Structure-Based Designing, Solvent Less Synthesis of 1,2,3,4-Tetrahydropyrimidine-5-carboxylate Derivatives: A Combined In Vitro and In Silico Screening Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Computational and Experimental Evaluation
2.1.1. Rationalization of Biological Activities by IC50 Values
2.1.2. Molecular Docking Analysis for Antioxidant Activity
2.1.3. Molecular Docking Analysis for Anti-Diabetic Activity
2.1.4. Molecular Docking Analysis for Anti-Cancer Activity
2.2. Redocking and RMSD Calculation
2.3. DFT Studies in Scope of Quantitative Structure Activity Relationship (QSAR) and Computational Description
2.3.1. Frontier Molecular Orbital Analysis (FMO) along with Optimized Structures
2.3.2. Global Reactivity Descriptors
2.3.3. Molecular Electrostatic Potential (MEP)
3. Methodology
3.1. Chemistry
3.2. General Procedure of Synthesis
3.2.1. Synthesis of Ethyl 4-(Fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5a–f)
Spectral Data of 4-(Fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate
Synthesis of Ethyl 4-(Chlorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5g,h)
3.3. Biological Assays:
3.3.1. Antioxidant (Free Radical Scavenging Activity) Using DPPH
Preparation of Stock Solution
Protocol of Free Radical Scavenging Activity
3.3.2. Anti-Diabetic Activity
Protocol of Anti-Diabetic Activity
3.3.3. Anti-Cancer Activity
Determination of Cell Viability
3.4. Molecular Docking Studies
3.4.1. Ligand and Protein Preparation
3.4.2. Molecular Docking
3.5. Density Functional Theory Studies of Target Molecules in Scope of QSAR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ali, E.M.; Abdel-Maksoud, M.S.; Oh, C.-H. Thieno[2,3-d] pyrimidine as a promising scaffold in medicinal chemistry: Recent advances. Bioorg. Med. Chem. 2019, 27, 1159–1194. [Google Scholar] [CrossRef]
- Hossain, M.; Nanda, A.K. A Review on Heterocyclic: Synthesis and Their Application in Medicinal Chemistry of Imidazole Moiety. Science 2018, 6, 83–94. [Google Scholar] [CrossRef]
- Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Pharma Chem. 2017, 9, 141–1472. [Google Scholar]
- Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 2013, 9, 2265–2319. [Google Scholar] [CrossRef][Green Version]
- Selvam, T.P.; James, C.R.; Dniandev, P.V.; Valzita, S.K. A mini review of pyrimidine and fused pyrimidine marketed drugs. Res. Pharm. 2012, 2, 1–9. [Google Scholar]
- Onajole, O.K.; Lun, S.; Yun, Y.J.; Langue, D.Y.; Jaskula-Dybka, M.; Flores, A.; Frazier, E.; Scurry, A.C.; Zavala, A.; Arreola, K.R.; et al. Design, Synthesis and biological evaluation of novel imidazo[1,2-a]pyridinecarboxamides as potent anti-tuberculosis agents. Chem. Biol. Drug Des. 2020, 96, 1362–1371. [Google Scholar] [CrossRef]
- Baumann, M.; Baxendale, I.R.; Ley, S.V. The flow synthesis of heterocycles for natural product and medicinal chemistry applications. Mol. Divers. 2011, 15, 613–630. [Google Scholar] [CrossRef]
- Lagoja, I.M. Pyrimidine as constituent of natural biologically active compounds. Chem. Biodivers. 2005, 2, 1–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Kang, D.; Tian, Y.; Daelemans, D.; Clercq, E.D.; Pannecouque, C.; Zhan, P.; Liu, X. Design, synthesis, and biological evaluation of piperidinyl-substituted [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potential anti-HIV-1 agents with reduced cytotoxicity. Chem. Biol. Drug Des. 2021, 97, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.K.; Pednekar, S.; Ganguly, S.N.; Chakraborty, G.; Manhas, M.S. A simplified green chemistry approach to the Biginelli reaction using ‘Grindstone Chemistry’. Tetrahedron Lett. 2004, 45, 8351–8353. [Google Scholar] [CrossRef]
- Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 2002, 35, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Gouverneur, V. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinial Applications; World Scientific: Singapore, 2012. [Google Scholar]
- Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D.M.; Santi, C.; Ruzziconi, R.; Soloshonok, V.A. Fluorine-Containing Drugs Approved by the FDA in 2018. Chem. A Eur. J. 2019, 25, 11797–11819. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Banik, B.K. Solvent-less reactions: Green and sustainable approaches in medicinal chemistry. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Elsevier: Amsterdam, The Netherlands, 2020; pp. 523–548. [Google Scholar]
- Avila-Ortiz, C.G.; Juaristi, E.J.M. Novel Methodologies for Chemical Activation in Organic Synthesis under Solvent-Free Reaction Conditions. Molecules 2020, 25, 3579. [Google Scholar] [CrossRef] [PubMed]
- Kataria, R.; Khatkar, A. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of Chlorogenic acid against Urease protein and H. Pylori bacterium. BMC Chem. 2019, 13, 41. [Google Scholar] [CrossRef]
- Liew, S.K.; Malagobadan, S.; Arshad, N.M.; Nagoor, N.H. A Review of the Structure–Activity Relationship of Natural and Synthetic Antimetastatic Compounds. Biomolecules 2020, 10, 138. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hameed, S.; Seraj, F.; Rafique, R.; Chigurupati, S.; Wadood, A.; Rehman, A.U.; Venugopal, V.; Salar, U.; Taha, M.; Khan, K.M. Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: Structure-activity relationship, molecular docking, and kinetic studies. Eur. J. Med. Chem. 2019, 183, 111677. [Google Scholar] [CrossRef]
- Yousuf, H.; Shamim, S.; Khan, K.M.; Chigurupati, S.; Hameed, S.; Khan, M.N.; Taha, M.; Arfeen, M. Dihydropyridines as potential α-amylase and α-glucosidase inhibitors: Synthesis, in vitro and in silico studies. Bioorg. Chem. 2020, 96, 103581. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, B.Y.; Ahn, J.B.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Lee, S.J.; Yoon, S.S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem. 2005, 40, 862–874. [Google Scholar] [CrossRef]
- Chandrakar, B.; Jain, A.; Roy, S.; Gutlapalli, V.R.; Saraf, S.; Suppahia, A.; Verma, A.; Tiwari, A.; Yadav, M.; Nayarisseri, A. Molecular modeling of Acetyl-CoA carboxylase (ACC) from Jatropha curcas and virtual screening for identification of inhibitors. J. Pharm. Res. 2013, 6, 913–918. [Google Scholar] [CrossRef]
- Bouchagra, S.; Benamia, F.; Djeghaba, Z. Docking studies of (−)-Epigallocatechin-3-gallate: A Potential Non-Competitive Pancreatic Lipase Inhibitor. J. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2493–2505. [Google Scholar]
- Zulqurnain, M.; Fahmi, M.R.G.; Fadlan, A.; Santoso, M. Synthesis and Molecular Docking Study of Pyrazine-2-Carboxylic Acid Derivatives; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 012057. [Google Scholar]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Shehata, M.R.; Atlam, F.M.; Abdel-Mawgoud, A.A. Some new Ag (I), VO (II) and Pd (II) chelates incorporating tridentate imine ligand: Design, synthesis, structure elucidation, density functional theory calculations for DNA interaction, antimicrobial and anticancer activities and molecular docking studies. Appl. Organomet. Chem. 2019, 33, e4699. [Google Scholar] [CrossRef]
- Díaz, K.; Espinoza, L.; Carvajal, R.; Conde-González, M.; Niebla, V.; Olea, A.F.; Coll, Y. Biological Activities and Molecular Docking of Brassinosteroids 24-Norcholane Type Analogs. Int. J. Mol. Sci. 2020, 21, 1832. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ashok, D.; Devulapally, M.G.; Aamate, V.K.; Gundu, S.; Adam, S.; Murthy, S.; Balasubramanian, S.; Naveen, B.; Parthasarathy, T. Novel pyrano[3,2-b] xanthen-7 (2H)-ones: Synthesis, antimicrobial, antioxidant and molecular docking studies. J. Mol. Struct. 2019, 1177, 215–228. [Google Scholar] [CrossRef]
- Mokenapelli, S.; Thalari, G.; Vadiyaala, N.; Yerrabelli, J.R.; Irlapati, V.K.; Gorityala, N.; Sagurthi, S.R.; Chitneni, P.R. Synthesis, cytotoxicity, and molecular docking of substituted 3-(2-methylbenzofuran-3-yl)-5-(phenoxymethyl)-1,2,4-oxadiazoles. J Arch. Der Pharm. 2020, 353, 2000006. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.; Uddin, M.A.R.; Zaman, M.; Sujon, K.M.; Rahman, M.E.; Shehab, M.N.; Islam, A.; Alom, M.W.; Amin, A.; Akash, A.S. Molecular docking and dynamics study of natural compound for potential inhibition of main protease of SARS-CoV-2. J. Biomol. Struct. Dyn. 2020, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kousar, K.; Majeed, A.; Yasmin, F.; Hussain, W.; Rasool, N. Phytochemicals from Selective Plants Have Promising Potential against SARS-CoV-2: Investigation and Corroboration through Molecular Docking, MD Simulations, and Quantum Computations. BioMed Res. Int. 2020, 2020, 6237160. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; Zhang, S.; Sheng, T.; Zhao, L.; Liu, Z.; Liu, J.; Wang, X. Docking field-based QSAR and pharmacophore studies on the substituted pyrimidine derivatives targeting HIV-1 reverse transcriptase. Chem. Biol. Drug Des. 2018, 91, 398–407. [Google Scholar] [CrossRef] [PubMed]
- López-Camacho, E.; García-Godoy, M.J.; García-Nieto, J.; Nebro, A.J.; Aldana-Montes, J.F. A New Multi-Objective Approach for Molecular Docking Based on RMSD and Binding Energy. In Proceedings of the International Conference on Algorithms for Computational Biology, Trujillo, Spain, 21–22 June 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 65–77. [Google Scholar]
- Modi, P.; Patel, S.; Chhabria, M.T. Identification of some novel pyrazolo[1,5-a] pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking. J. Biomol. Struct. Dyn. 2019, 37, 1736–1749. [Google Scholar] [CrossRef]
- Silva Arouche, T.D.; Reis, A.F.; Martins, A.Y.; Costa, J.F.S.; Carvalho Junior, R.N.; Neto, A.M.J.C. Interactions Between Remdesivir, Ribavirin, Favipiravir, Galidesivir, Hydroxychloroquine and Chloroquine with Fragment Molecular of the COVID-19 Main Protease with Inhibitor N3 Complex (PDB ID: 6LU7) Using Molecular Docking. J. Nanosci. Nanotechnol. 2020, 20, 7311–7323. [Google Scholar] [CrossRef]
- Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des. 2012, 26, 775–786. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yanuar, A.; Pratiwi, I.; Syahdi, R.R. In silico activity analysis of saponins and 2,5-piperazinedione from marine organism against murine double minute-2 inhibitor and procaspase-3 activator. J. Young Pharm. 2018, 10, S16. [Google Scholar] [CrossRef][Green Version]
- Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar. Drugs 2020, 18, 225. [Google Scholar] [CrossRef][Green Version]
- Sharma, K.; Morla, S.; Goyal, A.; Kumar, S. Computational guided drug repurposing for targeting 2′-O-ribose methyltransferase of SARS-CoV-2. Life Sci. 2020, 259, 118–169. [Google Scholar] [CrossRef]
- Sayin, K.; Üngördü, A. Investigation of anticancer properties of caffeinated complexes via computational chemistry methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 147–155. [Google Scholar] [CrossRef]
- Bendjeddou, A.; Abbaz, T.; Gouasmia, A.; Villemin, D. Molecular structure, HOMO-LUMO, MEP and Fukui function analysis of some TTF-donor substituted molecules using DFT (B3LYP) calculations. Int. Res. J. Pure Appl. Chem. 2016, 12, 1–9. [Google Scholar] [CrossRef]
- Ozdemir, U.O.; Ilbiz, F.; Gunduzalp, A.B.; Ozbek, N.; Genc, Z.K.; Hamurcu, F.; Tekin, S. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities. J. Mol. Struct. 2015, 1100, 464–474. [Google Scholar] [CrossRef]
- Abbaz, T.; Bendjeddou, A.; Villemin, D. Density Functional Theory Studies On Molecular Structure And Electronic Properties Of sulfanilamide, Sulfathiazole, E7070 And Furosemide Molecules. J. Appl. Chem. 2019, 12, 60–69. [Google Scholar]
- Honarparvar, B.; Pawar, S.A.; Alves, C.N.; Lameira, J.; Maguire, G.E.; Silva, J.R.A.; Govender, T.; Kruger, H.G. Pentacycloundecane lactam vs lactone norstatine type protease HIV inhibitors: Binding energy calculations and DFT study. J. Biomed. Sci. 2015, 22, 15. [Google Scholar] [CrossRef][Green Version]
- Ahmed, M.N.; Yasin, K.A.; Hameed, S.; Ayub, K.; Haq, I.-u.; Tahir, M.N.; Mahmood, T. Synthesis, structural studies and biological activities of three new 2-(pentadecylthio)-5-aryl-1, 3, 4-oxadiazoles. J. Mol. Struct. 2017, 1129, 50–59. [Google Scholar] [CrossRef]
- Ajeel, F.N.; Khudhair, A.M.; Mohammed, A.A. Density functional theory investigation of the physical properties of dicyano pyridazine molecules. Int. J. Sci. Res. 2015, 4, 2334–2339. [Google Scholar]
- Horchani, M.; Hajlaoui, A.; Harrath, A.H.; Mansour, L.; Jannet, H.B.; Romdhane, A. New pyrazolo-triazolo-pyrimidine derivatives as antibacterial agents: Design and synthesis, molecular docking and DFT studies. J. Mol. Struct. 2020, 1199, 127007. [Google Scholar] [CrossRef]
- Banothu, J.; Vaarla, K.; Bavantula, R.; Crooks, P.A. Sodium fluoride as an efficient catalyst for the synthesis of 2, 4-disubstituted-1, 3-thiazoles and selenazoles at ambient temperature. Chin. Chem. Lett. 2014, 25, 172–175. [Google Scholar] [CrossRef]
- Milinkevich, K.A.; Ye, L.; Kurth, M.J. Synthesis of 5-(thiazol-5-yl)-4,5-dihydroisoxazoles from 3-chloropentane-2,4-dione. J. Comb. Chem. 2008, 10, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Shahid, M.; Javed, K. Antioxidant, antiglycation and alpha Amylase inhibitory activities of Cassia absus seeds. Int. Sci. Org. Curr. Sci. Perspect. 2015, 2, 5–9. [Google Scholar]
- Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Sudha, P.; Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement. Altern. Med. 2011, 11, 5. [Google Scholar]
- Zarren, G.; Shafiq, N.; Arshad, U.; Rafiq, N.; Parveen, S.; Ahmad, Z. opper-catalyzed one-pot relay synthesis of anthraquinone based pyrimidine derivative as a probe for antioxidant and antidiabetic activity. J. Mol. Struct. 2021, 1227, 129668. [Google Scholar] [CrossRef]
- Dineshkumar, B.; Mitra, A.; Manjunatha, M. A comparative study of alpha amylase inhibitory activities of common anti-diabetic plants at Kharagpur 1 block. Int. J. Green Pharm. IJGP 2010, 4, 115. [Google Scholar]
- Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 2006, 160, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell viability assays. In Assay Guidance Manual [University of Puerto Rico, Río Piedras]; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Indianapolis, IN, USA, 2016. [Google Scholar]
- Sekhar, T.; Thriveni, P.; Ramesh, K.; Prasad, P.G.; Srihari, I.; Gorityala, N.; Sagurthi, S.R.; Sankar, A.U. Green synthesis, antitubercular evaluation, and molecular docking studies of ethyl 3,5-dicyano-6-oxo-2,4-diarylpiperidine-3-carboxylate derivatives. J Med. Chem. Res. 2020, 29, 748–758. [Google Scholar] [CrossRef]
- Acharya, R.; Chacko, S.; Bose, P.; Lapenna, A.; Pattanayak, S.P. Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. J. Sci. Rep. 2019, 9, 15743. [Google Scholar] [CrossRef] [PubMed]
- Aijijiyah, N.P.; Fahmi, M.R.G.; Fatmawati, S.; Santoso, M. Synthesis and Molecular Docking Study of 6-Chloropyrazine-2-Carboxylic acid Derivatives; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 012002. [Google Scholar]
- Dhineshkumar, E.; Uma, D. Novel Synthesis, spectral, characterization of 4, 5-diphenyl-1-((tetrahydrofuran-2-yl) methyl)-2-(3, 4, 5-trichlorophenyl)-1H-imidazole and its applications of molecular docking, anticancer activity. J. World News Nat. Sci. 2020, 30, 214–223. [Google Scholar]
- Sridhar, S.; Palawat, S.; Paul, A.T. Design, Synthesis, Biological Evaluation and Molecular Modelling Studies of Conophylline Inspired Novel Indolyl Oxoacetamides as Potent Pancreatic Lipase Inhibitors. New J. Chem. 2020, 44, 12355–12369. [Google Scholar]
- Liu, L.; Ma, H.; Yang, N.; Tang, Y.; Guo, J.; Tao, W. A series of natural flavonoids as thrombin inhibitors: Structure-activity relationships. Thromb. Res. 2010, 126, e365–e378. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Udhwani, T.; Sharma, S.; Gandhe, A.; Reddy, P.B.; Nayarisseri, A.; Singh, S.K. Design of novel JAK3 Inhibitors towards Rheumatoid Arthritis using molecular docking analysis. Bioinformation 2019, 15, 68–78. [Google Scholar] [CrossRef]
- Turkan, F.; Cetin, A.; Taslimi, P.; Karaman, H.S.; Gulçin, İ. Synthesis, characterization, molecular docking and biological activities of novel pyrazoline derivatives. Arch. Pharm. 2019, 352, 1800359. [Google Scholar] [CrossRef] [PubMed]
- Kohn, W.; Becke, A.D.; Parr, R.G. Density functional theory of electronic structure. J. Phys. Chem. 1996, 100, 12974–12980. [Google Scholar] [CrossRef][Green Version]
- Farag, A.M.; Fahim, A.M. Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives. J. Mol. Struct. 2019, 1179, 304–314. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Misra, N. A comparative theoretical study on the biological activity, chemical reactivity, and coordination ability of dichloro-substituted(1,3-thiazol-2-yl) acetamides. Can. J. Chem. 2014, 92, 234–239. [Google Scholar] [CrossRef]
Carbon Atom Number | Functional Group R = F, Cl | Chemical Shift δ (ppm) |
---|---|---|
2-C′ | F | 132.26 |
2-C′ | H | 113.44 |
3-C′ | F | 132.26 |
3-C′ | H | 115.24 |
4-C′ | F | 160.17 |
4-C′ | H | 128.88 |
5-C′ | H | 125.24 |
6-C′ | H | 130.52 |
3-C′ | Cl | 133.4 |
Carbon Number | Functional Group X = O, S | Chemical Shift δ (ppm) |
---|---|---|
2-C | O | 152.48 |
2-C | S | 174.57 |
Molecular Structure Activity Relationship | Quantum Chemical Parameters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EHOMO (eV) | ELUMO (eV) | ΔE (eV) | µ (Debye) | η (eV) | S (eV) | χ (eV) | CP | N | Ω | I (eV) | E (Hatree) | ΔNmax | |
5a | −0.22048 | −0.03624 | 0.18424 | 2.996 | 0.0921 | 5.427 | 0.128 | −0.128 | 11.183 | 0.08942 | 0.22048 | −972.22 | 1.389 |
5b | −0.22885 | −0.04199 | 0.18686 | 1.070 | 0.09343 | 5.351 | 0.135 | −0.135 | 10.189 | 0.09814 | 0.22885 | −972.22 | 1.444 |
5c | −0.22736 | −0.04226 | 0.1851 | 2.384 | 0.09255 | 5.402 | 0.134 | −0.134 | 10.185 | 0.09818 | 0.22736 | −972.22 | 1.447 |
5d | −0.21054 | −0.05760 | 0.15294 | 4.441706 | 0.07674 | 6.538 | 0.134 | −0.134 | 8.510 | 0.1175 | 0.21054 | −1293.64 | 1.753 |
5e | −0.21363 | −0.06264 | 0.15099 | 4.622320 | 0.07549 | 6.623 | 0.138 | −0.134 | 7.917 | 0.1263 | 0.21363 | −1293.64 | 1.829 |
5f | −0.21332 | −0.06257 | 0.15075 | 5.548142 | 0.07537 | 6.633 | 0.137 | −0.137 | 7.930 | 0.1261 | 0.21332 | −1293.64 | 1.829 |
5g | −0.22984 | −0.04474 | 0.1851 | 3.909035 | 0.09255 | 5.402 | 0.137 | −0.137 | 9.842 | 0.1016 | 0.22984 | −1330.91 | 1.480 |
5h | −0.21602 | −0.06456 | 0.15146 | 4.660382 | 0.07573 | 6.602 | 0.140 | −0.140 | 7.710 | 0.129 | 0.21602 | −1652.33 | 1.851 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, U.; Ahmed, S.; Shafiq, N.; Ahmad, Z.; Hassan, A.; Akhtar, N.; Parveen, S.; Mehmood, T. Structure-Based Designing, Solvent Less Synthesis of 1,2,3,4-Tetrahydropyrimidine-5-carboxylate Derivatives: A Combined In Vitro and In Silico Screening Approach. Molecules 2021, 26, 4424. https://doi.org/10.3390/molecules26154424
Arshad U, Ahmed S, Shafiq N, Ahmad Z, Hassan A, Akhtar N, Parveen S, Mehmood T. Structure-Based Designing, Solvent Less Synthesis of 1,2,3,4-Tetrahydropyrimidine-5-carboxylate Derivatives: A Combined In Vitro and In Silico Screening Approach. Molecules. 2021; 26(15):4424. https://doi.org/10.3390/molecules26154424
Chicago/Turabian StyleArshad, Uzma, Sibtain Ahmed, Nusrat Shafiq, Zaheer Ahmad, Aqsa Hassan, Naseem Akhtar, Shagufta Parveen, and Tahir Mehmood. 2021. "Structure-Based Designing, Solvent Less Synthesis of 1,2,3,4-Tetrahydropyrimidine-5-carboxylate Derivatives: A Combined In Vitro and In Silico Screening Approach" Molecules 26, no. 15: 4424. https://doi.org/10.3390/molecules26154424