Activity of Compounds from Temperate Propolis against Trypanosoma brucei and Leishmania mexicana
Abstract
:1. Introduction
2. Results
2.1. Extracts
2.2. Testing of Crude Extracts against Trypansomes
2.3. Characterisation of Compounds Isolated from Propolis
2.3.1. Characterisation of Pinobanksin-3-O-Acetate
2.3.2. Characterization of Tectochrysin
2.3.3. Characterization of Faempferol
2.3.4. Characterization of Pinocembrin
2.3.5. Characterization of 4′-Methoxykaempferol
2.3.6. Characterization of Galangin
2.3.7. Characterization of Chrysin
2.3.8. Characterization of Apigenin
2.3.9. Characterization of Pinostrobin
2.3.10. Characterization Cinnamic Acid
2.3.11. Characterization of Coumaric Acid Cinnamyl Ester as Part of a Mixture
2.3.12. Characterization of Coumaric Acid Benzyl Ester as Part of Mixture
2.3.13. Characterization of 4′,7-Dimethoxykaempferol
2.3.14. Characterization of Naringenin 4′,7-Dimethyl Ether
2.4. Biological Activity for the Compounds Isolated from Temperate Propolis Samples against T. brucei and L. mexicana
3. Discussion
4. Materials and Methods
4.1. Chemicals and Laboratory Materials
4.2. Chromatography
4.3. Extraction of Propolis Samples
4.4. General Profiling of Crude Samples of Propolis
4.5. Fractionation of Extracts
4.5.1. General Method 1: Column Chromatography
4.5.2. General Method 2: Vacuum Liquid Chromatography (VLC)
4.5.3. General Method 3: Gel Filtration Chromatography (GF)
4.5.4. General Method 4: Medium Pressure Liquid Chromatography (MPLC)
4.5.5. Fractionation of Individual Propolis Extracts
Fractionation of Sample S224
Fractionation of Sample D7
Fractionation of Sample D6
Fractionation of Sample S225
Fractionation of Sample P
4.6. Thin Layer Chromatography (TLC)
4.7. Structure Elucidation
4.8. Anti-Trypanosomal Assay
4.9. Strains and Cultures
4.10. Testing against L. mexicana
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef]
- Siheri, W.; Alenezi, S.; Tusiimire, J.; Watson, D.G. The Chemical and Biological Properties of Propolis. In Bee Products—Chemical and Biological Properties; Alvarez-Suarez, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 137–178. [Google Scholar]
- Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Ghisalberti, E.L. Propolis: A Review. Bee World 1979, 60, 59–84. [Google Scholar] [CrossRef]
- El Sohaimy, S.; Masry, S. Phenolic content, antioxidant and antimicrobial activities of Egyptian and Chinese propolis. Am. Eurasian. J. Agric. Environ. Sci. 2014, 14, 1116–1124. [Google Scholar]
- Anjum, S.I.; Ullah, A.; Khan, K.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- Giordani, F.; Morrison, L.; Rowan, T.G.; De Koning, H.P.; Barrett, M.P. The animal trypanosomiases and their chemotherapy: A review. Parasitol. 2016, 143, 1862–1889. [Google Scholar] [CrossRef] [PubMed]
- Munday, J.C.; Eze, A.A.; Baker, N.; Glover, L.; Clucas, C.; Aguinaga Andrés, D.; Natto, M.J.; Teka, I.A.; McDonald, J.; Lee, R.S.; et al. Trypanosoma brucei Aquaglyceroporin 2 is a high affinity transporter for pentamidine and melaminophenyl ar-senic drugs and is the main genetic determinant of resistance to these drugs. J. Antimicrob. Chemother. 2014, 69, 651–663. [Google Scholar] [CrossRef]
- De Koning, H.P. The Drugs of Sleeping Sickness: Their Mechanisms of Action and Resistance, and a Brief History. Trop. Med. Infect. Dis. 2020, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steverding, D. The history of African trypanosomiasis. Parasit. Vectors 2008, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ravoet, J.; Maharramov, J.; Meeus, I.; De Smet, L.; Wenseleers, T.; Smagghe, G.; De Graaf, D.C. Comprehensive Bee Pathogen Screening in Belgium Reveals Crithidia mellificae as a New Contributory Factor to Winter Mortality. PLoS ONE 2013, 8, e72443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regan, T.; Barnett, M.W.; Laetsch, D.R.; Bush, S.J.; Wragg, D.; Budge, G.E.; Highet, F.; Dainat, B.; De Miranda, J.R.; Watson, M.; et al. Characterisation of the British honey bee metagenome. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, R.S.; Bauchan, G.R.; Murphy, C.A.; Ravoet, J.; de Graaf, D.C.; Evans, J.D. Characterization of twos of Trypanoso-matidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. J. Eukaryot. Microbiol. 2015, 62, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Ravoet, J.; Schwarz, R.S.; Descamps, T.; Yañez, O.; Tozkar, C.O.; Hernández, R.M.; Bartolomé, C.; De Smet, L.; Higes, M.; Wenseleers, T.; et al. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J. Invertebr. Pathol. 2015, 130, 21–27. [Google Scholar] [CrossRef]
- Castelli, L.; Branchiccela, B.; Invernizzi, C.; Tomasco, I.; Basualdo, M.; Rodriguez, M.; Zunino, P.; Antúnez, K. Detection of Lotmaria passim in Africanized and European honey bees from Uruguay, Argentina and Chile. J. Invertebr. Pathol. 2019, 160, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Quintana, S.; Plischuk, S.; Brasesco, C.; Revainera, P.; García, M.L.G.; Bravi, M.E.; Reynaldi, F.; Eguaras, M.; Maggi, M. Lotmaria passim (Kinetoplastea: Trypanosomatidae) in honey bees from Argentina. Parasitol. Int. 2021, 81, 102244. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-González, M.X.; Brown, M.J.F. Honey bee and bumblebee trypanosomatids: Specificity and potential for transmission. Ecol. Èntomol. 2006, 31, 616–622. [Google Scholar] [CrossRef]
- Omar, R.; Igoli, J.O.; Zhang, T.; Gray, A.I.; Ebiloma, G.U.; Clements, C.J.; Fearnley, J.; Ebel, R.E.; Paget, T.; De Koning, H.P.; et al. The Chemical Characterization of Nigerian Propolis samples and Their Activity Against Trypanosoma brucei. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Omar, R.M.K.; Igoli, J.; Gray, A.I.; Ebiloma, G.U.; Clements, C.; Fearnley, J.; Edrada-Ebel, R.; Zhang, T.; De Koning, H.P.; Watson, D.G. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma Brucei. Phytochem. Anal. 2016, 27, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Siheri, W.; Zhang, T.; Ebiloma, G.U.; Biddau, M.; Woods, N.; Hussain, M.Y.; Clements, C.J.; Fearnley, J.; Edrada-Ebel, R.; Paget, T.; et al. Chemical and Antimicrobial Profiling of Propolis from Different Regions within Libya. PLoS ONE 2016, 11, e0155355. [Google Scholar] [CrossRef] [Green Version]
- Siheri, W.; Ebiloma, G.U.; Igoli, J.O.; Gray, A.I.; Biddau, M.; Akrachalanont, P.; Alenezi, S.; Alwashih, M.A.; Edrada-Ebel, R.; Muller, S.; et al. Isolation of a Novel Flavanonol and an Alkylresorcinol with Highly Potent Anti-Trypanosomal Activity from Libyan propolis. Molecules 2019, 24, 1041. [Google Scholar] [CrossRef] [Green Version]
- Ebiloma, G.U.; Ichoron, N.; Siheri, W.; Watson, D.G.; Igoli, J.O.; De Koning, H.P. The Strong Anti-Kinetoplastid Properties of Bee Propolis: Composition and Identification of the Active Agents and Their Biochemical Targets. Molecules 2020, 25, 5155. [Google Scholar] [CrossRef]
- Alotaibi, A.; Ebiloma, G.U.; Williams, R.; Alenezi, S.; Donachie, A.-M.; Guillaume, S.; Igoli, J.O.; Fearnley, J.; De Koning, H.P.; Watson, D.G. European propolis is highly active against trypanosomatids including Crithidia fasciculata. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- De Koning, H.P.; MacLeod, A.; Barrett, M.; Cover, B.; Jarvis, S.M. Further evidence for a link between melarsoprol resistance and P2 transporter function in African trypanosomes. Mol. Biochem. Parasitol. 2000, 106, 181–185. [Google Scholar] [CrossRef]
- Matovu, E.; Stewart, M.L.; Geiser, F.; Brun, R.; Mäser, P.; Wallace, L.J.; Burchmore, R.J.; Enyaru, J.C.; Barrett, M.P.; Kaminsky, R.; et al. Mechanisms of Arsenical and Diamidine Uptake and Resistance in Trypanosoma brucei. Eukaryot. Cell 2003, 2, 1003–1008. [Google Scholar] [CrossRef] [Green Version]
- Bridges, D.J.; Gould, M.K.; Nerima, B.; Mäser, P.; Burchmore, R.J.S.; De Koning, H.P. Loss of the High-Affinity Pentamidine Transporter Is Responsible for High Levels of Cross-Resistance between Arsenical and Diamidine Drugs in African Trypanosomes. Mol. Pharmacol. 2007, 71, 1098–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwish, R.M.; Ra’ed, J.; Zarga, M.H.A.; Nazer, I.K. Antibacterial effect of Jordanian propolis and isolated flavonoids against human pathogenic bacteria. Afr. J. Biotechnol. 2010, 9, 36. [Google Scholar]
- Talzhanov, N.A.; Sadyrbekov, D.T.; Smagulova, F.M.; Mukanov, R.M.; Raldugin, V.A.; Shakirov, M.M.; Tkachev, A.V.; Atazhanova, G.A.; Tuleuov, B.I.; Adekenov, S.M. Components of Artemisia pontica. Chem. Nat. Compd. 2005, 41, 178–181. [Google Scholar] [CrossRef]
- Rosandy, A.R.; Din, L.B.; Yaacob, W.; Yusoff, N.I.; Sahidin, I.; Latip, J.; Nataqain, S.; Noor, N.M. Isolation and characterization of compounds from the stem bark of Uvaria rufa (Annonaceae). Malays. J. Anal. Sci. 2013, 17, 50–58. [Google Scholar]
- Bertelli, D.; Papotti, G.; Bortolotti, L.; Marcazzan, G.L.; Plessi, M. 1H-NMR Simultaneous Identification of Health-Relevant Compounds in Propolis Extracts. Phytochem. Anal. 2011, 23, 260–266. [Google Scholar] [CrossRef]
- Yang, N.; Qin, S.; Wang, M.; Chen, B.; Yuan, N.; Fang, Y.; Yao, S.; Jiao, P.; Yu, Y.; Zhang, Y. Pinocembrin, a major flavonoid in propolis, improves the biological functions of EPCs derived from rat bone marrow through the PI3K-eNOS-NO signaling pathway. Cytotechnology 2013, 65, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Granados-Pineda, J.; Uribe-Uribe, N.; Garcia-Lopez, P.; Godinez, M.D.P.R.; Rivero-Cruz, J.F.; Pérez-Rojas, J.M. Effect of Pinocembrin Isolated from Mexican Brown Propolis on Diabetic Nephropathy. Molecules 2018, 23, 852. [Google Scholar] [CrossRef] [Green Version]
- Lotti, C.; Fernandez, M.C.; Piccinelli, A.L.; Cuesta-Rubio, O.; Hernández, I.M.; Rastrelli, L. Chemical Constituents of Red Mexican Propolis. J. Agric. Food Chem. 2010, 58, 2209–2213. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Moon, B.; Park, Y.; Hong, S.; Lee, S.; Lee, Y.; Lim, Y. Effects of Hydroxy and Methoxy Substituents on NMR Data in Flavonols. Bull. Korean Chem. Soc. 2008, 29, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Sampietro, D.A.; Vattuone, M.M.S.; Vattuone, M.A. Immunomodulatory activity of Apis mellifera propolis from the North of Argentina. LWT Food Sci. Technol. 2016, 70, 9–15. [Google Scholar] [CrossRef]
- Schinor, E.; Salvador, M.; Ito, I.; De Albuquerque, S.; Dias, D. Trypanocidal and antimicrobial activities of Moquinia kingii. Phytomedicine 2004, 11, 224–229. [Google Scholar] [CrossRef]
- Lee, I.-K.; Han, M.-S.; Kim, D.-W.; Yun, B.-S. Phenylpropanoid acid esters from Korean propolis and their antioxidant activities. Bioorganic Med. Chem. Lett. 2014, 24, 3503–3505. [Google Scholar] [CrossRef] [PubMed]
- Star, A.E.; Rösler, H.; Mabry, T.J.; Smith, D.M. Flavonoid and ceroptin pigments from frond exudates of Pityrogramma trian-gularis. Phytochemistry 1975, 14, 2275–2278. [Google Scholar] [CrossRef]
- Kim, J.; Park, K.; Lee, C.; Chang, Y. Synthesis of a Complete Series of O-Methyl Analogues of Naringenin and Apigenin. Bull. Korean Chem. Soc. 2007, 28, 2527–2530. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.J.; Candlish, D.; De Koning, H.P. Different substrate recognition motifs of human and trypanosome nucleobase transporters: Selective uptake of purine antimetabolites. J. Biol. Chem. 2002, 277, 26149–26156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eze, A.A.; Gould, M.K.; Munday, J.C.; Tagoe, D.N.A.; Stelmanis, V.; Schnaufer, A.; De Koning, H.P. Reduced Mitochondrial Membrane Potential Is a Late Adaptation of Trypanosoma brucei brucei to Isometamidium Preceded by Mutations in the γ Subunit of the F1Fo-ATPase. PLOS Neglected Trop. Dis. 2016, 10, e0004791. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, R.; Borgonovo, G.; Leoni, V.; Giupponi, L.; Ceciliani, G.; Sala, S.; Bassoli, A.; Giorgi, A. Effectiveness of Different Analytical Methods for the Characterization of Propolis: A Case of Study in Northern Italy. Molecules 2020, 25, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catchpole, O.; Mitchell, K.; Bloor, S.; Davis, P.; Suddes, A. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells. Fitoterapia 2015, 106, 167–174. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Bogdanov, S.; Sabatini, A.-G. Chemical composition of European propolis: Expected and unexpected results. Zeitschrift Naturforschung C 2002, 57, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Silici, S.; Kaftanoglu, O.; Bankova, V. Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomedicine 2005, 12, 221–228. [Google Scholar] [CrossRef]
- Delespaux, V.; De Koning, H.P. Drugs and drug resistance in African trypanosomiasis. Drug Resist. Updat. 2007, 10, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Munday, J.C.; Esettimo, L.; De Koning, H.P. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Front. Pharmacol. 2015, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Collar, C.J.; Al-Salabi, M.I.; Stewart, M.L.; Barrett, M.; Wilson, W.; de Koning, H.P. Predictive Computational Models of Substrate Binding by a Nucleoside Transporter. J. Biol. Chem. 2009, 284, 34028–34035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, I.; Creek, D.; Watson, D.G.; Kamleh, M.A.; Woods, D.J.; Wong, P.E.; Burchmore, R.J.S.; Barrett, M.P. A Molecular Mechanism for Eflornithine Resistance in African Trypanosomes. PLoS Pathog. 2010, 6, e1001204. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, A.H.; Munday, J.C.; Campagnaro, G.D.; Gurvic, D.; Svensson, F.; Okpara, C.E.; Kumar, A.; Quintana, J.; Abril, M.E.M.; Milić, P.; et al. Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei. eLife 2020, 9. [Google Scholar] [CrossRef]
- Maciejewicz, W. Isolation of flavonoid aglycones from propolis by a column chromatography method and their identification by GC-MS and TLC methods. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 1171–1179. [Google Scholar] [CrossRef]
- Prytzyk, E.; Dantas, A.P.; Salomão, K.; Pereira, A.S.; Bankova, V.S.; Castro, S.L.; Neto, F.R.A. Flavonoids and trypanocidal activity of Bulgarian propolis. J. Ethnopharmacol. 2003, 88, 189–193. [Google Scholar] [CrossRef]
- Räz, B.; Iten, M.; Grether-Bühler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997, 68, 139–147. [Google Scholar] [CrossRef]
- Gould, M.K.; Vu, X.L.; Seebeck, T.; De Koning, H.P. Propidium iodide-based methods for monitoring drug action in the ki-netoplastidae: Comparison with the Alamar Blue assay. Anal. Biochem. 2008, 382, 87–93. [Google Scholar] [CrossRef] [PubMed]
Serial Number | Sample Code | Sample Origin | Weight of Sample (g) | Weight of Ethanol Extract (g) |
---|---|---|---|---|
1 | S224 | Midlands—UK | 26 | 11.5 |
2 | S225 | Essex—UK | 33 | 15 |
3 | D6 | Northampton shire —UK | 13 | 7.5 |
4 | D7 | Essex—UK | 18 | 10 |
5 | P | Poland | 30 | 16 |
Sample Code | Tb S427WT | B48 | ||||
---|---|---|---|---|---|---|
AVR µg/mL | SEM | AVR µg/mL | SEM | RF | T-TEST | |
S224 | 5.28 | 0.51 | 4.7 | 0.31 | 0.89 | 0.395 |
S225 | 14.04 | 0.13 | 10.6 | 1.64 | 0.75 | 0.102 |
D6 | 4.49 | 0.22 | 3.0 | 0.20 | 0.66 | 0.007 |
D7 | 5.97 | 0.17 | 4.6 | 0.26 | 0.78 | 0.013 |
P | 4.45 | 0.08 | 6.6 | 0.18 | 1.49 | <0.001 |
Pentamidine * | 0.0027 | <0.001 | 0.6 | 0.01 | 226.61 | <0.001 |
TbS427WT | B48 | ISMR1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound | AVG µM | SEM µM | AVG µM | SEM µM | RF | t-Test | AVG µM | SEM µM | RF | t-Test |
Tectochrysin | n.a. | n.a. | n.a. | n.a. | -- | -- | n.a. | n.a. | -- | -- |
Kaempferol | 24.0 | 0.6 | 30.2 | 1.8 | 1.26 | 0.017 | 28.4 | 2.1 | 1.18 | 0.095 |
Pinocembrin | 63.8 | 2.4 | 83.4 | 3.5 | 1.31 | 0.003 | 81.0 | 4.8 | 1.27 | 0.019 |
4′-Methoxykaempferol | 15.2 | 0.4 | 22.4 | 0.3 | 1.48 | 0.00001 | 21.1 | 0.6 | 1.39 | 0.00017 |
Galangin | 28.2 | 1.3 | 32.2 | 2.7 | 1.14 | 0.23 | 26.3 | 1.2 | 0.93 | 0.32 |
Chrysin | 69.0 | 2.0 | 106 | 2.6 | 1.53 | 0.00003 | 84.0 | 6.7 | 1.22 | 0.076 |
Apigenin | 25.0 | 0.5 | 29.1 | 0.3 | 1.17 | 0.0005 | 32.3 | 3.4 | 1.29 | 0.076 |
Pinostrobin | 52.9 | 0.4 | 56.3 | 1.6 | 1.07 | 0.078 | 56.7 | 1.6 | 1.07 | 0.054 |
Cinnamic acid | 62.2 | 2.8 | 84.6 | 1.4 | 1.36 | 0.0004 | 64.5 | 4.3 | 1.04 | 0.67 |
Kaempferol 4′ 7-dimethyl ether | 95.2 | 7.7 | 103 | 4.6 | 1.08 | 0.40 | 94.1 | 8.4 | 0.99 | 0.926 |
Naringenin 4′,7-dimethyl ether | 17.5 | 0.4 | 21.9 | 0.3 | 1.25 | 0.00012 | 16.1 | 0.3 | 0.92 | 0.030 |
Coumaric acid cinnamyl ester and Coumaric acid benzyl ester | 45.8 | 1.0 | 51.7 | 0.9 | 1.13 | 0.004 | 52.6 | 1.6 | 1.15 | 0.012 |
Pentamidine | 0.0024 | 0.0004 | 0.47 | 0.04 | 196 | 0.00003 | 0.053 | 0.002 | 21.8 | <0.0001 |
Leish WT | C12Rx | ||||
---|---|---|---|---|---|
Sample | AVG (µM) | SEM (µM) | AVG (µM) | SEM (µM) | RF |
Pinobanksin 3-O-acetate | 163 | 37 | n.t. | n.t. | |
Tectochrysin | >400 | 308 | 33 | ||
Kaempferol | 414 | 130 | n.t. | n.t. | |
Pinostrobin | 25.1 | 2.9 | 6.1 | 1.0 | 0.24 |
4′-methoxykaempferol | 41.4 | 8.6 | 10.4 | 0.9 | 0.25 |
Galangin | 20.2 | 5.0 | 54.4 | 12.7 | 2.6 |
Chrysin | 17.6 | 1.7 | 21.4 | 3.4 | 1.25 |
Apigenin | 24.3 | 3.0 | 10.3 | 0.9 | 0.43 |
Pinocembrin | 60.9 | 7.8 | 31.5 | 4.4 | 0.52 |
Cinnamic acid | 111 | 14 | 34.6 | 6.8 | 0.31 |
Naringenin 4′7- dimethyl ether | 17.8 | 0.9 | 14.0 | 1.7 | 0.79 |
Coumaric acid cinnamyl/benzyl ester | 13.1 | 1.00 | 13.6 | 2.5 | 1.04 |
Kaempferol 4′ 7-dimethyl ether | 12.9 | 3.7 | n.t. | n.t. | |
Miltefosine | 4.91 | 0.14 | 70.5 | 3.8 | 14.4 |
Time | Solvent A (%) | Solvent B (%) | Flow Rate µL/min |
---|---|---|---|
0.00 | 70.0 | 30.0 | 300 |
30.0 | 0.00 | 100.0 | 300 |
40.0 | 0.00 | 100.0 | 300 |
41.0 | 70.0 | 30.0 | 300 |
50.0 | 70.0 | 30.0 | 300 |
100.0 | 0.00 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, A.; Ebiloma, G.U.; Williams, R.; Alfayez, I.A.; Natto, M.J.; Alenezi, S.; Siheri, W.; AlQarni, M.; Igoli, J.O.; Fearnley, J.; et al. Activity of Compounds from Temperate Propolis against Trypanosoma brucei and Leishmania mexicana. Molecules 2021, 26, 3912. https://doi.org/10.3390/molecules26133912
Alotaibi A, Ebiloma GU, Williams R, Alfayez IA, Natto MJ, Alenezi S, Siheri W, AlQarni M, Igoli JO, Fearnley J, et al. Activity of Compounds from Temperate Propolis against Trypanosoma brucei and Leishmania mexicana. Molecules. 2021; 26(13):3912. https://doi.org/10.3390/molecules26133912
Chicago/Turabian StyleAlotaibi, Adullah, Godwin U. Ebiloma, Roderick Williams, Ibrahim A. Alfayez, Manal J. Natto, Sameah Alenezi, Weam Siheri, Malik AlQarni, John O. Igoli, James Fearnley, and et al. 2021. "Activity of Compounds from Temperate Propolis against Trypanosoma brucei and Leishmania mexicana" Molecules 26, no. 13: 3912. https://doi.org/10.3390/molecules26133912