Diverse Localization Patterns of an R-Type Lectin in Marine Annelids
Abstract
1. Introduction
2. Results
2.1. Detection of PnL in the Crude Extract of Lugworm Tissues
2.2. Diversified Localization Pattern of PnL in Lugworm Tissues
2.3. Co-Localization of the R-Type Lectin and Glycan Ligands
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Sample Availability
References
- Bonnardel, F.; Mariethoz, J.; Pérez, S.; Imberty, A.; Lisacek, F. LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Res. 2021, 49, 1548–1554. [Google Scholar] [CrossRef]
- Cummings, R.D.; Schnaar, R.L. Chapter 31 R-Type Lectins. Essentials of Glycobiology, 3rd ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Eds.; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2017; pp. 401–412. [Google Scholar]
- Hirabayashi, J.; Dutta, S.K.; Kasai, K. Novel galactose-binding proteins in Annelida. Characterization of 29-kDa tandem repeat-type lectins from the earthworm Lumbricusterrestris. J. Biol. Chem. 1998, 273, 14450–14460. [Google Scholar] [CrossRef]
- Cole, R.N.; Zipser, B. Carbohydrate-binding proteins in the leech: I. Isolation and characterization of lactose-binding proteins. J. Neurochem. 1994, 63, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Kawsar, S.M.; Takeuchi, T.; Kasai, K.; Fujii, Y.; Matsumoto, R.; Yasumitsu, H.; Ozeki, Y. Glycan-binding profile of a D-galactose binding lectin purified from the annelid, Perinereisnuntia ver. vallata. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 152, 382–389. [Google Scholar] [CrossRef]
- Wang, J.H.; Kong, J.; Li, W.; Molchanova, V.; Chikalovets, I. A beta-galactose-specific lectin isolated from the marine worm Chaetopterus variopedatus possesses anti-HIV-1 activity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 142, 111–117. [Google Scholar] [CrossRef]
- Ozeki, Y.; Tazawa, E.; Matsui, T. D-galactoside-specific lectins from the body wall of an echiuroid (Urechis unicinctus) and two annelids (Neanthes japonica and Marphysa sanguinea). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1997, 118, 1–6. [Google Scholar] [CrossRef]
- Matsui, T. D-Galactoside specific lectins from coelomocytes of the echiuran, Urechis unicinctus. Biol. Bull. 1984, 166, 178–188. [Google Scholar] [CrossRef]
- Belal, A.A.M.; Ghobashy, A.F.A. Distribution of newly recorded benthic polychaetes in Timsah Lake, Suez Canal, Egypt. Egypt. J. Aquat. Res. 2012, 38, 171–184. [Google Scholar] [CrossRef][Green Version]
- Kawsar, S.M.A.; Mamun, S.M.A.; Rahman, M.S.; Yasumitsu, H.; Ozeki, Y. Biological effects of a carbohydrate-binding protein from an annelid, Perinereis nuntia against human and phyto pathogenic microorganisms. Int. J. Biol. Life Sci. 2010, 6, 44–50. [Google Scholar]
- Koide, Y.; Hasan, I.; Asanuma, A.; Fujii, Y.; Ogawa, Y.; Kobayashi, H.; Rajia, S.; Kawsar, S.M.A.; Kanaly, R.; Ozeki, Y. Expression of various types of glycans in the lugworm (Perinereis nuntia var. vallata). Ann. Mar. Biol. Res. 2015, 2, 1005. [Google Scholar]
- Uchiyama, H.; Komazaki, S.; Oyama, M.; Matsui, T.; Ozeki, Y. Distribution and localization of galectin purified from Rana catesbeiana oocytes. Glycobiology 1997, 7, 1159–1165. [Google Scholar] [CrossRef]
- Ozeki, Y.; Matsui, T.; Yamamoto, Y.; Funahashi, M.; Hamako, J.; Titani, K. Tissue fibronectin is an endogenous ligand for galectin-1. Glycobiology 1995, 5, 255–261. [Google Scholar] [CrossRef]
- Ozeki, Y.; Matsui, T.; Suzuki, M.; Titani, K. Amino acid sequence and molecular characterization of a D-galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry 1991, 30, 2391–2394. [Google Scholar] [CrossRef]
- Matsumoto, R.; Shibata, T.F.; Kohtsuka, H.; Sekifuji, M.; Sugii, N.; Nakajima, H.; Kojima, N.; Fujii, Y.; Kawsar, S.M.; Yasumitsu, H.; et al. Glycomics of a novel type-2 N-acetyllactosamine-specific lectin purified from the feather star, Oxycomanthus japonicus (Pelmatozoa: Crinoidea). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 158, 266–273. [Google Scholar] [CrossRef]
- Matsumoto, R.; Fujii, Y.; Kawsar, S.M.; Kanaly, R.A.; Yasumitsu, H.; Koide, Y.; Hasan, I.; Iwahara, C.; Ogawa, Y.; Im, C.H.; et al. Cytotoxicity and glycan-binding properties of an 18 kDa lectin isolated from the marine sponge Halichondria okadai. Toxins 2012, 4, 323–338. [Google Scholar] [CrossRef]
- Ozeki, Y.; Yokota, Y.; Kato, K.H.; Titani, K.; Matsui, T. Developmental expression of D-galactoside-binding lectin in sea urchin (Anthocidaris crassispina) eggs. Exp. Cell Res. 1995, 216, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Hasan, I.; Gerdol, M.; Fujii, Y.; Ozeki, Y. Functional characterization of OXYL, A SghC1qDC LacNAc-specific lectin from the crinoid feather star Anneissia japonica. Mar. Drugs 2019, 17, 136. [Google Scholar] [CrossRef]
- Hasan, I.; Ozeki, Y. Histochemical localization of N-acetylhexosamine-binding lectin HOL-18 in Halichondria okadai (Japanese black sponge), and its antimicrobial and cytotoxic anticancer effects. Int. J. Biol. Macromol. 2019, 124, 819–827. [Google Scholar] [CrossRef]
- Matsushima-Hibiya, Y.; Watanabe, M.; Hidari, K.I.; Miyamoto, D.; Suzuki, Y.; Kasama, T.; Kasama, T.; Koyama, K.; Sugimura, T.; Wakabayashi, K. Identification of glycosphingolipid receptors for pierisin-1, a guanine-specific ADP-ribosylating toxin from the cabbage butterfly. J. Biol. Chem. 2003, 278, 9972–9978. [Google Scholar] [CrossRef] [PubMed]
- Unno, H.; Goda, S.; Hatakeyama, T. Hemolytic lectin CEL-III heptamerizes via a large structural transition from alpha-helices to a beta-barrel during the transmembrane pore formation process. J. Biol. Chem. 2014, 289, 12805–12812. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.; Gouaux, E. Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. J. Mol. Biol. 2005, 350, 997–1016. [Google Scholar] [CrossRef]
- Fujii, Y.; Gerdol, M.; Kawsar, S.M.A.; Hasan, I.; Spazzali, F.; Yoshida, T.; Ogawa, Y.; Rajia, S.; Kamata, K.; Koide, Y.; et al. A GM1b/asialo-GM1 oligosaccharide-binding R-type lectin from purplish bifurcate mussels Mytilisepta virgata and its effect on MAP kinases. FEBS J. 2020, 287, 2612–2630. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M.; Venier, P. An updated molecular basis for mussel immunity. Fish. Shellfish Immunol. 2015, 46, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M.; Fujii, Y.; Hasan, I.; Koike, T.; Shimojo, S.; Spazzali, F.; Yamamoto, K.; Ozeki, Y.; Pallavicini, A.; Fujita, H. The purplish bifurcate mussel Mytilisepta virgata gene expression atlas reveals a remarkable tissue functional specialization. BMC Genom. 2017, 18, 590. [Google Scholar] [CrossRef]
- Sugita, M.; Fujii, H.; Inagaki, F.; Suzuki, M.; Hayata, C.; Hori, T. Polar glycosphingolipids in annelida. A novel series of glycosphingolipids containing choline phosphate from the earthworm, Pheretima hilgendorfi. J. Biol. Chem. 1992, 267, 22595–22598. [Google Scholar] [CrossRef]
- Rhee, J.S.; Won, E.J.; Kim, R.O.; Choi, B.S.; Choi, I.Y.; Park, G.S.; Shin, K.H.; Lee, Y.M.; Lee, J.S. The polychaete, Perinereis nuntia ESTs and its use to uncover potential biomarker genes for molecular ecotoxicological studies. Environ. Res. 2012, 112, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Qiu, X.; Chen, B.; Yu, X.; Lin, K.; Bian, M.; Liu, Z.; Huang, H.; Yu, W. Toxicity evaluation of benzo[a]pyrene on the polychaete Perinereis nuntia using subtractive cDNA libraries. Aquat. Toxicol. 2011, 105, 279–291. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Goldman, A.; Ursitti, J.A.; Mozdzanowski, J.; Speicher, D.W. Electroblotting from polyacrylamide gels. Curr. Protoc. Protein Sci. 2015, 82, 1–16. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawsar, S.M.A.; Hasan, I.; Rajia, S.; Koide, Y.; Fujii, Y.; Hayashi, R.; Yamada, M.; Ozeki, Y. Diverse Localization Patterns of an R-Type Lectin in Marine Annelids. Molecules 2021, 26, 4799. https://doi.org/10.3390/molecules26164799
Kawsar SMA, Hasan I, Rajia S, Koide Y, Fujii Y, Hayashi R, Yamada M, Ozeki Y. Diverse Localization Patterns of an R-Type Lectin in Marine Annelids. Molecules. 2021; 26(16):4799. https://doi.org/10.3390/molecules26164799
Chicago/Turabian StyleKawsar, Sarkar M. Abe, Imtiaj Hasan, Sultana Rajia, Yasuhiro Koide, Yuki Fujii, Ryuhei Hayashi, Masao Yamada, and Yasuhiro Ozeki. 2021. "Diverse Localization Patterns of an R-Type Lectin in Marine Annelids" Molecules 26, no. 16: 4799. https://doi.org/10.3390/molecules26164799
APA StyleKawsar, S. M. A., Hasan, I., Rajia, S., Koide, Y., Fujii, Y., Hayashi, R., Yamada, M., & Ozeki, Y. (2021). Diverse Localization Patterns of an R-Type Lectin in Marine Annelids. Molecules, 26(16), 4799. https://doi.org/10.3390/molecules26164799