; Suarez, P.A.O.; Pawliszyn, J. Overcoming matrix effects in the analysis of pyrethroids in honey by a fully automated direct immersion solid-phase microextraction method using a matrix-compatible fiber. Food Chem. 2021, 340, 128127. [Google Scholar] [CrossRef] [PubMed]
- Barreca, S.; Busetto, M.; Colzani, L.; Clerici, L.; Daverio, D.; Dellavedova, P.; Balzamo, S.; Ubaldi, V. Determination of estrogenic endocrine disruptors in water at sub-ng L−1 levels in compliance with Decision 2015/495/EU using offline-online solid phase extraction concentration coupled with high performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2019, 147, 1186–1191. [Google Scholar] [CrossRef]
- LeDoux, M. Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. J. Chromatogr. A 2011, 1218, 1021–1036. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W.C.; Che, B.L.S. Determination of organochlorine pesticide residues in fatty foods: A critical review on the analytical methods and their testing capabilities. J. Chromatogr. A 2011, 1218, 5555–5567. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Modification of Multiresidue QuEChERS Protocol to Minimize Matrix Effect and Improve Recoveries for Determination of Pesticide Residues in Dried Herbs Followed by GC-MS/MS. Food Anal. Methods 2018, 11, 709–724. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Maštovská, K.; Lightfield, A.R. Use of Buffering and Other Means to Improve Results of Problematic Pesticides in a Fast and Easy Method for Residue Analysis of Fruits and Vegetables. J. AOAC Int. 2005, 88, 615–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Pommer, E.-H. Chemical structure-fungicidal activity relationships in substituted morpholines. Pestic. Sci. 1984, 15, 285–295. [Google Scholar] [CrossRef]
- Rahier, A.; Schmitt, P.; Huss, B.; Benveniste, P.; Pommer, E. Chemical structure-activity relationships of the inhibition of sterol biosynthesis by N-substituted morpholines in higher plants. Pestic. Biochem. Physiol. 1986, 25, 112–124. [Google Scholar] [CrossRef]
- Georgopapadakou, N.H.; Walsh, T.J. Antifungal agents: Chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother. 1996, 40, 279–291. [Google Scholar] [CrossRef] [Green Version]
- He, J.-X.; Fujioka, S.; Li, T.-C.; Kang, S.G.; Seto, H.; Takatsuto, S.; Yoshida, S.; Jang, J.-C. Sterols Regulate Development and Gene Expression in Arabidopsis. Plant Physiol. 2003, 131, 1258–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buerge, I.J.; Krauss, J.; López-Cabeza, R.; Siegfried, W.; Stüssi, M.; Wettstein, F.E.; Poiger, T. Stereoselective Metabolism of the Sterol Biosynthesis Inhibitor Fungicides Fenpropidin, Fenpropimorph, and Spiroxamine in Grapes, Sugar Beets, and Wheat. J. Agric. Food Chem. 2016, 64, 5301–5309. [Google Scholar] [CrossRef]
- Carella, A.; Ferronatto, G.R.; Marotta, E.; Mazzanti, A.; Righi, P.; Paolucci, C. Betti’s base for crystallization-induced deracemization of substituted aldehydes: Synthesis of enantiopure amorofine and fenpropimorph. Org. Biomol. Chem. 2017, 15, 2968. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion regarding the peer review of the pesticide risk assessment of the active substance fenpropimorph. EFSA Sciti. Rep. 2008, 144, 1–89. [Google Scholar]
- European Food Safety Authority. Scientific support for preparing and EU position in the 50th session of the CODEX committee on pesticide residues (CCPR). EFSA J. 2018, 16, 5306. [Google Scholar]
- Lee, H.S.; Do, J.-A.; Park, J.-S.; Cho, S.M.; Shin, H.-S.; Jang, D.E.; Choi, Y.-N.; Jung, Y.-H.; Lee, K. Development and Validation of an Analytical Method for Fenpropimorph in Agricultural Products Using QuEChERS and LC-MS/MS. J. Food Hyg. Saf. 2019, 34, 115–123. [Google Scholar] [CrossRef]
- Löbbert, A.; Schanzer, S.; Krehenwinkel, H.; Bracher, F.; Müller, C. Determination of multi pesticide residues in leaf and needle samples using a modified QuEChERS approach and gas chromatography-tandem mass spectrometry. Anal. Methods 2021, 13, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kim, H.J.; Jeong, M.S.; Kim, C.R.; Jeong, M.H.; Lee, M.J.; Kang, H.M.; Lee, J.W.; Park, H. Analytical Method Validation and Monitoring of Pesticide Residues in Animal Feeds. Korean J. Pestic. Sci. 2016, 20, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Hetherton, C.L.; Sykes, M.D.; Fussell, R.J.; Goodall, D.M. A multi-residue screening method for the determination of 73 pesticides and metabolites in fruit and vegetables using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2443–2450. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, C.J.; Baek, S.; Kim, L.; Son, K.-A.; Lee, H.-D.; Kim, D.; Kim, J.-H.; Noh, H.H. Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Analysis of 353 Pesticides in the Edible Insect Tenebrio molitor Larvae (Mealworms). Molecules 2020, 25, 5866. [Google Scholar] [CrossRef]
- Kim, S.-S.; Kim, K.-J.; Lee, M.-J.; Seo, S.-K.; Lee, Y.-J. Development of Multi-residue Analysis Method for 326 Pesticides in Fresh Ginseng using UPLC-MS/MS. Korean J. Pestic. Sci. 2020, 24, 105–126. [Google Scholar] [CrossRef]
- Melo, M.G.; Carqueijo, A.; Freitas, A.; Barbosa, J.; Silva, A.S. Modified QuEChERS Extraction and HPLC-MS/MS for Simultaneous Determination of 155 Pesticide Residues in Rice (Oryza sativa L.). Foods 2019, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Food and Drug Safety. Korean Food Code. 2020. Available online: https://www.foodsafetykorea.go.kr/foodcode/01_01.jsp?idx=263 (accessed on 6 July 2021).
- SANTE Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Analysis in Food and Feed; SANTE/12682/2019, Implemented by 01.01.2020; European Commission Directorate General for Health and Food Safety: Brussels, Belgium, 2020.
- Rahman, M.; El-Aty, A.M.A.; Ara, J.; Park, J.; Kim, M.; Eun, J.; Shin, H.; Shim, J. Quantification of spinosyn A and spinosyn D in animal-derived products using multiwalled carbon nanotubes coupled with LC–MS/MS for analysis. Biomed. Chromatogr. 2021, 35, e5007. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius. Guidelines for the Design and Implementation of National Regulatory Food Safety Assurance Programme Associate with the Use of Veterinary Drugs in Food Producing Animals CAC/GL 71. 2009. Available online: http://www.fao.org/imput/download/standards/11252/CXG_071e_2014.pdf (accessed on 5 July 2021).
- Wang, W.; Sun, Q.; Li, Y.; Wen, G.; Fan, J.; Song, W.; Zhao, Z.; Dong, M. Simultaneous Determination of Fluoxastrobin and Tebuconazole in Cucumber and Soil Based on Solid-Phase Extraction and LC-MS/MS Method. Food Anal. Methods 2017, 11, 750–758. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Ji, X.; Wu, H.; Yang, H.; Zhang, H.; Zhang, X.; Li, Z.; Ni, X.; Qian, M. Determination of veterinary dug/pesticide residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification combined with ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 1617, 460808. [Google Scholar] [CrossRef] [PubMed]
- SANTE Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Analysis in Food and Feed; SANTE/11813/2017; European Commission Directorate General for Health and Food Safety: Brussels, Belgium, 2018.
- Ismaiel, O.A.; Zhang, T.; Jenkins, R.G.; Karnes, H.T. Investigation of endogenous blood plasma phospholipids, cholesterol and glycerides that contribute to matrix effects in bioanalysis by liquid chromatography/mass spectrometry. J. Chromtogr. B Anal. Technol. Biomed. Life Sci. 2010, 31, 3303–3316. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-A.; El-Aty, A.A.; Zheng, W.; Kim, S.-K.; Cho, S.-H.; Choi, J.-M.; Hacımüftüo, A.; Jeong, J.H.; Wang, J.; Shim, J.-H.; et al. Simultaneous determination of clanobutin, dichlorvos, and naftazone in pork, beef, chicken, milk, and egg using liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 252, 40–48. [Google Scholar] [CrossRef]
- Zhou, W.; Ling, Y.; Liu, T.; Zhang, Y.; Li, J.; Li, H.; Wu, W.; Jiang, S.; Feng, F.; Yuan, F.; et al. Simultaneous determination of 16 macrolide antibiotics and 4 metabolites in milk by using Quick, Easy, Cheap, Effective, Rugged, and Safe extraction (QuEChERS) and high performance liquid chromatography tandem mass spectrometry. J. Chromtogr. B Anal. Technol. Biomed. Life Sci. 2017, 1061–1062, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.-J.; Kim, S.-W.; Kim, Y.-E.; Yoon, J.-H.; Cho, H.-J.; Shin, B.-G.; Kim, H.-Y.; Kim, I.-S. Plant-Back Intervals of Imicyafos Based on Its Soil Dissipation and Plant Uptake for Rotational Cultivation of Lettuce and Spinach in Greenhouse. Agriculture 2021, 11, 495. [Google Scholar] [CrossRef]
- Barreca, S.; Orecchio, S.; Pace, A. Photochemical sample treatment for extracts clean up in PCB analysis from sediments. Talanta 2013, 103, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreca, S.; Busetto, M.; Vitelli, M.; Colzani, L.; Clerici, L.; DellaVedova, P. Online Solid-Phase Extraction LC-MS/MS: A Rapid and Valid Method for the Determination of Perfluorinated Compounds at Sub ng·L−1 Level in Natural Water. J. Chem. 2018, 2018, 3780825. [Google Scholar] [CrossRef] [Green Version]
Chemical | Precursor Ion (m/z) | Product Ion (m/z) | |
---|---|---|---|
Quantitative | Qualitative | ||
Fenpropimorph | 304.4 | 147.2 | 132.3 |
Fenpropimorph acid | 334.3 | 107.2 | 98.3 |
Analyte | Coefficient Values of Determination in the Different Matrices (R2) | LOQ (mg kg−1) | |||||
---|---|---|---|---|---|---|---|
Egg | Milk | Pork Bacon | Beef Steak | Beef Fat | Chicken Leg Meat | ||
Fenpropimorph | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.999 | 0.005 |
Fenpropimorph acid | 0.998 | 0.998 | 0.998 | 0.998 | 0.999 | 0.999 | 0.005 |
Chemical | Matrix Effect (%) | |||||
---|---|---|---|---|---|---|
Egg | Milk | Pork Bacon | Beef Steak | Beef Fat | Chicken Leg Meat | |
Fenpropimorph | 2.84 | 3.17 | −2.52 | 1.44 | −0.71 | 1.53 |
Fenpropimorph acid | 3.17 | 2.62 | 2.63 | 1.17 | 2.42 | 2.92 |
Chemical | Level | Recovery (%) * | |||||
---|---|---|---|---|---|---|---|
Egg | Milk | Pork Bacon | Beef Steak | Beef Fat | Chicken Leg Meat | ||
Fenpropimorph | LOQ | 69.1 ± 2.6 | 75.5 ± 3.1 | 79.4 ± 2.9 | 92.4 ± 2.6 | 73.2 ± 2.6 | 91.3 ± 4.5 |
2 × LOQ | 76.7 ± 2.2 | 85.7 ± 2.9 | 78.5 ± 1.5 | 78.7 ± 3.3 | 82.2 ± 1.9 | 90.2 ± 3.3 | |
10 × LOQ | 93.7 ± 1.7 | 82.6 ± 1.1 | 85.5 ± 1.5 | 83.7 ± 1.6 | 89.3 ± 0.7 | 100.6 ± 2.1 | |
Fenpropimorph acid | LOQ | 69.3 ± 2.7 | 72.1 ± 2.9 | 78.7 ± 1.8 | 97.0 ± 2.4 | 86.4 ± 4.1 | 111.1 ± 6.9 |
2 × LOQ | 76.6 ± 2.1 | 83.1 ± 1.6 | 76.3 ± 3.2 | 81.8 ± 1.7 | 91.3 ± 2.3 | 100.7 ± 5.6 | |
10 × LOQ | 94.5 ± 2.2 | 70.1 ± 1.2 | 86.1 ± 1.7 | 84.7 ± 2.6 | 92.8 ± 0.7 | 111.2 ± 3.0 |
Chemical | Level | Ion Ratio Difference (%) * | |||||
---|---|---|---|---|---|---|---|
Egg | Milk | Pork Bacon | Beef Steak | Beef Fat | Chicken Leg Meat | ||
Fenpropimorph | LOQ | −8.39 | −5.36 | 3.48 | −3.40 | −5.65 | −12.42 |
2 × LOQ | −3.09 | −6.13 | 3.64 | −4.15 | 1.20 | −8.19 | |
10 × LOQ | 0.03 | 0.68 | 1.51 | 0.78 | 1.50 | −7.60 | |
Fenpropimorph acid | LOQ | −2.42 | 2.80 | 3.35 | 3.83 | −4.35 | −13.38 |
2 × LOQ | −4.08 | 2.60 | 3.45 | −0.77 | −2.65 | −5.53 | |
10 × LOQ | 2.13 | 7.47 | 3.25 | −0.51 | −1.51 | −8.24 |
Chemical | Level | Inter-Institutional Recovery (%) * | |||||
---|---|---|---|---|---|---|---|
Egg | Milk | Pork Bacon | Beef Steak | Beef Fat | Chicken Leg Meat | ||
Fenpropimorph | LOQ | 63.9 ± 2.5 | 75.1 ± 2.6 | 81.9 ± 2.1 | 70.3 ± 6.4 | 66.5 ± 1.3 | 85.9 ± 2.5 |
2 × LOQ | 76.5 ± 2.4 | 82.1 ± 3.2 | 80.4 ± 1.9 | 82.1 ± 4.3 | 76.1 ± 1.8 | 86.2 ± 2.9 | |
10 × LOQ | 85.0 ± 0.3 | 89.6 ± 2.1 | 80.8 ± 1.9 | 81.1 ± 0.7 | 83.0 ± 0.8 | 80.7 ± 1.1 | |
Fenpropimorph acid | LOQ | 65.1 ± 3.2 | 73.9 ± 4.4 | 68.8 ± 4.8 | 66.1 ± 5.6 | 67.8 ± 2.8 | 63.1 ± 3.2 |
2 × LOQ | 74.7 ± 2.2 | 84.4 ± 3.6 | 77.4 ± 2.6 | 78.0 ± 5.9 | 80.0 ± 1.9 | 77.5 ± 2.8 | |
10 × LOQ | 78.5 ± 1.0 | 95.9 ± 2.8 | 83.1 ± 1.3 | 83.5 ± 1.7 | 80.0 ± 1.2 | 83.9 ± 2.4 |
Chemical | Sample | Relative Difference of Ion Ratios (%) 2 | |
---|---|---|---|
Spiked Sample 3 | Real Sample | ||
Fenpropimorph | Egg | 1.85 | −98.33~630.66 |
Milk | 1.06 | −93.58~82.82 | |
Pork bacon | −1.81 | −92.35~110.36 | |
Beef steak | 1.05 | −64.02~2382.63 | |
Chicken leg meat | 1.27 | −58.67~196.49 | |
Fenpropimorph acid | Egg | 4.81 | 43.68~399.10 |
Milk | −2.29 | −80.82~−38.35 | |
Pork bacon | −1.80 | −40.51~318.22 | |
Beef steak | −7.15 | 135.51~631.60 | |
Chicken leg meat | −1.99 | 243.40~2007.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.W.; Lim, D.J.; Kim, I.S. Simultaneous Analysis of Fenpropimorph and Fenpropimorph Acid in Six Different Livestock Products Using a Single-Sample Preparation Method Followed by Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2021, 26, 5791. https://doi.org/10.3390/molecules26195791
Kim SW, Lim DJ, Kim IS. Simultaneous Analysis of Fenpropimorph and Fenpropimorph Acid in Six Different Livestock Products Using a Single-Sample Preparation Method Followed by Liquid Chromatography–Tandem Mass Spectrometry. Molecules. 2021; 26(19):5791. https://doi.org/10.3390/molecules26195791
Chicago/Turabian StyleKim, Seon Wook, Da Jung Lim, and In Seon Kim. 2021. "Simultaneous Analysis of Fenpropimorph and Fenpropimorph Acid in Six Different Livestock Products Using a Single-Sample Preparation Method Followed by Liquid Chromatography–Tandem Mass Spectrometry" Molecules 26, no. 19: 5791. https://doi.org/10.3390/molecules26195791
APA StyleKim, S. W., Lim, D. J., & Kim, I. S. (2021). Simultaneous Analysis of Fenpropimorph and Fenpropimorph Acid in Six Different Livestock Products Using a Single-Sample Preparation Method Followed by Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 26(19), 5791. https://doi.org/10.3390/molecules26195791