N-Glycosylation Patterns across the Age-Related Macular Degeneration Spectrum
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Setting
4.2. Subjects
4.3. Retinal Photography
4.4. AMD Scoring Scheme
4.5. Glycan Measurements
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Novokmet, M.; Lukić, E.; Vučković, F.; Ðurić, Ž.; Keser, T.; Rajšl, K.; Remondini, D.; Castellani, G.; Gašparović, H.; Gornik, O.; et al. Changes in IgG and total plasma protein glycomes in acute systemic inflammation. Sci. Rep. 2014, 4, 4347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knezević, A.; Polasek, O.; Gornik, O.; Rudan, I.; Campbell, H.; Hayward, C.; Wright, A.; Kolcic, I.; O’Donoghue, N.; Bones, J.; et al. Variability, heritability and environmental determinants of human plasma N-glycome. J. Proteome Res. 2009, 8, 694–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cindrić, A.; Krištić, J.; Kavur, M.M.; Pezer, M. Glycosylation and Aging. Adv. Exp. Med. Biol. 2021, 1325, 341–373. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Hashii, N.; Tsumoto, H.; Takakura, D.; Ohta, Y.; Abe, Y.; Arai, Y.; Kawasaki, N.; Hirose, N.; Endo, T. Change in N-Glycosylation of Plasma Proteins in Japanese Semisupercentenarians. PLoS ONE 2015, 10, e0142645. [Google Scholar] [CrossRef] [PubMed]
- Krištić, J.; Vučković, F.; Menni, C.; Klarić, L.; Keser, T.; Beceheli, I.; Pučić-Baković, M.; Novokmet, M.; Mangino, M.; Thaqi, K.; et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 779–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef]
- Arnold, J.N.; Saldova, R.; Hamid, U.M.; Rudd, P.M. Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 2008, 8, 3284–3293. [Google Scholar] [CrossRef]
- Lan, Y.; Hao, C.; Zeng, X.; He, Y.; Zeng, P.; Guo, Z.; Zhang, L. Serum glycoprotein-derived N- and O-linked glycans as cancer biomarkers. Am. J. Cancer Res. 2016, 6, 2390–2415. [Google Scholar]
- Doherty, M.; Theodoratou, E.; Walsh, I.; Adamczyk, B.; Stöckmann, H.; Agakov, F.; Timofeeva, M.; Trbojević-Akmačić, I.; Vučković, F.; Duffy, F.; et al. Plasma N-glycans in colorectal cancer risk. Sci. Rep. 2018, 8, 8655. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.; Zhang, R.; Han, J.; Qin, W.; Gu, Y.; Sha, J.; Xu, X.; Feng, Y.; Ren, Z.; et al. Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning. Am. J. Cancer Res. 2021, 11, 3002–3020. [Google Scholar]
- Nakagawa, H.; Hato, M.; Takegawa, Y.; Deguchi, K.; Ito, H.; Takahata, M.; Iwasaki, N.; Minami, A.; Nishimura, S. Detection of altered N-glycan profiles in whole serum from rheumatoid arthritis patients. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 853, 133–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomoda, T.; Nouso, K.; Kato, H.; Miyahara, K.; Dohi, C.; Morimoto, Y.; Kinugasa, H.; Akimoto, Y.; Matsumoto, K.; Yamamoto, N.; et al. Alteration of serum N-glycan profile in patients with autoimmune pancreatitis. Pancreatology 2016, 16, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vujasinovic, M.; Maier, P.; Maetzel, H.; Valente, R.; Pozzi-Mucelli, R.; Moro, C.F.; Haas, S.L.; Said, K.; Verbeke, C.S.; Maisonneuve, P.; et al. Immunoglobulin G subtypes-1 and 2 differentiate immunoglobulin G4-associated sclerosing cholangitis from primary sclerosing cholangitis. United Eur. Gastroenterol. J. 2020, 8, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Higai, K.; Azuma, Y.; Aoki, Y.; Matsumoto, K. Altered glycosylation of alpha1-acid glycoprotein in patients with inflammation and diabetes mellitus. Clin. Chim. Acta Int. J. Clin. Chem. 2003, 329, 117–125. [Google Scholar] [CrossRef]
- Pavić, T.; Dilber, D.; Kifer, D.; Selak, N.; Keser, T.; Ljubičić, Đ.; Vukić Dugac, A.; Lauc, G.; Rumora, L.; Gornik, O. N-glycosylation patterns of plasma proteins and immunoglobulin G in chronic obstructive pulmonary disease. J. Transl. Med. 2018, 16, 323. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Barb, A.W. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology 2020, 30, 214–225. [Google Scholar] [CrossRef]
- Lundström, S.L.; Hensvold, A.H.; Rutishauser, D.; Klareskog, L.; Ytterberg, A.J.; Zubarev, R.A.; Catrina, A.I. IgG Fc galactosylation predicts response to methotrexate in early rheumatoid arthritis. Arthritis Res. Ther. 2017, 19, 182. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Li, Q.; Zhang, X.; Wang, H.; Cao, W.; Li, D.; Xing, W.; Song, M.; Wang, W.; Meng, Q.; et al. Systematic Review: Immunoglobulin G N-Glycans as Next-Generation Diagnostic Biomarkers for Common Chronic Diseases. Omics A J. Integr. Biol. 2019, 23, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Klarić, L.; Tsepilov, Y.A.; Stanton, C.M.; Mangino, M.; Sikka, T.T.; Esko, T.; Pakhomov, E.; Salo, P.; Deelen, J.; McGurnaghan, S.J.; et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci. Adv. 2020, 6, eaax0301. [Google Scholar] [CrossRef] [Green Version]
- Low, S.W.Y.; Connor, T.B.; Kassem, I.S.; Costakos, D.M.; Chaurasia, S.S. Small Leucine-Rich Proteoglycans (SLRPs) in the Retina. Int. J. Mol. Sci. 2021, 22, 7293. [Google Scholar] [CrossRef]
- Halper, J. Proteoglycans and diseases of soft tissues. Adv. Exp. Med. Biol. 2014, 802, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S. Determination of dynamic changes in the nature and biosynthesis of glycome of wt and rd1 mice retinae by lectin microarray analysis. Investig. Ophthalmol. Vis. Sci. 2014, 55, 654–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dörschmann, P.; Klettner, A. Fucoidans as Potential Therapeutics for Age-Related Macular Degeneration-Current Evidence from In Vitro Research. Int. J. Mol. Sci. 2020, 21, 9272. [Google Scholar] [CrossRef] [PubMed]
- Chintalapudi, S.R.; Wang, X.; Shi, Y.; Kocak, M.; Palamoor, M.; Davis, R.N.; Hollingsworth, T.J.; Jablonski, M.M. NA3 glycan: A potential therapy for retinal pigment epithelial deficiency. FEBS J. 2019, 286, 4876–4888. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Li, H.; Palamoor, M.; de Obarrio, W.T.; Madhura, D.; Meibohm, B.; Jablonski, M.M. Novel endogenous glycan therapy for retinal diseases: Safety, in vitro stability, ocular pharmacokinetic modeling, and biodistribution. AAPS J. 2014, 16, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, U.L.; Grigsby, D.; Cady, M.A.; Landowski, M.; Skiba, N.P.; Liu, J.; Remaley, A.T.; Klingeborn, M.; Bowes Rickman, C. High-density lipoproteins are a potential therapeutic target for age-related macular degeneration. J. Biol. Chem. 2020, 295, 13601–13616. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, N.; Chu, Y.; Postnikova, O.; Varghese, R.; Horvath, A.; Cheema, A.K.; Golestaneh, N. Dysregulated metabolic pathways in age-related macular degeneration. Sci. Rep. 2020, 10, 2464. [Google Scholar] [CrossRef] [Green Version]
- Kersten, E.; Paun, C.C.; Schellevis, R.L.; Hoyng, C.B.; Delcourt, C.; Lengyel, I.; Peto, T.; Ueffing, M.; Klaver, C.C.W.; Dammeier, S.; et al. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv. Ophthalmol. 2018, 63, 9–39. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Sharma, K.; Chen, W.; Sharma, N.K. Using current data to define new approach in age related macular degeneration: Need to accelerate translational research. Curr. Genom. 2014, 15, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Armento, A.; Ueffing, M.; Clark, S.J. The complement system in age-related macular degeneration. Cell. Mol. Life Sci. CMLS 2021, 78, 4487–4505. [Google Scholar] [CrossRef]
- Bucan, K.; Lukic, M.; Bosnar, D.; Kopic, A.; Jukic, T.; Konjevoda, S.; Glavadanovic, S.; Antunica, A.G. Analysis of association of risk factors for age-related macular degeneration. Eur. J. Ophthalmol. 2021, 32, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, M.; Forrester, J.V. Para-inflammation in the aging retina. Prog. Retin. Eye Res. 2009, 28, 348–368. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knickelbein, J.E.; Chan, C.C.; Sen, H.N.; Ferris, F.L.; Nussenblatt, R.B. Inflammatory Mechanisms of Age-related Macular Degeneration. Int. Ophthalmol. Clin. 2015, 55, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Parmeggiani, F.; Romano, M.R.; Costagliola, C.; Semeraro, F.; Incorvaia, C.; D’Angelo, S.; Perri, P.; De Palma, P.; De Nadai, K.; Sebastiani, A. Mechanism of inflammation in age-related macular degeneration. Mediat. Inflamm. 2012, 2012, 546786. [Google Scholar] [CrossRef]
- Abdelsalam, A.; Del Priore, L.; Zarbin, M.A. Drusen in age-related macular degeneration: Pathogenesis, natural course, and laser photocoagulation-induced regression. Surv. Ophthalmol. 1999, 44, 1–29. [Google Scholar] [CrossRef]
- Mullins, R.F.; Johnson, L.V.; Anderson, D.H.; Hageman, G.S. Characterization of drusen-associated glycoconjugates. Ophthalmology 1997, 104, 288–294. [Google Scholar] [CrossRef]
- Joachim, N.; Colijn, J.M.; Kifley, A.; Lee, K.E.; Buitendijk, G.H.S.; Klein, B.E.K.; Myers, C.E.; Meuer, S.M.; Tan, A.G.; Holliday, E.G.; et al. Five-year progression of unilateral age-related macular degeneration to bilateral involvement: The Three Continent AMD Consortium report. Br. J. Ophthalmol. 2017, 101, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Schaffert, A.; Hanić, M.; Novokmet, M.; Zaytseva, O.; Krištić, J.; Lux, A.; Nitschke, L.; Peipp, M.; Pezer, M.; Hennig, R.; et al. Minimal B Cell Extrinsic IgG Glycan Modifications of Pro- and Anti-Inflammatory IgG Preparations in vivo. Front. Immunol. 2019, 10, 3024. [Google Scholar] [CrossRef]
- Malhotra, R.; Wormald, M.R.; Rudd, P.M.; Fischer, P.B.; Dwek, R.A.; Sim, R.B. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1995, 1, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Tsai, M.H.; Li, S.T.; Tsai, T.I.; Chu, K.C.; Liu, Y.C.; Lai, M.Y.; Wu, C.Y.; Tseng, Y.C.; Shivatare, S.S.; et al. A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc. Natl. Acad. Sci. USA 2015, 112, 10611–10616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagan, J.D.; Kitaoka, M.; Anthony, R.M. Engineered Sialylation of Pathogenic Antibodies In Vivo Attenuates Autoimmune Disease. Cell 2018, 172, 564–577.e513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, H.; Xu, X.; Sun, F.; Zhang, X.; Dong, H.; Wang, L.; Ge, S.; An, K.; Sun, Q.; Li, Y.; et al. Hyperuricemia is Associated with Immunoglobulin G N-Glycosylation: A Community-Based Study of Glycan Biomarkers. OMICS 2019, 23, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Chu, X.; Wang, H.; Dong, J.; Ge, S.Q.; Zhao, Z.Y.; Peng, H.L.; Sun, M.; Wu, L.J.; Song, M.S.; et al. The changes of immunoglobulin G N-glycosylation in blood lipids and dyslipidaemia. J. Transl. Med. 2018, 16, 235. [Google Scholar] [CrossRef] [PubMed]
- Plackett, T.P.; Schilling, E.M.; Faunce, D.E.; Choudhry, M.A.; Witte, P.L.; Kovacs, E.J. Aging enhances lymphocyte cytokine defects after injury. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 688–689. [Google Scholar] [CrossRef] [PubMed]
- Ardeljan, D.; Chan, C.C. Aging is not a disease: Distinguishing age-related macular degeneration from aging. Prog. Retin. Eye Res. 2013, 37, 68–89. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Ko, A.; Partanen, M.; Pakzad-Vaezi, K.; Merkur, A.B.; Albiani, D.A.; Kirker, A.W.; Wang, A.; Cui, J.Z.; Forooghian, F.; et al. Relationship between systemic cytokines and complement factor H Y402H polymorphism in patients with dry age-related macular degeneration. Am. J. Ophthalmol. 2013, 156, 1176–1183. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.; Myers, C.E.; Cruickshanks, K.J.; Gangnon, R.E.; Danforth, L.G.; Sivakumaran, T.A.; Iyengar, S.K.; Tsai, M.Y.; Klein, B.E. Markers of inflammation, oxidative stress, and endothelial dysfunction and the 20-year cumulative incidence of early age-related macular degeneration: The Beaver Dam Eye Study. JAMA Ophthalmol. 2014, 132, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Habazin, S.; Mlinarević, D.; Balog, M.; Bardak, A.; Gaspar, R.; Szűcs, K.F.; Vari, S.G.; Vučković, F.; Lauc, G.; Novokmet, M.; et al. High-throughput rat immunoglobulin G N-glycosylation profiling revealed subclass-specific changes associated with chronic stress. J. Proteom. 2021, 245, 104293. [Google Scholar] [CrossRef]
- Cvetko, A.; Kifer, D.; Gornik, O.; Klarić, L.; Visser, E.; Lauc, G.; Wilson, J.F.; Štambuk, T. Glycosylation Alterations in Multiple Sclerosis Show Increased Proinflammatory Potential. Biomedicines 2020, 8, 410. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, K.; Nouso, K.; Saito, S.; Hiraoka, S.; Harada, K.; Takahashi, S.; Morimoto, Y.; Kobayashi, S.; Ikeda, F.; Miyake, Y.; et al. Serum glycan markers for evaluation of disease activity and prediction of clinical course in patients with ulcerative colitis. PLoS ONE 2013, 8, e74861. [Google Scholar] [CrossRef] [PubMed]
- Rook, G.A.; Steele, J.; Brealey, R.; Whyte, A.; Isenberg, D.; Sumar, N.; Nelson, J.L.; Bodman, K.B.; Young, A.; Roitt, I.M.; et al. Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J. Autoimmun. 1991, 4, 779–794. [Google Scholar] [CrossRef]
- Liu, Q.; Lin, J.; Han, J.; Zhang, Y.; Lu, J.; Tu, W.; Zhao, Y.; Guo, G.; Chu, H.; Pu, W.; et al. Immunoglobulin G galactosylation levels are decreased in systemic sclerosis patients and differ according to disease subclassification. Scand. J. Rheumatol. 2020, 49, 146–153. [Google Scholar] [CrossRef]
- Gligorijević, N.; Minić, S.; Križáková, M.; Katrlík, J.; Nedić, O. Structural changes of fibrinogen as a consequence of cirrhosis. Thromb. Res. 2018, 166, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Messina, A.; Palmigiano, A.; Tosto, C.; Romeo, D.A.; Sturiale, L.; Garozzo, D.; Leonardi, A. Tear N-glycomics in vernal and atopic keratoconjunctivitis. Allergy 2021, 76, 2500–2509. [Google Scholar] [CrossRef]
- Nguyen-Khuong, T.; Everest-Dass, A.V.; Kautto, L.; Zhao, Z.; Willcox, M.D.; Packer, N.H. Glycomic characterisation of basal tears and changes with diabetes and diabetic retinopathy. Glycobiology 2015, 25, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Rudan, I.; Marusić, A.; Janković, S.; Rotim, K.; Boban, M.; Lauc, G.; Grković, I.; Dogas, Z.; Zemunik, T.; Vatavuk, Z.; et al. “10001 Dalmatians:” Croatia launches its national biobank. Croat. Med. J. 2009, 50, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Campbell, H.; Carothers, A.D.; Rudan, I.; Hayward, C.; Biloglav, Z.; Barac, L.; Pericic, M.; Janicijevic, B.; Smolej-Narancic, N.; Polasek, O.; et al. Effects of genome-wide heterozygosity on a range of biomedically relevant human quantitative traits. Hum. Mol. Genet. 2007, 16, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Zillikens, M.C.; Demissie, S.; Hsu, Y.; Yerges-Armstrong, L.M.; Chou, W.; Stolk, L.; Livshits, G.; Broer, L.; Johnson, T.; Koller, D.L.; et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat. Commun. 2017, 8, 80. [Google Scholar] [CrossRef]
- Budimir, D.; Polasek, O.; Marusić, A.; Kolcic, I.; Zemunik, T.; Boraska, V.; Jeroncic, A.; Boban, B.; Campbell, H.; Rudan, I. Ethical aspects of human biobanks: A systematic review. Croat. Med. J. 2011, 52, 262–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, A.C.; Bressler, N.M.; Bressler, S.B.; Chisholm, I.H.; Coscas, G.; Davis, M.D.; de Jong, P.T.; Klaver, C.C.; Klein, B.E.; Klein, R.; et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv. Ophthalmol. 1995, 39, 367–374. [Google Scholar] [CrossRef] [Green Version]
Predictor | p | OR [95% CI] |
---|---|---|
Age (years) | <0.001 | 1.04 [1.02–1.06] |
Sex | ||
Men (Ref.) | 1.00 | |
Women | 0.065 | 1.47 [0.98–2.23] |
Years of schooling (years) | 0.101 | 1.05 [0.99–1.11] |
Material status (composite index) | 0.632 | 0.98 [0.92–1.05] |
Body mass index | 0.926 | 1.00 [0.96–1.05] |
Smoking (yes/no) | 0.883 | 1.03 [0.68–1.56] |
Hypertension (measured or medical history) | 0.795 | 1.05 [0.72–1.55] |
Diabetes (medication or medical history) | 0.403 | 0.71 [0.31–1.60] |
Augmentation index | 0.289 | 0.99 [0.96–1.01] |
Pulse wave velocity | 0.872 | 1.01 [0.92–1.11] |
Central systolic blood pressure | 0.880 | 1.00 [0.98–1.02] |
Central diastolic blood pressure | 0.309 | 1.01 [0.99–1.04] |
Serum uric acid | 0.496 | 1.01 [1.00–1.02] |
Serum glucose | 0.662 | 0.97 [0.82–1.13] |
Gout (medication or medical history) | 0.135 | 0.48 [0.18–1.26] |
Glaucoma (medication or medical history) | 0.143 | 1.79 [0.82–3.90] |
Self-reported physical activity level | 0.977 | 1.00 [0.79–1.27] |
Serum HbA1C | 0.113 | 0.81 [0.63–1.05] |
Serum cholesterol | 0.001 | 2.03 [1.35–3.05] |
Serum triglycerides | <0.001 | 1.28 [1.11–1.46] |
Serum HDL | 0.005 | 2.41 [1.30–4.46] |
Serum LDL | 0.001 | 2.13 [1.39–3.27] |
Glycan Peak | Bilateral AMD (B) | Unilateral AMD (U) | Early-Onset Drusen (e) | Controls (c) | p (F) | Pair-Wise Significance ** |
---|---|---|---|---|---|---|
GP2 * | 4.13 ± 1.23 (1.90–7.14) | 4.35 ± 1.25 (3.01–6.37) | 2.75 ± 0.81 (1.59–4.66) | 3.74 ± 1.39 (1.06–12.65) | 0.009 (3.84) | -; -; 0.033 |
GP6 * | 3.44 ± 0.74 (2.13–4.91) | 3.78 ± 0.51 (3.27–4.85) | 4.28 ± 1.00 (2.82–6.41) | 3.77 ± 0.91 (1.49–7.39) | 0.043 (2.72) | |
GP7 | 11.97 ± 4.08 (8.32–26.34) | 10.01 ± 1.1 (8.17–11.42) | 10.00 ± 1.26 (8.14–13.15) | 10.75 ± 2.42 (6.53–29.18) | 0.038 (2.82) | |
GP8 * | 8.8 ± 1.19 (6.06–11.01) | 9.42 ± 0.87 (7.86–10.39) | 10.43 ± 2.10 (7.45–16.51) | 9.41 ± 1.55 (5.74–14.93) | 0.016 (3.45) | |
DG12 | 0.93 ± 0.46 (0.42–2.29) | 0.78 ± 0.20 (0.36–1.06) | 0.73 ± 0.25 (0.39–1.14) | 0.75 ± 0.30 (0.10–2.46) | 0.029 (3.03) | 0.017; -; - |
DG13 | 0.95 ± 0.57 (0.32–2.30) | 0.70 ± 0.19 (0.34–0.97) | 0.60 ± 0.24 (0.28–1.15) | 0.68 ± 0.28 (0.18–1.95) | <0.001 (7.75) | <0.001; -; - |
G0 | 4.48 ± 1.20 (2.23–7.38) | 4.67 ± 1.18 (3.41–6.76) | 3.01 ± 0.81 (1.77–4.83) | 4.07 ± 1.36 (1.39–12.84) | 0.004 (4.42) | -; -; 0.017 |
IgG_GP3 | 0.12 ± 0.02 (0.08–0.15) | 0.11 ± 0.05 (0.04–0.18) | 0.08 ± 0.01 (0.07–0.09) | 0.10 ± 0.03 (0.03–0.18) | 0.049 (3.05) | |
IgG_GP4 | 25.22 ± 5.54 (13.66–39.43) | 22.52 ± 4.02 (18.57–29.68) | 16.19 ± 4.88 (6.93–23.3) | 20.99 ± 6.14 (6.48–47.89) | <0.001 (9.69) | <0.001; -; 0.004; |
IgG_GP6 | 6.58 ± 1.60 (4.60–12.08) | 6.37 ± 1.35 (4.78–8.93) | 4.43 ± 1.10 (2.42–6.17) | 5.61 ± 1.63 (2.10–12.86) | <0.001 (8.17) | 0.003; 0.019; 0.010 |
IgG_GP14 | 9.75 ± 2.51 (4.81–17.54) | 9.30 ± 2.29 (6.84–13.72) | 14.59 ± 3.45 (8.74–20.94) | 11.6 ± 3.67 (3.39–25.82) | <0.001 (8.50) | <0.001; 0.002; 0.002 |
IgG_GP15 | 1.41 ± 0.28 (0.76–2.31) | 1.50 ± 0.23 (1.14–1.80) | 1.76 ± 0.38 (1.14–2.49) | 1.55 ± 0.36 (0.75–3.54) | 0.009 (3.85) | |
IgG_GP18 | 7.69 ± 1.63 (4.39–12.05) | 7.20 ± 1.51 (5.05–9.86) | 11.27 ± 2.65 (6.47–17.31) | 9.07 ± 2.53 (3.29–19.38) | <0.001 (10.06) | 0.008; -; 0.001 |
IgG_GP23 | 1.83 ± 0.57 (0.86–3.43) | 1.79 ± 0.34 (1.18–2.23) | 2.25 ± 0.50 (1.31–3.32) | 2.07 ± 0.63 (0.70–4.67) | 0.040 (2.79) |
Predictor | Controls vs. All Disease Stages; P; OR (95% CI) | Controls vs. Early-Onset; P; OR (95% CI) | Controls vs. Unilateral; P; OR (95% CI) | Controls vs. Bilateral; P; OR (95% CI) |
---|---|---|---|---|
GP2 | - | 0.049; 0.61 (0.39–1.16) | ||
GP6 | - | - | 0.045; 2.42 (1.01–5.65) | - |
GP7 | - | - | 0.012; 1.16 (1.02–1.30) | |
DG13 | 0.008; 2.96 (1.28–6.43) | - | - | <0.001; 7.90 (2.94–20.95) |
G0 | - | - | - | 0.047; 1.83 (0.89–3.14) |
IgG_GP4 | - | - | 0.043; 0.83 (0.68–0.99) | - |
IgG_GP18 | - | - | 0.009; 0.43 (0.22–0.79) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bućan, I.; Škunca Herman, J.; Jerončić Tomić, I.; Gornik, O.; Vatavuk, Z.; Bućan, K.; Lauc, G.; Polašek, O. N-Glycosylation Patterns across the Age-Related Macular Degeneration Spectrum. Molecules 2022, 27, 1774. https://doi.org/10.3390/molecules27061774
Bućan I, Škunca Herman J, Jerončić Tomić I, Gornik O, Vatavuk Z, Bućan K, Lauc G, Polašek O. N-Glycosylation Patterns across the Age-Related Macular Degeneration Spectrum. Molecules. 2022; 27(6):1774. https://doi.org/10.3390/molecules27061774
Chicago/Turabian StyleBućan, Ivona, Jelena Škunca Herman, Iris Jerončić Tomić, Olga Gornik, Zoran Vatavuk, Kajo Bućan, Gordan Lauc, and Ozren Polašek. 2022. "N-Glycosylation Patterns across the Age-Related Macular Degeneration Spectrum" Molecules 27, no. 6: 1774. https://doi.org/10.3390/molecules27061774
APA StyleBućan, I., Škunca Herman, J., Jerončić Tomić, I., Gornik, O., Vatavuk, Z., Bućan, K., Lauc, G., & Polašek, O. (2022). N-Glycosylation Patterns across the Age-Related Macular Degeneration Spectrum. Molecules, 27(6), 1774. https://doi.org/10.3390/molecules27061774