The Solvent Effect on Composition and Dimensionality of Mercury(II) Complexes with Picolinic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses Aspects
2.2. Crystal Structures
2.3. Spectroscopic Studies (FT-IR, NMR)
2.4. Thermal Analysis (TGA/DSC)
3. Experimental Section
3.1. Materials and Physical Measurements
3.2. Syntheses of the Compounds
3.2.1. Synthesis of {[HgCl(pic)]}n (1)
3.2.2. Synthesis of [HgCl(pic)(picH)] (2)
3.2.3. Synthesis of [HgBr(pic)(picH)] (3)
3.3. X-ray Crystallographic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Sunday, N.F. Emerging Trends in Coordination Polymers and Metal-Organic Frameworks: Perspectives, Synthesis, Properties and Applications. Arch. Org. Inorg. Chem. Sci. 2018, 1, 001–012. [Google Scholar] [CrossRef] [Green Version]
- Morsali, A.; Masoomi, M.Y. Structures and properties of mercury(II) coordination polymers. Coord. Chem. Rev. 2009, 253, 1882–1905. [Google Scholar] [CrossRef]
- Mahata, P.; Natarajan, S. Pyridine- and Imidazoledicarboxylates of Zinc: Hydrothermal Synthesis, Structure, and Properties. Eur. J. Inorg. Chem. 2005, 2005, 2156–2163. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Chagas, C.; Fonseca, F.L.A.; Bagatin, I.A. Quinoline-derivative coordination compounds as potential applications to antibacterial and antineoplasic drugs. Mater. Sci. Eng. C 2019, 98, 1043–1052. [Google Scholar] [CrossRef]
- Sudik, A.C.; Millward, A.R.; Ockwig, N.W.; Côté, A.P.; Kim, J.; Yaghi, O.M. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 2005, 127, 7110–7118. [Google Scholar] [CrossRef]
- Fang, Q.-R.; Zhu, G.-S.; Xue, M.; Sun, J.-Y.; Qiu, S.-L. Porous coordination polymers with zeolite topologies constructed from 4-connected building units. Dalton Trans. 2006, 2399–2402. [Google Scholar] [CrossRef]
- Han, H.; Zhang, S.; Hou, H.; Fan, Y.; Zhu, Y. Fe(Cu)-Containing Coordination Polymers: Syntheses, Crystal Structures, and Applications as Benzyl Alcohol Oxidation Catalysts. Eur. J. Inorg. Chem. 2006, 2006, 1594–1600. [Google Scholar] [CrossRef]
- Liu, Q.-X.; Yin, L.-N.; Wu, X.-M.; Feng, J.-C.; Guo, J.-H.; Song, H.-B. New N-heterocyclic carbene mercury(II) and silver(I) complexes. Polyhedron 2008, 27, 87–94. [Google Scholar] [CrossRef]
- Liu, B.; Guo, G.-C.; Huang, J.-S. Four triazole-bridging coordination polymers containing (m-phenol)-1,2,4-triazole: Syntheses, structures and properties of fluorescence and magnetism. J. Solid State Chem. 2006, 179, 3136–3144. [Google Scholar] [CrossRef]
- Wang, J.W.; Zhang, M.C. Fluorescence and crystal structures of new mercury(II) macrocyclic N-heterocyclic carbene complexes with ether chains. J. Struct. Chem. 2014, 55, 703–708. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, X.; Qin, S.; Lei, C.; Liang, F. Structure and fluorescent properties of mercury(II) pyridine-2,3-dicarboxylate coordination polymers tuned by ancillary ligands and alkaline-earth metal ions. CrystEngComm 2011, 13, 2029–2038. [Google Scholar] [CrossRef]
- Mahmoudi, G.; Morsali, A. Counter-ion influence on the coordination mode of the 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (bpo) ligand in mercury(II) coordination polymers, [Hg(bpo)nX2]: X = I−, Br−, SCN−, N3− and NO2−; spectroscopic, thermal, fluorescence and structural studies. CrystEngComm 2007, 9, 1062–1072. [Google Scholar] [CrossRef]
- Ciurtin, D.M.; Pschirer, N.G.; Smith, M.D.; Bunz, U.H.F.; zur Loye, H.-C. Two luminescent coordination polymers with a triple-helix structure: HgX2(C31H24N2)·CH2Cl2(X = Cl and Br). Chem. Mater. 2001, 13, 2743–2745. [Google Scholar] [CrossRef]
- Soldin, Z.; Matković-Čalogović, D.; Pavlović, G.; Popovic, J.; Vinković, M.; Vikić-Topić, D.; Popović, Z. Various coordination modes in mercury(II) complexes with quinoline-2-carboxylic acid: Preparation and structural characterization. Polyhedron 2009, 28, 2735–2743. [Google Scholar] [CrossRef]
- Morsali, A.; Zhu, L.-G. A novel one-dimensional helical chain polymer involving both tetra- and hexacoordinate mercury(II) ions. Inorg. Chem. Commun. 2004, 7, 1184–1187. [Google Scholar] [CrossRef]
- Popović, Z.; Pavlović, G.; Matković-Čalogović, D.; Soldin, Ž. Polymeric μ-bromo-μ-pyridine-3-carboxylato-κ3O,O′:N-mercury(II). Acta Crystallogr. 2003, C59, m165–m167. [Google Scholar] [CrossRef] [Green Version]
- Popović, Z.; Pavlović, G.; Soldin, Ž. Iodo(picolinato-κ2N,O)(picolinic acid-κ2N,O)mercury(II). Acta Crystallogr. 2006, C62, m272–m274. [Google Scholar] [CrossRef]
- Soldin, Ž.; Kukovec, B.-M.; Matković-Čalogović, D.; Popović, Z. A design of mercury(II) coordination polymers with pyridinedicarboxylic acids: Structural, spectroscopic and thermal studies. J. Inorg. Organomet. Polym. 2018, 28, 2080–2089. [Google Scholar] [CrossRef]
- Soldin, Ž.; Kukovec, B.-M.; Matković-Čalogović, D.; Popović, Z. Hydrogen-bonded frameworks of mercury(II) complexes with pyridinedicarboxylic acids. Aust. J. Chem. 2018, 71, 455–462. [Google Scholar] [CrossRef]
- Seetharaj, R.; Vandana, P.V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 2019, 12, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Slenters, T.V.; Sagué, J.L.; Brunetto, P.S.; Zuber, S.; Fleury, A.; Mirolo, L.; Robin, A.Y.; Meuwly, M.; Gordon, O.; Landmann, R.; et al. Of Chains and Rings: Synthetic Strategies and Theoretical Investigations for Tuning the Structure of Silver Coordination Compounds and Their Applications. Materials 2010, 3, 3407–3429. [Google Scholar] [CrossRef]
- Sanii, R.; Hua, C.; Patyk-Kaźmierczak, E.; Zaworotko, M.J. Solvent-directed control over the topology of entanglement in square lattice (sql) coordination networks. Chem. Commun. 2019, 55, 1454–1457. [Google Scholar] [CrossRef]
- Notash, B.; Rezaei Kheirkhah, B. The effect of solvent on one-dimensional cadmium coordination polymers. New J. Chem. 2018, 42, 15014–15021. [Google Scholar] [CrossRef]
- Pan, L.; Frydel, T.; Sander, M.B.; Huang, X.; Li, J. The effect of pH on the dimensionality of coordination polymers. Inorg. Chem. 2001, 40, 1271–1283. [Google Scholar] [CrossRef] [PubMed]
- Braga, D.; Brammer, L.; Champness, N.R. New trends in crystal engineering. CrystEngComm 2005, 7, 1–19. [Google Scholar] [CrossRef]
- Brammer, L. Developments in inorganic crystal engineering. Chem. Soc. Rev. 2004, 33, 476–489. [Google Scholar] [CrossRef]
- Desiraju, G.R. Crystal engineering: A holistic view. Angew. Chem. Int. Ed. 2007, 46, 8342–8356. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, M.D. Crystal engineering: From structure to function. Science 2002, 295, 2410–2413. [Google Scholar]
- Braga, D. Crystal engineering, Where from? Where to? Chem. Commun. 2003, 2751–2754. [Google Scholar] [CrossRef]
- Tessarolo, J.; Venzo, A.; Bottaro, G.; Armelao, L.; Rancan, M. Hampered Subcomponent Self-Assembly Leads to an Aminal Ligand: Reactivity with Silver(I) and Copper(II). Eur. J. Inorg. Chem. 2016, 2017, 30–34. [Google Scholar] [CrossRef]
- Cevik, S.; Telli, B.; Dal, H.; Sari, M. A Tridentate In Situ Generated Ligand Leading the Self-Assembly of a Transition Metal Coordination Polymer: Solvothermal Synthesis and Structural Characterization of 1D Cadmium Pyridine-2-Carboxylate. Synth. React. Inorg. Met. Chem. 2014, 45, 139–144. [Google Scholar] [CrossRef]
- Wu, A.-Q.; Guo, G.-H.; Yang, C.; Zheng, F.-K.; Liu, X.; Guo, G.-C.; Huang, J.-S.; Dong, Z.-C.; Takano, Y. Extended Structures and Magnetic Properties of Lanthanide-Copper Complexes with Picolinic Acids as Bridging Ligands. Eur. J. Inorg. Chem. 2005, 2005, 1947–1954. [Google Scholar] [CrossRef]
- Deloume, J.P.; Loiseleur, H. Structure cristalline du pyridine-2 carboxylate de cadmium. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1974, 30, 607–609. [Google Scholar] [CrossRef]
- Ay, B.; Şahin, O.; Yildiz, E. One-Pot hydrothermal synthesis of 1D copper (II) coordination polymers involving in-situ decarboxylation. Solid State Sci. 2019, 96, 105958. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Fan, H.-H.; Wang, H.-Z.; Chen, X.-M. A Solvothermally in Situ Generated Mixed-ligand Approach for NLO-Active Metal−Organic Framework Materials. Inorg. Chem. 2005, 44, 4148–4150. [Google Scholar] [CrossRef]
- Payehghadr, M.; Safarifard, V.; Ramazani, M.; Morsali, A. Preparation of Cadmium(II) Oxide Nanoparticles from a New One-Dimensional Cadmium(II) Coordination Polymer Precursor; Spectroscopic and Thermal Analysis Studies. J. Inorg. Organomet. Polym. Mater. 2012, 22, 543–548. [Google Scholar] [CrossRef]
- Enthaler, S.; Wu, X.-F.; Weidauer, M.; Irran, E.; Döhlert, P. Exploring the coordination chemistry of 2-picolinic acid to zinc and application of the complexes in catalytic oxidation chemistry. Inorg. Chem. Commun. 2014, 46, 320–323. [Google Scholar] [CrossRef]
- Żurowska, B.; Slepokura, K. Structure and magnetic properties of polynuclear copper(II) compounds with syn–anti carboxylato- and bromo-bridges. Inorganica Chim. Acta 2008, 361, 1213–1221. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Álvarez-Larena, A.; Piniella, J.F.; Pons, J.; March, R.; Casabó, J. Crystal structure of catena{bis[μ-(2-pyridinecarboxilato-μ-O2,O1,N)]mercury(II)}, Hg((C5H4N)(CO2))2. Z. Kristallogr. 1994, 209, 695. [Google Scholar] [CrossRef]
- Gonzàlez-Duarte, P.; Leiva, A.; March, R.; Pons, J.; Clegg, W.; Solans, X.; Álvarez-Larena, A.; Piniella, J.F. Reactions of mercury(II) with 2-pyridinecarboxylic and 6-methyl-2-pyridinecarboxylic acids and corresponding esters. Crystal structures of [Hg(C5H4NCOO)2], [HgX2(C5H4NCOOPri)], X = Br or I and [HgCl2(MeC5H3NCOOEt)]. Polyhedron 1998, 17, 1591–1600. [Google Scholar] [CrossRef]
- Hayati, P.; Gutiérrez, A. The role of non-covalent interactions on supramolecular assembly of coordination compounds of mercury(II) based on substituted pyridine mixed ligands. A survey of different conditions on morphology of new flower and ribbon like submicro structures. Inorg. Chim. Acta 2018, 479, 83–96. [Google Scholar] [CrossRef]
- Álvarez-Larena, A.; Clegg, W.; Cucurull-Sánchez, L.; González-Duarte, P.; March, R.; Piniella, J.F.; Pons, J.; Solans, X. Mercury(II) halide adducts of esters of 2-pyridinecarboxylic acid. Crystal structures and structural variations within the series [HgCl2(C5H4NCOOR)], R. = Me, Et, Prn, Pri. Inorg. Chim. Acta 1997, 266, 81–90. [Google Scholar] [CrossRef]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Addison, A.W.; Nageswara Rao, T.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896. [Google Scholar] [CrossRef]
- Koczoń, P.; Dobrowolski, J.C.; Lewandowski, W.; Mazurek, A.P. Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids. J. Mol. Struct. 2003, 655, 89–95. [Google Scholar] [CrossRef]
- Goher, M.A.S.; Abu-Youssef, M.A.M.; Mautner, F. Synthesis, spectral and structural characterization of a monomeric chloro complex of Zinc(II) with picolinic acid, [Zn(C5H4NCO2H)(C5H4NCO2)Cl]. Polyhedron 1996, 15, 453–457. [Google Scholar] [CrossRef]
- Mautner, F.; Abu-Youssef, M.A.M.; Goher, M.A.S. Polymeric complexes of cadmium(II) bridged simultaneously by tetradentate picolinato and μ(1,1)-azido or μ(N,S)-thiocyanato anions. Synthesis and structural characterization of [Cd(picolinato)(N3)]n and [Cd(picolinato)(NCS)]n. Polyhedron 1997, 16, 235–242. [Google Scholar] [CrossRef]
- Goher, M.A.S.; Abu-Youssef, M.A.M.; Mautner, F.; Popitsch, A. Preparation and structural characterization of catena-μ(1,3)-azido-μ(O,N-picolinato)-aquamanganese(II), Mn(NC5H4CO2)(N3)(H2O). Polyhedron 1992, 11, 2137–2141. [Google Scholar] [CrossRef]
- Vargová, Z.; Zeleňák, V.; Cı́saøová, I.; Györyová, K. Correlation of thermal and spectral properties of zinc(II) complexes of pyridinecarboxylic acids with their crystal structures. Thermochim. Acta 2004, 423, 149–157. [Google Scholar] [CrossRef]
- Ghosh, S.; Sur, B.; Ray, S.K.; Ray, P.K. A study of solid-state thermal decomposition characteristics of some metallo-organic compounds. J. Therm. Anal. Calorim. 1985, 30, 353–363. [Google Scholar] [CrossRef]
- D’ascenzo, G.; Wendlandt, W.W. The thermal properties of some metal pyridinecarboxylates. Anal. Chim. Acta 1970, 50, 79–91. [Google Scholar] [CrossRef]
- Gouverneur, P.; Hoedeman, W. The determination of mercury in organic compounds. Anal. Chim. Acta 1964, 30, 519–523. [Google Scholar] [CrossRef]
- Rikagu Oxford Diffraction. CrysAlisPro; Agilent Technologies Inc.: Yarnton, UK, 2020. [Google Scholar]
- Sheldrick, G.M. SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement withSHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
Compound | C-2 | C-3 | C-4 | C-5 | C-6 | COOH |
---|---|---|---|---|---|---|
picH | 148.41 | 124.76 | 137.60 | 127.17 | 149,49 | 166.27 |
1 | 149.30 | 125.62 | 141.87 | 127.35 | 148.79 | 163.38 |
2 | 148.79 | 125.24 | 139.88 | 127.30 | 149.11 | 164.78 |
3 | 148.48 | 124.57 | 138.98 | 126.66 | 148.51 | 164.61 |
Compound | 1 | 2 | 3 |
---|---|---|---|
Formula | C6H4HgClNO2 | C12H9HgClN2O4 | C12H9HgBrN2O4 |
Mr | 358.14 | 481.25 | 525.71 |
Crystal system, space group | monoclinic, P21/c (No. 14) | monoclinic, P21/c (No. 14) | monoclinic, P21/c (No. 14) |
a (Å) | 9.0131(6) | 9.1384(5) | 9.1223(4) |
b (Å) | 8.8569(4) | 11.7625(8) | 11.6466(6) |
c (Å) | 9.4804(6) | 12.7526(7) | 13.1976(6) |
β (°) | 113.292(7) | 92.798(5) | 92.073(4) |
V (Å3) | 695.12(8) | 1369.15(14) | 1401.25(11) |
Z | 4 | 4 | 4 |
Dcalc (g cm−3) | 3.422 | 2.335 | 2.492 |
μ (mm−1) | 22.462 | 11.450 | 13.848 |
R [I ≥ 2σ(I)] | 0.0265 | 0.0325 | 0.0575 |
wR [all data] | 0.0652 | 0.0804 | 0.1896 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldin, Ž.; Kukovec, B.-M.; Matković-Čalogović, D.; Popović, Z. The Solvent Effect on Composition and Dimensionality of Mercury(II) Complexes with Picolinic Acid. Molecules 2021, 26, 5002. https://doi.org/10.3390/molecules26165002
Soldin Ž, Kukovec B-M, Matković-Čalogović D, Popović Z. The Solvent Effect on Composition and Dimensionality of Mercury(II) Complexes with Picolinic Acid. Molecules. 2021; 26(16):5002. https://doi.org/10.3390/molecules26165002
Chicago/Turabian StyleSoldin, Željka, Boris-Marko Kukovec, Dubravka Matković-Čalogović, and Zora Popović. 2021. "The Solvent Effect on Composition and Dimensionality of Mercury(II) Complexes with Picolinic Acid" Molecules 26, no. 16: 5002. https://doi.org/10.3390/molecules26165002