Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities
Abstract
:1. Introduction
2. Effects Against Systemic Diseases
2.1. Diseases of the Circulatory System
2.1.1. Hypertension
2.1.2. Heart Disease
2.1.3. Stroke
2.2. Diseases of the Endocrine System
2.2.1. Diabetes
2.2.2. Obesity
2.2.3. Hypercholesterolemia
2.2.4. Hyperuricemia
2.3. Diseases of the Digestive System
2.3.1. Nonalcoholic Fatty Liver Disease
2.3.2. Alcoholic Fatty Liver Disease
2.3.3. Gastric Lesions
2.4. Diseases of the Urinary System
2.4.1. Benign Prostatic Hyperplasia
2.4.2. Renal Injury
2.5. Eye Diseases
2.5.1. Glaucoma
2.5.2. Retinopathy
2.5.3. Myopia
2.6. Diseases of the Nervous System
2.6.1. Alzheimer’s Disease
2.6.2. Parkinson’s Disease
2.7. Diseases of the Immune System
2.7.1. Allergic Diseases
2.7.2. Autoimmune Diseases
3. Anticancer Effects
3.1. Tumors of the Digestive System
3.1.1. Colorectal Cancer
3.1.2. Liver Cancer
3.1.3. Esophageal Cancer
3.1.4. Pancreatic Cancer
3.1.5. Oral Cancer
3.2. Tumors of the Endocrine System
3.2.1. Breast Cancer
3.2.2. Ovarian Cancer
3.2.3. Thyroid Cancer
3.3. Prostate and Bladder Cancer
3.4. Other Cancers
4. Effects Against Infectious Disease
4.1. Antimicrobial Effects
4.2. Antiviral Effects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Cy | Cyanidin |
C3G | Cyanidin-3-glucoside |
C3R | Cyanidin-3-rutinoside |
C-3-Ara | Cyanidin-3-arabinoside |
C-3-Gal | Cyanidin-3-galactoside |
C3X | Cyanidin-3-xylosyl |
C3XR | Cyanidin-3-xylosylrutinoside |
C-3-Sam | Cyanidin 3-sambubioside |
C3GR | Cyanidin-3-glucosyl-rutinoside, |
C3MG | Cyanidin-3-malonylglucoside |
C3DG | Cyanidin-3-dioxalylglucoside |
C-3-5-D | Cyanidin-3,5-diglucoside |
Dp | Delphinidin |
D3G | Delphinidin-3-glucoside |
D3R | Delphinidin-3-rutinoside |
D-3-Sam | Delphinidin 3-sambubioside |
D-3-Gen | Delphinidin 3-gentiobioside |
D-3-Neo | Delphinidin-3-neohesperidoside |
D-3-Gal | Delphinidin-3-galactoside |
D-3-Ara | Delphinidin-3-arabinoside |
D-3-5-D | Delphinidin-3,5-diglucoside |
Pn | Peonidin |
Pn-3-G | Peonidin-3-glucoside |
Pn-3-Gal | Peonidin 3-galactoside |
Pn-3-Ara | Peonidin 3-arabinoside |
Pn-3-5-D | Peonidin-3,5-diglucoside |
Pt | Petunidin |
Pt-3-G | Petunidin-3-glucosides |
Pt-3-Gal | Petunidin-3-O-galactoside |
Pt-3-5-D | Petunidin-3,5-diglucoside |
Pt-3-RG | Petunidin-3-rutinoside-5-glucoside |
Pg | Pelargonidin |
Pg-3-G | Pelargonidin-3-glucoside |
Pg-3-R | Pelargonidin-3-rutinoside |
Pg-3-MG | Pelargonidin-3-malonylglucoside |
Mv | Malvidin |
Mv-3-G | Malvidin-3-glucoside |
Mv-3-gal | Malvidin-3-galactoside |
Mv-3-5-D | Malvdin-3,5-diglucoside |
Mv-3-RG | Malvidin-3-rutinoside-5-glucoside |
PA | Polymerized anthocyanin |
References
- Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef]
- Millar, C.L.; Duclos, Q.; Blesso, C.N. Effects of dietary flavonoids on reverse cholesterol transport, hdl metabolism, and hdl function. Adv. Nutr. 2017, 8, 226–239. [Google Scholar] [CrossRef]
- Castañeda -Ovando, A.; Pacheco-Hernández, M.L.; Paez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Pascual-Teresa, S.D.; Sanchez-Ballesta, M.T. Anthocyanins: From plant to health. Phytochem. Rev. 2008, 7, 281–299. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef]
- Bell, L.; Lamport, D.J.; Butler, L.T.; Williams, C.M. A study of glycaemic effects following acute anthocyanin-rich blueberry sup plementation in healthy young adults. Food Funct. 2017, 8, 3104–3110. [Google Scholar] [CrossRef] [Green Version]
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.; Herrera, R.; Moya-Leon, M.A. Anthocyanins: Food sources and benefits to consumers health. In Handbook of Anthocyanins; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 373–394. [Google Scholar]
- Vergara-Galicia, J.; Ortiz-Andrade, R.; Rivera-Leyva, J.; Castillo-España, P.; Villalobos-Molina, R.; Ibarra-Barajas, M.; Gallar do-Ortiz, I.; Estrada-Soto, S. Vasorelaxant and antihypertensive effects of methanolic extract from roots of Laelia anceps are mediated by calcium-channel antagonism. Fitoterapia 2010, 81, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Filho, E.S.; Arcanjo, D.D.R.; Moura, L.H.P.; Silva-Filho, J.C.D.; Paulino, E.T.; Ribeiro, Ê.A.N.; Chaves, M.H.; Oliveira, R.D.C.M.; Oliveira, A.P.D. Antihypertensive and vasorelaxant effects of ethanol extract of stem barks from Zanthoxylum rhoifolium Lam. in rats. Indian J. Exp. Biol. 2013, 51, 661–669. [Google Scholar] [PubMed]
- Horie, K.; Nanashima, N.; Maeda, H. Phytoestrogenic effects of blackcurrant anthocyanins increased endothelial nitric oxide synthase (eNOS) expression in human endothelial cells and ovariectomized rats. Molecules 2019, 24, 1259. [Google Scholar] [CrossRef] [Green Version]
- Nitiéma, M.; Koala, M.; Belemnaba, L.; Ouédraogo, J.C.W.; Ouédraogo, S.; Kini, F.; Ouédraogo, S.; Guissou, I.P. Endotheli um-independent vasorelaxant effects of anthocyanins-enriched extract from Odontonema strictum (Nees) Kuntze (Acanthaceae) flowers: Ca2+ channels involvement. Eur. J. Med. Plants 2019, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Isaak, C.K.; Petkau, J.C.; Blewett, H.; Karmin; Siow, Y.L. Lingonberry anthocyanins protect cardiac cells from oxi dative stress-induced apoptosis. Can. J. Physiol. Pharmacol. 2017, 904–910. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.F.; Shibu, M.A.; Fan, M.J.; Chen, M.C.; Viswanadha, V.P.; Lin, Y.L.; Lai, H.C.; Lin, K.H.; Ho, T.J.; Kuo, W.W.; et al. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis. J. Nutr. Biochem. 2016, 31, 98–105. [Google Scholar] [CrossRef]
- Liu, Y.T.; Huang, P.C.; Wang, G.J.; Fan, M.J.; Shibu, M.A.; Viswanadha, V.P.; Lin, Y.L.; Lai, C.H.; Chen, Y.F.; Liao, H.E.; et al. Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling. Environ. Toxicol. 2017, 1–10. [Google Scholar] [CrossRef]
- Adnyana, I.M.O.; Sudewi, R.; Samatra, P.; Suprapta, S. Balinese cultivar of purple sweet potato improved neurological score and BDNF and reduced caspase-independent apoptosis among wistar rats with ischemic stroke. Open Access Maced. J. Med. Sci. 2019, 7, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.J.; Dai, G.H.; Zheng, X.D. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J. Nutr. Biochem. 2016, 36, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Kurimoto, Y.; Shibayama, Y.; Inoue, S.; Soga, M.; Takikawa, M.; Ito, C.; Nanba, F.; Yoshida, T.; Yamashita, Y.; Ashida, H.; et al. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. J. Agric. Food Chem. 2013, 61, 5558–5564. [Google Scholar] [CrossRef]
- Tani, T.; Nishikawa, S.; Kato, M.; Tsuda, T. Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1 secretion. Food Sci. Nutr. 2017, 5, 929–933. [Google Scholar] [CrossRef]
- Matsukawa, T.; Inaguma, T.; Han, J.; Villareal, M.O.; Isoda, H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J. Nutr. Biochem. 2015, 26, 860–867. [Google Scholar] [CrossRef]
- Han, M.H.; Kim, H.J.; Jeong, J.W.; Park, C.; Kim, B.W.; Choi, Y.H. Inhibition of adipocyte differentiation by anthocyanins iso lated from the fruit of vitis coignetiae pulliat is associated with the activation of AMPK signaling pathway. Toxicol. Res. 2018, 34, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Nemes, A.; Homoki, J.R.; Kiss, R.; Hegedus, C.; Kovacs, D.; Peitl, B.; Gal, F.; Stündl, L.; Szilvássy, Z.; Remenyik, J. Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutrients 2019, 11, 1966. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Shimizu, H.; Okazaki, Y.; Sakaguchi, H.; Taira, T.; Suzuki, T.; Chiji, H. Anthocyanin-rich phytochemicals from aronia fruits inhibit visceral fat accumulation and hyperglycemia in high-fat diet-induced dietary obese rats. J. Oleo Sci. 2015, 64, 1243–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, S.L.; Xu, Y.; Zhang, Y.Y.; Lu, Y.H. Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food Funct. 2013, 4, 1602. [Google Scholar] [CrossRef]
- Lim, T.; Ryu, J.; Lee, K.; Park, S.Y.; Hwang, K.T. Protective effects of black raspberry (Rubus occidentalis) extract against hy percholesterolemia and hepatic inflammation in rats fed high-fat and high-choline diets. Nutrients 2020, 12, 2448. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Zhu, H.Y.; Zhao, Y.M.; Jiao, R.; Lei, L.; Chen, J.N.; Wang, X.B.; Zhang, Z.N.; Huang, Y.; Wang, T.J.; et al. Cranberry anthocyanin as an herbal medicine lowers plasma cholesterol by increasing excretion of fecal sterols. Phytomedicine 2018, 38, 98–106. [Google Scholar] [CrossRef]
- Liang, Y.T.; Chen, J.N.; Zuo, Y.Y.; Ma, K.Y.; Jiang, Y.; Huang, Y.; Chen, Z.Y. Blueberry anthocyanins at doses of 0.5 and 1% lowered plasma cholesterol by increasing fecal excretion of acidic and neutral sterols in hamsters fed a cholesterol-enriched diet. Eur. J. Nutr. 2013, 52, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.Y.; Wang, X.; Luo, J.; Liu, Y.; Pang, J.; Zhang, H.Y.; Xu, Z.L.; Xie, J.W.; Jiang, X.W.; Ling, W.H. Hypouricemic and nephroprotective roles of anthocyanins in hyperuricemic mice. Food Funct. 2019. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Zhou, Q.; Yang, Y.; Wang, Y.; Zhang, J.L. Highly acylated anthocyanins from purple sweet potato (Ipomoea batatas L.) alleviate hyperuricemia and kidney inflammation in hyperuricemic mice: Possible attenuation effects on allopurinol. J. Agric. Food Chem. 2019, 67, 6202–6211. [Google Scholar] [CrossRef]
- Song, H.Z.; Wu, T.; Xu, D.D.; Chu, Q.; Lin, D.B.; Zheng, X.D. Dietary sweet cherry anthocyanins attenuates diet-induced hepatic steatosis by improving hepatic lipid metabolism in mice. Nutrition 2016, 32, 827–833. [Google Scholar] [CrossRef]
- Ezzat, S.M.; Salama, M.M.; El-Din, S.H.S.; Hammam, O.A.; Salem, M.B.; Botros, S.S. Metabolic profile and hepatoprotective ac tivity of the anthocyanin-rich extract of Hibiscus sabdariffa calyces. Pharm. Biol. 2016, 54, 3172–3181. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, L.; Huo, Y.Z.; Ji, B.P. Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: Anti oxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro. J. Sci. Food Agric. 2016, 96, 2494–2503. [Google Scholar] [CrossRef]
- Nakano, H.; Wu, S.S.; Sakao, K.; Hara, T.; He, J.H.; Garcia, S.; Shetty, K.; Hou, D.X. Bilberry anthocyanins ameliorate NAFLD by improving dyslipidemia and gut microbiome dysbiosis. Nutrients 2020, 12, 3252. [Google Scholar] [CrossRef]
- Park, M.; Yoo, J.H.; Lee, Y.S.; Lee, H.J. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced hepG2 hepatocytes and in high fat diet-fed mice. Nutrients 2019, 11, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, R.; Bispo, R.F.M.; Sousa-Rodrigues, C.F.; Pires, L.A.S.; Jr, A.F.; Babinski, M.A. Grape leucoanthocyanidin protects liver tissue in albino rabbits with nonalcoholic hepatic steatosis. Cells Tissues Organs 2018, 205, 29–136. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Zang, S.; Chen, M.; Han, W.; Jia, R.Y.; Chen, W.; Zheng, X.D. Cherry anthocyanins regulate NAFLD by promoting autophagy pathway. Oxid. Med. Cell. Longev. 2019, 2019, 4825949. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.J.; Wang, S.F.; Wan, T.; Huang, Y.L.; Pang, N.Z.; Jiang, X.Y.; Gu, Y.Y.; Luo, J.; Yang, L.L. Cyanidin-3-O-β-glucoside inactivates NLRP3 inflammasome and alleviates alcoholic steatohepatitis via SirT1/NF-κB signaling pathway. Free Radic. Biol. Med. 2020. [Google Scholar] [CrossRef]
- Zuo, A.; Wang, S.Q.; Liu, L.; Yao, Y.L.; Guo, J.P. Understanding the effect of anthocyanin extracted from Lonicera caerulea L. on alco holic hepatosteatosis. Biomed. Pharmacother. 2019, 117, 109087. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Xu, H.D.; Zhao, B.T.; Chang, H.I.; Rhee, H.I. Gastroprotective effect of cyanidin 3-glucoside on ethanol-induced gastric lesions in rats. Alcohol 2008, 42, 683–687. [Google Scholar] [CrossRef]
- Ogawa, K.; Oyagi, A.; Tanaka, J.; Kobayashi, S.; Hara, H. The protective effect and action mechanism of Vaccinium myrtillus L. on gastric ulcer in mice. Phytother. Res. 2011, 25, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Dekanski, D.; Ristić, S.; Randonjic, N.V.; Petronijevic, N.D.; Giampieri, F.; Astolfi, P.; Gonza´lez-Parama ´s, A.M.; Buelg, C.S.; Tulipani, S.; et al. Strawberry polyphenols attenuate ethanol-induced gastric lesions in rats by activation of antioxidant enzymes and attenuation of MDA increase. PLoS ONE 2011, 6, e25878. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.J.; Fan, M.; Tang, Y.; Yang, Y.P.; Hwang, J.Y.; Kim, E.K. In vivo effects of polymerized anthocyanin from grape skin on benign prostatic hyper-plasia. Nutrients 2019, 11, 2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.F.; Tang, L.P.; He, R.R.; Xu, Z.; He, Q.Q.; Xiang, F.J.; Su, W.W.; Kurihara, H. Anthocyanins extract from bilberry enhances the therapeutic effect of pollen of Brassica napus L. on stress-provoked benign prostatic hyperplasia in restrained mice. J. Funct. Foods 2013, 5, 1357–1365. [Google Scholar] [CrossRef]
- Jang, H.; Ha, U.S.; Kim, S.J.; Yoon, B.L.; Han, D.S.; Yuk, S.M.; Kim, S.W. Anthocyanin extracted from black soybean reduces prostate weight and promotes apoptosis in the prostatic hyperplasia-induced rat model. J. Agric. Food Chem. 2010, 58, 12686–12691. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J.; Xu, H.; Zhu, F.M.; Li, Z.J.; Lu, H.Z.; Zhang, J.R.; Yang, Z.S.; Liu, Y.S. The protective effect of anthocyanins extracted from Aronia Melanocarpa berry in renal ischemia-reperfusion injury in mice. Mediat. Inflamm. 2021, 2021, 1–15. [Google Scholar]
- Popović, D.; Kocić, G.; Katić, V.; Jović, Z.; Zarubica, A.; Velićković, L.J.; Nikolić, V.; Jović, A.; Kundalić, B.; Rakić, V.; et al. Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride. Chem. Biol. Interact. 2019, 304, 61–72. [Google Scholar] [CrossRef]
- Koh, E.S.; Lim, J.H.; Kim, M.Y.; Chung, S.; Shin, S.J.; Choi, B.S.; Kim, H.; Hwang, S.Y.; Kim, S.W.; Park, C.W.; et al. Anthocyanin-rich seoritae extract ameliorates renal lipotoxicity via activation of AMP-activated protein kinase in diabetic mice. J. Transl. Med. 2015, 13, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohguro, H.; Ohguro, I.; Yagi, S. Effects of black currant anthocyanins on intraocular pressure in healthy volunteers and patients with glaucoma. J. Ocul. Pharmacol. Ther. 2013, 29, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.H.; Kim, J.M.; Choi, C.Y.; Kim, C.Y.; Park, C.H. Ginkgo biloba extract and bilberry anthocyanins improve visual function in patients with normal tension glaucoma. J. Med. Food. 2012, 15, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Ohguro, I.; Ohguro, H. Black currant anthocyanins normalized abnormal levels of serum concentrations of endothelin-1 in patients with glaucoma. J. Ocul. Pharmacol. Ther. 2013, 29, 480. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.Y.; Yan, Z.; Li, D.J.; Ma, Y.H.; Zhou, J.Z.; Sui, Z.Q. Antioxidant and anti-Inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxid. Med. Cell. Longev. 2018, 1862418. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Lu, F.; Yang, X.; Deng, Q.C.; Ji, B.P.; Huang, F.H. Retinoprotective effects of bilberry anthocyanins via antioxidant, anti-Inflammatory, and anti-apoptotic mechanisms in a visible light-induced retinal degeneration model in pigmented rabbits. Molecules 2015, 20, 22395–22410. [Google Scholar] [CrossRef] [Green Version]
- Paik, S.S.; Jeong, E.; Jung, S.W.; Ha, T.J.; Kang, S.; Sim, S.; Jeo, J.H.; Chun, M.H.; Kim, I.B. Anthocyanins from the seed coat of black soybean reduce retinal degeneration induced by N-methyl-N-nitrosourea. Exp. Eye. Res. 2012, 97, 55–62. [Google Scholar] [CrossRef]
- Tokoro, T. Developmental mechanism of low myopia and therapeutic possibilities. A review. Nippon Ganka Gakkai Zasshi 1998, 102, 796–812. [Google Scholar]
- Ma, H.; Johnson, S.L.; Liu, W.; Dasilva, N.A.; Meschwitz, S.; Dain, J.A.; Seeram, N.P. Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-Glycation, anti-β-Amyloid aggregation, and microglial neuroprotective effects. Int. J. Mol. Sci. 2018, 19, 461. [Google Scholar]
- Shih, P.H.; Chan, Y.C.; Liao, J.W.; Wang, M.F.; Yen, G.C. Antioxidant and cognitive promotion effects of anthocyanin-rich mul berry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer’s disease. J. Nutr. Biochem. 2010, 21, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Vepsäläinen, S.; Koivisto, H.; Pekkarinen, E.; Makinen, P.; Dobson, G.; Mcdougall, G.J.; Stawart, D.; Haapasalo, A.; Karjalainen, R.O.; Tanila, H.; et al. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J. Nutr. Biochem. 2013, 24, 360–370. [Google Scholar] [CrossRef]
- Ali, T.; Kim, T.; Rehman, S.U.; Khan, M.S.; Amin, F.U.; Khan, M.; Ikram, M.; Kim, M.O. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 6076–6093. [Google Scholar] [CrossRef] [PubMed]
- El-Shiekh, R.A.; Ashour, R.M.; El-Haleim, E.A.A.; Abdel-sattar, E. Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice. Biomed. Pharmacother. 2020, 128, 110303. [Google Scholar] [CrossRef]
- Ye, J.L.; Meng, X.J.; Yan, C.L.; Wang, C.B. Effect of purple sweet potato anthocyanins on beta-amyloid-mediated PC-12 cells death by inhibition of oxidative stress. Neurochem. Res. 2010, 35, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Tikhonova, M.A.; Shoeva, O.Y.; Tenditnik, M.V.; Ovsyukova, M.V.; Akopyan, A.A.; Dubrovina, N.I.; Amstislavskaya, T.G.; Khlestkina, E.K. Evaluating the effects of grain of isogenic wheat lines differing in the content of anthocyanins in mouse models of neurodegenerative disorders. Nutrients 2020, 12, 3877. [Google Scholar] [CrossRef]
- Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Chung, J.L.; Kim, M.O. Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Mol. Neurobiol. 2019, 56, 671–687. [Google Scholar] [CrossRef]
- Zahra, F.; Hadipour, J.M. Effects of blackberry (Morus nigra) fruit juice on levodopa-induced dyskinesia in a mice model of Parkinson’s disease. J. Exp. Pharmacol. 2018, 10, 29–35. [Google Scholar]
- Strathearn, K.E.; Yousef, G.G.; Grace, M.H.; Roy, S.L.; Tambe, M.A.; Ferruzzi, M.G.; Wu, Q.L.; Simon, J.E.; Lila, M.A.; Rochet, J.C. Neuroprotective effects of antho cyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease. Brain Res. 2014, 1555, 60–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, Y.D.; Aye, A.; Song, Y.J.; Kim, Y.H.; Soh, J.R.; Jin, J.S. Cyanidin 3-rutinoside, an anthocyanin pigment of Schisandra chinensis baill, inhibits allergic inflammation. J. Med. Food. 2019, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.H.; Wu, Y.F.; Chen, B.L.; Yao, Y.L.; Wang, Y.Y.; Bai, H.L.; Li, C.W.; Yang, Y.; Chen, Y.Q. Cyanidin-3-O-β-glucoside attenuates allergic airway in flammation by modulating the IL-4Rα-STAT6 signaling pathway in a murine asthma model. Int. Immunopharmacol. 2019, 69, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shaw, O.M.; Nyanhanda, T.; Mcghie, T.K.; Harper, J.L.; Hurst, R.D. Blackcurrant anthocyanins modulate CCL11 secretion and suppress allergic airway inflammation. Mol. Nutr. Food Res. 2017, 1600868. [Google Scholar] [CrossRef]
- Min, H.K.; Kim, S.M.; Baek, S.Y.; Woo, J.W.; Park, J.S.; Cho, M.L.; Lee, J.; Kwok, S.K.; Kim, S.W.; Park, S.H. Anthocyanin extracted from black soybean seed coats prevents autoimmune arthritis by suppressing the development of Th17 cells and synthesis of proinflammatory cytokines by such cells, via inhibition of NF-κB. PLoS ONE 2015, 10, e0138201. [Google Scholar] [CrossRef] [Green Version]
- García-Conesa, M.T.; Karen, C.; Emilie, C.; Pinto, P.; García-Aloy, M.; Andrés-Lacueva, C.; Pascual-Teresa, S.; Mena, P.; Konic Ristic, A.; Hollands, W.J.; et al. Meta-Analysis of the effects of foods and derived products containing ellagitannins and anthocyanins on cardiometabolic biomarkers: Analysis of factors influencing variability of the individual responses. Int. J. Mol. Med. Sci. 2018, 19, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igwe, E.O.; Charlton, K.E.; Probst, Y.C. Usual dietary anthocyanin intake, sources and their association with blood pressure in a representative sample of Australian adults. J. Hum. Nutr. Diet. 2019. [Google Scholar] [CrossRef]
- Aedín, C.; O’Reilly, E.J.; Kay, C.; Sampson, L.; Franz, M.; Forman, J.; Curhan, G.; Rimm, E.B. Habitual intake of flavonoid sub classes and incident hypertension in adults. Am. J. Clin. Nutr. 2011, 93, 338–347. [Google Scholar]
- Jousilahti, P.; Vartiainen, E.; Tuomilehto, J.; Puska, P. Sex, age, cardiovascular risk factors, and coronary heart disease: A pro spective follow-up study of 14,786 middle-aged men and women in Finland. Circulation 1999, 99, 1165–1172. [Google Scholar] [CrossRef] [Green Version]
- Kent, K.; Charlton, K.E.; Jenner, A.; Roodenrys, S. Acute reduction in blood pressure following consumption of anthocyanin-rich cherry juice may be dose-interval dependant: A pilot cross-over study. Int. J. Food Sci. Nutr. 2015, 67, 47–52. [Google Scholar] [CrossRef]
- Vendrame, S.; Klimis-Zacas, D. Potential factors influencing the effects of anthocyanins on blood pressure regulation in humans: A Review. Nutrients 2019, 11, 1431. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.; Benter, I.F. The role of epidermal growth factor receptor in diabetesinduced cardiac dysfunction. Bioimpacts 2013, 3, 5–9. [Google Scholar]
- Liobikas, J.; Skemiene, K.; Trumbeckaite, S.; Borutaite, V. Anthocyanins in cardioprotection: A path through mitochondria. Pharmacol. Res. 2016, 113, 808–815. [Google Scholar] [CrossRef]
- Manolescu, B.N.; Oprea, E.; Mititelu, M.; Ruta, L.L.; Farcasanu, I.C. Dietary anthocyanins and stroke: A review of pharmaco kinetic and pharmacodynamic studies. Nutrients 2019, 11, 1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Suarez, J.M.; Giampieri, F.; Tulipani, S.; Casoli, T.; Di Stefano, G.; González-Paramás, A.M.; Santos-Buelga, C.; Busco, F.; Quiles, J.L.; Cordero, M.D.; et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J. Nutr. Biochem. 2014, 25, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.H.; Park, S.J.; Kim, E.J. Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sci. 2006, 79, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.H.; Xia, M. Anthocyanins and diabetes regulation. Polyphen. Hum. Health Disease 2018, 135–145. [Google Scholar] [CrossRef]
- Anzai, N.; Enomoto, A.; Endou, H. Renal urate handling: Clinical relevance of recent advances. Curr. Rheumatol. Rep. 2005, 7, 227–234. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Makhlouf, H.R. Histology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in adults and children. Clin. Liver Dis. 2016, 20, 293–312. [Google Scholar] [CrossRef] [Green Version]
- Crabb, D.W.; Im, G.Y.; Szabo, G.; Mellinger, J.L.; Lucey, M.R. Diagnosis and treatment of alcohol-associated liver diseases: 2019 practice guidance from the american association for the study of liver diseases. Hepatology 2020, 71, 306–333. [Google Scholar] [CrossRef] [Green Version]
- Sarma, A.V.; Wei, J.T. Benign prostatic hyperplasia and lower urinary tract symptoms. N. Engl. J. Med. 2012, 367, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.S.; Rajpurohit, R.; Sharma, S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci. 2019, 221, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Habtemariam, S.; Daglia, M.; Shafighi, N.; Barber, A.J.; Navabi, S.M. Anthocyanins as a potential therapy for dia betic retinopathy. Curr. Med. Chem. 2015, 22, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Miyake, S.; Takahashi, N.; Sasaki, M.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: Cellular and molecular mechanism. Labor. Investig. 2012, 92, 102–109. [Google Scholar] [CrossRef]
- Nomi, Y.; Iwasaki-Kurashige, K.; Matsumoto, H. Therapeutic effects of anthocyanins for vision and eye health. Molecules 2019, 24, 3311. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, H.; Kamm, K.E.; Stull, J.T.; Azuma, H. Delphinidin-3-rutinoside relaxes the bovine ciliary smooth muscle through activation of ETB receptor and NO/cGMP pathway. Exp. Eye Res. 2005, 80, 313–322. [Google Scholar] [CrossRef]
- Hribar, U.; Ulrih, N.P. The metabolism of anthocyanins. Curr. Drug Metab. 2014, 15, 3–13. [Google Scholar] [CrossRef]
- Huang, H.C.; Jiang, Z.F. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: Relationship and links in Alzheimer’s disease. J. Alzheimers Dis. 2009, 16, 15–27. [Google Scholar] [CrossRef]
- Miranda, H.V.; El-Agnaf, O.M.A.; Outeiro, T.F. Glycation in Parkinson’s disease and Alzheimer’s disease. Mov. Disord. 2016, 31, 782–790. [Google Scholar] [CrossRef]
- Caldwell, K.; Charlton, K.E.; Roodenrys, S.J.; Batterham, M.; Potter, J.M. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur. J. Nutr. 2017, 56, 333–341. [Google Scholar]
- Offen, D.; Shtaif, B.; Hadad, D.; Weizman, A.; Melamde, E.; Gil-Ad, L. Protective effect of insulin-like-growth-factor-1 against dopamine-induced neurotoxicity in human and rodent neuronal cultures: Possible implications for Parkinson’s disease. Neurosci. Lett. 2001, 316, 129–132. [Google Scholar] [CrossRef]
- Dawei, F.; Yassar, A.; Karen, L.; Macaskill, M.; Brimble, M.; Harris, P.; Brimble, M.; Dalrymple-Alford, J.; Prickett, T.; Menzies, O.; et al. Supplementation of blackcurrant anthocyanins increased cyclic glycine-proline in the cerebrospinal fluid of Parkinson patients: Potential treatment to improve insulin-like growth factor-1 function. Nutrients 2018, 10, 714. [Google Scholar]
- Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 2014, 13, 668–677. [Google Scholar] [CrossRef]
- Hyun, K.H.; Gil, K.C.; Kim, S.G.; Park, S.Y.; Hwang, K.W. Delphinidin chloride and its hydrolytic metabolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model. Food Sci. 2019, 84, 920–930. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients 2016, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.L.; Jiang, B.W.; Zhong, C.G.; Zhang, L.H.; Teng, M.; Zhang, Q.H.; B.X.L. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis 2018, 39, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Guo, J.; Mao, L.P.; Li, Q.Q.; Guo, M.; Mu, T.; Zhang, Q.H.; Bi, X.L. Up-regulation of miR-24-1-5p is involved in the chemo prevention of colorectal cancer by black raspberry anthocyanins. Br. J. Nutr. 2019, 122, 518–526. [Google Scholar] [CrossRef]
- María-Carmen, L.D.L.H.; Juana, I.; Mosele, A.M.; Ludwig, L.A.; Motilva, M.J. Exploring the colonic metabolism of grape and strawberry anthocyanins and their in vitro apoptotic effects in HT-29 colon cancer cells. J. Agric. Food Chem. 2016. [Google Scholar] [CrossRef]
- Yun, J.W.; Lee, W.S.; Kim, M.J.; Lu, J.N.; Kang, M.H.; Kim, H.G.; Kim, D.C.; Choi, E.J.; Choi, J.Y.; Kim, H.G.; et al. Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food Chem. Toxicol. 2010, 48, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Charepalli, V.; Reddivari, L.; Radhakrishnan, S.; Vadde, R.; Agarwal, R.; Vanamala, J.K.P. Anthocyanin-containing pur ple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. J. Nutr. Biochem. 2015, 26, 1641–1649. [Google Scholar] [CrossRef]
- Hsu, C.P.; Shih, Y.T.; Lin, B.R.; Chiu, C.F.; Lin, C.C. Inhibitory effect and mechanisms of an anthocyanins- and anthocya nidins-rich extract from purple-shoot tea on colorectal carcinoma cell proliferation. J. Agric. Food Chem. 2012, 60, 3686–3692. [Google Scholar] [CrossRef]
- Dokkaew, A.; Punvittayagul, C.; Insuan, O.; Limtrakul, P.; Wongpoomchai, R. Protective effects of defatted sticky rice bran extracts on the early stages of hepatocarcinogenesis in rats. Molecules 2019, 24, 2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, S.F.; Liu, J.G.; Xu, M.; Zheng, J.G. Evaluation of the liver cancer prevention of anthocyanin extracts from mulberry (Morus alba L.) variety PR-01. Adv. Biosci. Biotechnol. 2018, 9, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Lin, J.; Tian, J.; Si, X.; Jiao, X.; Zhang, W.; Gong, E.; Li, B. Blueberry malvidin-3-galactoside suppresses hepatocel lular carcinoma by regulating apoptosis, proliferation, and metastases pathways in vivo and in vitro. J. Agric. Food Chem. 2018. [Google Scholar] [CrossRef]
- Peiffer, D.S.; Zimmerman, N.P.; Wang, L.S. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid. Cancer Prev. Res. 2014, 7, 574. [Google Scholar] [CrossRef] [Green Version]
- Peiffer, D.S.; Wang, L.S.; Zimmerman, N.P.; Ransom, B.W.; Carmella, S.G.; Kuo, C.T.; Oshima, K.; Huang, Y.; Hecht, S.S. Dietary consumption of black raspberries or their anthocyanin constituents alters innate immune cell trafficking in esophageal cancer. Cancer Immunol. Res. 2016, 4, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Kuntz, S.; Kunz, C.; Rudloff, S. Inhibition of pancreatic cancer cell migration by plasma anthocyanins isolated from healthy volunteers receiving an anthocyanin-rich berry juice. Eur. J. Nutr. 2015, 56, 1–12. [Google Scholar] [CrossRef]
- Fan, M.J.; Wang, I.C.; Hsiao, Y.T.; Lin, H.Y.; Tang, N.Y.; Hung, T.C. Anthocyanins from black rice (Oryza sativa L.) demon strate antimetastatic properties by reducing MMPs and NF-κB expressions in human oral cancer CAL 27 cells. Nutr. Cancer 2015, 67, 327–338. [Google Scholar] [CrossRef]
- Chen, Q.; Li, S.W.; Jia, Y.C.; Li, W. Blueberry anthocyanins induce G2/M cell cycle arrest and apoptosis of oral cancer KB cells through down-regulation methylation of p53. Yi Chuan 2014, 36, 566–573. [Google Scholar]
- Tan, J.Q.; Li, Q.; Xue, H.K.; Tang, J.T. Ultrasound-assisted enzymatic extraction of anthocyanins from grape skins: Optimization, identification, and antitumor activity. J. Food Sci. 2020, 85, 3731–3744. [Google Scholar] [CrossRef]
- Mazzoni, L.; Giampieri, F.; Suarez, J.M.A.; Gasparrini, M.; Mezzetti, B.; Hernandez, J.M.A.; Battino, M.O. Isolation of straw berry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food Funct. 2019, 10, 7103–7120. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Adams, L.S.; Chen, S.; Killian, C.; Ahmed, A.; Seeram, N.P. Eugenia jambolana Lam. berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J. Agric. Food Chem. 2009, 57, 826–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Hong, S.; Yoo, S.H.; Kim, G.W. Cyanidin-3-O-sambubioside from Acanthopanax sessiliflorus fruit inhibits metastasis by downregulating MMP-9 in breast cancer cells MDA-MB-231. Planta Med. 2013, 79, 1636–1640. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhou, J.; Luo, P.; Han, B.; Li, F.; Chen, J.Y.; Zhu, Y.F.; Chen, W.; Yu, X.P. Black Rice Anthocyanins suppress metas tasis of breast cancer cells by targeting RAS/RAF/MAPK pathway. Biomed. Res. Int. 2015, 2015, 1–11. [Google Scholar]
- Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A.; Munagala, M.; Parker, L.; Gupta, R.C. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct. 2017, 8, 4100–4107. [Google Scholar] [CrossRef] [PubMed]
- Long, H.L.; Zhang, F.F.; Wang, H.L.; Yang, W.S.; Hou, H.T.; Yu, J.; Liu, B. Mulberry anthocyanins improves thyroid cancer progression mainly by inducing apoptosis and autophagy cell death. Kaohsiung J. Med. Sci. 2018, 34, 225–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, A.; Kumar, S.; Raina, K.; Wempe, M.F.; Maroni, P.D.; Agarwal, C.; Agarwal, R. Differential effect of grape seed extract and its active constituent procyanidin B2 3,3″-di-O-gallate against prostate cancer stem cells. Mol. Carcinog. 2019, 58, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Jongsomchai, K.; Leardkamolkarn, V.; Mahatheeranont, S. A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat. Cell Biol. 2020, 53, 481–492. [Google Scholar] [CrossRef]
- Li, W.L.; Yu, H.Y.; Zhang, X.J.; Ke, M.; Hong, T. Purple sweet potato anthocyanin exerts antitumor effect in bladder cancer. Oncol. Rep. 2018, 40, 73–82. [Google Scholar] [CrossRef]
- Kausar, H.; Jeyabalan, J.; Aqil, F.; Chabba, D.; Sidana, J.; Singh, I.P.; Gupta, R.C. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett. 2012, 325, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Bathija, G.V.; Itagimath, S.R.; Dattateraya, B.D.; Lokhare, L. Study on socio-demographic and associated risk factors for oesophageal cancer in Karnataka Institute of Medical Sciences Hospital, Hubli, Karnataka. Sch. J. App. Med. Sci. 2014, 2, 706–710. [Google Scholar]
- Thompson, E.W.; Price, J.T. Mechanisms of tumour invasion and metastasis: Emerging targets for therapy. Expert Opin. Ther. Targets 2002, 6, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Yue, E.; Tuguzbaeva, G.; Chen, X.; Qin, Y.; Li, A.; Sun, X.; Dong, C.; Liu, Y.; Yu, Y.; Zahra, S.M.; et al. Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma. Phytomedicine 2019, 56, 286–294. [Google Scholar] [CrossRef]
- Muenyi, C.S.; Pinhas, A.R.; Fan, T.W.; Brock, G.N.; Helm, C.W.; States, J.C. Sodium arsenite ± hyperthermia sensitizes p53-expressing human ovarian cancer cells to cisplatin by modulating platinum-DNA damage responses. Toxicol Sci. 2012, 127, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, W.C.; Kim, H.; Kim, Y.J.; Park, S.H.; Song, J.H.; Lee, K.H.; Lee, I.H.; Lee, Y.K.; So, K.A.; Choi, K.C.; et al. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells. Bioorg. Med. Chem. Lett. 2017, 27, 5337–5343. [Google Scholar] [CrossRef] [PubMed]
- Li, W.L.; Ji, G.H.; Zhang, X.Z.; Yu, H.Y. The influence and mechanisms of purple sweet potato anthocyanins on the growth of bladder cancer BIU87 cell. Zhonghua yi xue za zhi 2018, 98, 457–459. [Google Scholar]
- Kuo, H.C.D.; Wu, R.Y.; Li, S.Y.; Yang, A.Y.; Kong, A.N. Anthocyanin delphinidin prevents neoplastic transformation of mouse skin JB6 P+ cells: Epigenetic re-activation of Nrf2-ARE pathway. AAPS J. 2019, 21, 1–10. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Mendes, M.; Morais, R.M.; Calhau, C.; Pintado, M.M. Antimicrobial, antiadhesive and antibiofilm activity of an ethanolic, anthocyanin-rich blueberry extract purified by solid phase extraction. J. Appl. Microbiol. 2016, 121, 693–703. [Google Scholar] [CrossRef]
- Dorneanu, R.; Cioanc, O.; Chifiriuc, O.; Albu, E.; Tuchilus, C.; Mircea, C.; Salamon, I.; Hancianu, M. Synergic benefits of Aronia melanocarpa anthocyanin–rich extracts and antibiotics used for urinary tract infections. Farmacia 2017, 65, 778–783. [Google Scholar]
- Chen, H.; Yu, W.S.; Chen, G.; Meng, S.A.; Xiang, Z.H.; He, N.J. Antinociceptive and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries. Molecules 2017, 23, 4. [Google Scholar] [CrossRef] [Green Version]
- Gopu, V.; Kothandapani, S.; Shetty, P.H. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin mal vidin against Klebsiella pneumoniae. Microb. Pathog. 2015, 79, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Burdulis, D.; Sarkinas, A.; Jasutiené, I.; Stackeviciene, E.; Nikolajevas, L.; Janulis, V. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta. Pol. Pharm. 2008, 66, 399–408. [Google Scholar]
- Sharma, N.; Tiwari, V.; Vats, S.; Kumari, A.; Chunduri, V.; Kaur, S.; Kapoor, P.; Garg, M. Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens. Molecules 2020, 25, 5785. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Mori, M.; Knox, Y.M.; Suzutan, T.; Ogasawara, M.; Yoshida, I.; Hosokawa, K.; Tsukui, A.; Azuma, M. Anti Influenza virus activity of a red-fleshed potato anthocyanin. Food Sci. Technol. Res. 2003, 9, 42–244. [Google Scholar] [CrossRef] [Green Version]
- Salamon, I. Elderberry, Its Anthocyanins, as Antiviral Drugs (Comprising the Novel Virus SARS CoV-2). Biological Activities of Medicinal Plants; University of Presov: Presov, Slovakia, 2020. [Google Scholar] [CrossRef]
- Kawai, A.; Fujita, K. Small red bean (azuki) sheds biologically active substances as a prerequisite step for germination, one of which displays the antiviral activity against the rabies virus infectivity and infections in culture. Microbiol. Immunol. 2007, 51, 1071–1079. [Google Scholar] [CrossRef] [Green Version]
- Shahat, A.A.; Cos, P.; Bruyne, D.T.; Apers, S.; Hammouda, F.M.; Ismail, S.; Azzam, S.; Claeys, M.; Goovaerts, M.; Pieters, L. Antiviral and antioxidant activity of flavonoids and proantho cyanidins from Crataegus sinaica. Planta Med. 2002, 68, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Aichinger, G.; Puntscher, H.; Beisl, J.; Kütt, M.; Warth, B.; Marko, D. Delphinidin protects colon carcinoma cells against the genotoxic effects of the mycotoxin altertoxin II. Toxicol. Lett. 2018, 284, 136–142. [Google Scholar] [CrossRef]
- Kannan, S.; Kolandaivel, P. The inhibitory performance of flavonoid cyanidin-3-sambubiocide against H274Y mutation in H1N1 influenza virus. Biomol. Struct. Dyn. 2018, 36, 4255–4269. [Google Scholar] [CrossRef]
Diseases | Plant Origin | Anthocyanin Types | Mechanism | Reference |
---|---|---|---|---|
High Blood Pressure | Ribes nigrum | C3G, C3R, D3G, D3R | ↑eNOS mRNA levels ↑NO synthesis | [11] |
Odontonema strictum | ↓CaCl2 and U46619 effect | [12] | ||
Diabetic Heart Disease | Vaccinium vitis-idaea | C3G, C-3-Ara, C-3-Gal | ↑Antioxidant | [13] |
Oryza sativa | C3G | ↓TLR4/NFκB ↓active hypertrophy ↓Fibrosis associated molecular marker | [14] | |
Oryza sativa | C3G | ↑Survival signals ↓Apoptosis and the associated proapoptotic proteins | [15] | |
Stroke | Purple potatoes | ↓AIF ↓Apoptosis ↑BDNF | [16] | |
Diabetes | Morus alba | C-3-Ara, C-3-Gal, C3G | ↑PI3K/AKT | [17] |
Glycine max | C3G | ↑AMPK ↑Modulates GLUT4 ↓Gluconeogenesis | [18] | |
Ribes nigrum | D3R | ↑GLP- 1 | [19] | |
Glycine max | C3G | ↑Skeletal muscle metabolism ↑3T3-L1 preadipocytes differentiation | [20] | |
Obesity | Vitis coignetiae | ↓Adipocyte differentiation ↓Adipogenesis | [21] | |
Prunus cerasus | C3G, C3R, C3GR | ↓Leptin and IL-6 ↑Antioxidant ↑SOD | [22] | |
Aronia melanocarpa | C-3-Gal, C-3-Ara, C3G | ↓Pancreatic lipase activity ↓Intestinal lipid absorption. | [23] | |
Hypercholesterolemia | Oryza sativa | C3G, Pn-3-G | ↓Pancreatic lipase activity ↓Cholesterol solubility in micelles ↓Cholesterol uptake in enterocytes | [24] |
Rubus occidentalis | C3G, C3R, C3XR | ↓Cecal TMA ↓Serum TMAO | [25] | |
Cranberry | C-3-Gal, C-3-Ara, Pn-3-Gal, Pn-3-Ara | ↑Excretion of fecal neutral and acidic sterols | [26] | |
Vaccinium ashei | C3G, P3G | ↑Excretion of sterols ↓NPC1L1, ACAT, MTP, ABCG 8 | [27] | |
Hyperuricemia | Vaccinium myrtillus/ Ribes nigrum | C3G, D3G | ↓Urate production ↑Uric acid excretion | [28] |
Ipomoea batatas | Acylated Anthocyanins | ↓Oxidative stress ↓Infiltration of inflammatory cells | [29] | |
Nonalcoholic Fatty Liver Disease | Prunus auiun | C3GR, C3R, Pg-3-R | Changed PPAR signaling pathway | [30] |
Hibiscus sabdariffa | D-3-Gal, D-3-Sam, D-3-Gen, D-3-Neo, C-3-Sam | ↓Antioxidant ↓anti-inflammatory ↑SOD ↑INF-c | [31] | |
Rubus sp | C3G | ↑Antioxidants ↓TG accumulation in HepG2 cells | [32] | |
Vaccinium spp | Mv-3-G, D3G, Pt-3-G, D-3-Ara, D-3-Gal, C3G | |||
Fragaria ananassa | Pg-3-G | |||
Aronia melanocarpa | C-3-Gal, C-3-Ara, C3G, C3X | |||
Vaccinium myrtillus | Dp, cy, pt, Pn, Mv | ↓Dyslipidemia ↓Gut microbiome dysbiosis | [33] | |
Lonicera caerulea | C3G | ↓Hepatic lipid metabolic gene expression ↑AMPK ↑ACC | [34] | |
Vitis vinifera | leucoanthocyanidin | ↑Antioxidant | [35] | |
Fragaria x ananassa | C3G, C3R, Pt-3-G | ↑Autophagy | [36] | |
Alcoholic Fatty Liver Disease | Oryza sativa | C3G | ↓NLRP3 ↓NF-κB, | [37] |
Lonicera caerulea | C3G | ↑AMPK ↓Lipid accumulation ↓F4/80 ↓IL-1β | [38] | |
Gastric Lesions | Purple corn husks | C3G | ↑Glutathione ↑Radical scavenging enzymes | [39] |
Vaccinium myrtillus | Dp, Cy, Mv | ↑Antiperoxidative | [40] | |
Fragaria x ananassa | Pg-3-G, Pg-3-MG, Pg-3-R | ↑Antioxidant enzymes | [41] | |
Benign Prostatic Hyperplasia | Vitis vinifera | PA | ↓AR, 5AR2, SRC1, PSA, PCNA ↓DHT ↓PCNA ↓Cyclin D1 ↑Bcl-2, Bax | [42] |
Vaccinium myrtillus | D-3-Gal, D3G, D-3-Ara, C3G, Mv-3-G, Pt-3-G | ↓Lipid peroxidation level ↑ORAC, GSH ↑SOD, GPx | [43] | |
Glycine max | D3G, C3G, Pt-3-G | ↑Apoptosis | [44] | |
Renal Injury | Aronia melanocarpa | C-3-Ara, C3G, C-3-Gal | ↓Proinflammatory cytokines ↓Oxidative stress ↓Lipid peroxidation ↓Apoptosis | [45] |
Vaccinium myrtillus | D-3-Gal | ↑Antioxidant ↑Anti-inflammatory | [46] | |
Glycine max | D3G, C3G, Pt-3-G | ↑AMPK | [47] | |
Glaucoma | Ribes nigrum | D3G, D3R, C3G, C3R | ↑ETB receptor ↓Ocular blood vasodilation | [48] |
Vaccinium myrtillus | ↑Blood circulation, Antioxidant | [49] | ||
Ribes nigrum | Modulate ET-1 ↑ocular blood flow | [50] | ||
Retinopathy | Vaccinium ashei | Mv-3-G | ↑Antioxidant, anti-inflammatory | [51] |
Vaccinium myrtillus | Dp, Mv, Pt, Cy, Pn | ↑Antioxidant ↓Lipid peroxidation ↓Proinflammatory cytokines ↓Retinal cells apoptosis. | [52] | |
Glycine max | C3G | ↓GFAP ↑Anti-inflammatory | [53] | |
Myopia | Ribes nigrum | D3R, D3G, C3R, C3G | ↑NO ↓RLC | [54] |
Alzheimer’s Syndrome | Rubus sp | C3G, C-3-Ara, C3X, C3MG, C3DG | ↓Free radical ↑Anti-Aβ aggregation, Anti-glycation | [55] |
Rubus occidentalis | C-3-Sam, C3G, C3XR, C3R | |||
Vaccinium angustifolium | C-3-Gal, Pt-3-Gal, Pt-3-G, Pn-3-Gal, Mv-3-G | |||
Vaccinium macrocarpon | C3G, C-3-Ara, Pn-3-Gal, Pn-3-Ara | |||
Rubus idaeus | C3G, C-3-Ara, D-3-Ara | |||
Fragaria ananassa | C3G, Pg-3-G, Pg-3-R | |||
Morus atropurpurea | ↓Oxidative stress ↓JNK, p38 ↑ERK ↓Accumulation of Aβ | [56] | ||
Ribes nigrum | D3G, D3R, C3G, C3R | ↓Aβ40 ↓Aβ42 | [57] | |
Vaccinium myrtillus | ||||
Glycine max | C3G, D3G, Pt-3-G | ↑Antioxidant Regulated the PI3K/Akt/GSK3 pathway | [58] | |
Hibiscus sabdariffa | C3G | ↓Inflammatory ↓Acetylcholinesterase ↓Amyloidogenic ↑Antioxidant | [59] | |
Ipomoea batatas | Cy, Pn | ↓Oxidative damage ↓Intracellular calcium ↓Influx, Mitochondria dysfunction ↓Cell apoptosis | [60] | |
Parkinson’s disease | wheat grain | C3G | ↓Alpha-synuclein Modulated microglial response | [61] |
Glycine max | C3G, D3G, Pt-3-G | ↓P-NF-kB, TNF-α, IL-1β ↑P-Akt, p-GSK3β, Bcl-2 | [62] | |
Morus nigra | C3G | Antioxidant | [63] | |
Vaccinium corymbosum | Cy, Dp, Mv, Pn, Pt | ↑Neuroprotective activity; Disrupting toxicant entry into the cells | [64] | |
Ribes nigrum | D3G, C3G | ↓Microglial activation; Amelioration of mitochondrial dysfunction | ||
Allergic Diseases | Schisandra chinensis | C3R | ↓inflammatory cytokines | [65] |
Oryza sativa | C3G | ↓IL-4, IL-5, IL-13 ↓IL-4Rα-STAT6 ↓Inflammatory cell infiltration and mucus hyper-production | [66] | |
Ribes nigrum | Dp, Cy | ↓Inflammation ↓Eosinophilia | [67] | |
Autoimmune Diseases | Glycine max | C3G, D3G, Pt-3-G | ↓NF-κB ↓Osteoclastogenesis ↓Oxidative stress | [68] |
Diseases | Plant Origin | Main Anthocyanins | Mechanism | Reference |
---|---|---|---|---|
Colorectal Cancer | Rubus occidentalis | C3G, C3XR, C3R | ↑Probiotics ↓Inflammation ↓Pathogenic bacteria | [99] |
Rubus occidentalis | C3G, C3XR, 3CR | ↑MiR-24-1-5p ↓β-catenin | [100] | |
Vitis vinifera | Mv | ↓HT-29 colon cancer cells | [101] | |
Fragaria ananassa | Pg-3-G | |||
Vitis coignetiae Pulliat | D-3-5-D, Pt-3-5-D, D3G, Mv-3-5-D, Pn-3-5-D, C3G, Pt-3-G, Pn-3-G, Mv-3-G | ↓NF-jB ↓MMP-2 ↓MMP-9 | [102] | |
Solanum tuberosum | Mv-3-RG Pt-3-RG | ↓Wnt/β-catenin ↑Mitochondria-mediated apoptosis | [103] | |
purple-shoot tea | Dp, Cy, Mv, Pn | ↑Caspase 3 ↑Bax/Bcl-2 | [104] | |
Liver Cancer | Oryza sativa | C3G, Pn-3-G | ↓TNF-α, iNOS, NF-κB ↓Cell proliferation | [105] |
Morus alba | C3G, C3R | ↓Lipid peroxidation ↓COX-2 ↑Nrf2-mediated antioxidant enzymes | [106] | |
Vaccinium angustifolium | Mv-3-Gal | ↓Proliferation, apoptosis, migration, Invasion-related pathways | [107] | |
Esophageal Cancer | Rubus occidentalis | C3G, C3R, C3XR | ↓Genes associated with inflammation | [108] |
Altering cytokine expression and innate immune cell trafficking into tumor tissues. | [109] | |||
Pancreatic Cancer | Vitis vinifera | ↓Pancreatic cancer cell migration in dependency of the phenotype of cells | [110] | |
Vaccinium myrtillus | ||||
Oral Cancer | Oryza sativa | C3G | ↓MMP-2, MMP-9 ↓NF-Kb ↓NFkB p65↓ PI3K/Akt | [111] |
Vaccinium uliginosum | C3G | ↓methylation of p53 ↑caspase-9 ↑cytochrome c | [112] | |
Breast Cancer | Vitis vinifera | D-3-5-D, C3R | ↑Intracellular reactive oxygen ↑Apoptosis ↓MCF-7 cells in the G2/M phases | [113] |
Fragaria x ananassa | C3G, Pg-3-G | ↓AMPK ↑Apoptosis ↑Oxidative stress | [114] | |
Eugenia jambolana | Dp, Cy, Pt, Pn, Mv | [115] | ||
Acanthopanax sessiliflorus | C-3-Sam | ↓Metastasis processes, regulation of matrix metalloproteinase9 activity | [116] | |
Oryza sativa | ↓Metastasis in breast cancer cells by targeting the RAS/RAF/MAPK pathway | [117] | ||
Ovarian Cancer | Vaccinium myrtillus | Dp, Cy, Mv, Pe, Pt | ↓p-glycoproteins in OVCA432 cells. Antiproliferative | [118] |
Thyroid Cancer | Morus alba | ↑Autophagy-dependent cell death ↑Apoptosis | [119] | |
Prostate Cancer | Vitis vinifera | Proanthocyanidins | ↓Notch1 pathway | [120] |
Luempua | C3G | ↓Epithelial mesenchymal transition | [121] | |
Bladder Cancer | Ipomoea batatas | ↓PI3K/Akt, Bcl-2 ↑Apoptosis | [122] | |
Non-small-cell lung cancer | Vaccinium myrtillus | Dp, Cy, Mv, Pe, Pt | ↓NSCLC growth and the metastatic processes, targets mediating cell proliferation, invasion and apoptosis. | [123] |
Diseases | Type of Bacteria or Virus | Plant Origin | Mechanism | Reference |
---|---|---|---|---|
Antimicrobial | Pseudomonas aeruginosa Escherichia coli Proteus mirabilis Acinetobacter baumannii Staphylococcus aureus | Vaccinium corymbosum | Interfering with microbial growth, hamper the adhesion to surfaces, with Staph | [131] |
coli Morganella morganii aeruginosa E. faecalis E. faecium S. aureus | Maloideae subfamily | Inhibited the development of biofilm | [132] | |
Escherichia coli Pseudomonas aeruginosa Staphylococcus aureus | Morus nigra | Inhibitory effects on proinflammatory cytokines, iNOS and nuclear factor-κB (NF-κB) pathway-related proteins. | [133] | |
K. pneumoniae | Syzygium cumini | Influencing the biofilm formation | [134] | |
Citrobacter freundii Enterococcus faecalis | Vaccinium myrtillus, Vaccinium corymbosum | [135] | ||
Staphylococcus aureus Pseudomonas aeruginosa Escherichia coli Candida albicans P. aeruginosa | Black wheat Purple wheat Blue wheat | Inhibitory DNA replication, protein synthesis breaking cell wall | [136] | |
Antiviral | Viruses A (IVA) Viruses B (IVB) | Red-fleshed potato | [137] | |
H1N1 subtypes of influenza virus H5N1-type influenza A virus SARS CoV-2 | Sambucus nigra | Binding to H1N1 virions NA inhibition. Preventing reproduction | [138] | |
Rabies virus | Vigna angularis | Affected early phase of infection cycle and viral infectivity | [139] | |
HSV-1 | Rosaceae | Extracellular mechanism | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhou, H.; Song, L.; Yang, Z.; Qiu, M.; Wang, J.; Shi, S. Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities. Molecules 2021, 26, 3807. https://doi.org/10.3390/molecules26133807
Liu J, Zhou H, Song L, Yang Z, Qiu M, Wang J, Shi S. Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities. Molecules. 2021; 26(13):3807. https://doi.org/10.3390/molecules26133807
Chicago/Turabian StyleLiu, Jiaqi, Hongbing Zhou, Li Song, Zhanjun Yang, Min Qiu, Jia Wang, and Songli Shi. 2021. "Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities" Molecules 26, no. 13: 3807. https://doi.org/10.3390/molecules26133807