Chemical Composition, Antioxidant and Enzyme Inhibitory Activities of Onosma bourgaei and Onosma trachytricha and in Silico Molecular Docking Analysis of Dominant Compounds
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Activity of the Extracts
2.2. Enzyme Inhibitory Activity of the Extracts
2.3. Phytochemistry of O. bourgaei and O. trachytricha
2.4. Molecular Docking Studies
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction Process
4.3. Chemical Composition Analysis
4.4. Antioxidant and Enzyme Inhibitory Activities
4.5. In Silico Molecular Docking Analysis
4.6. Statistical Analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- El-Shazly, A.; El-Domiaty, M.; Witte, L.; Wink, M. Pyrrolizidine alkaloids in members of the Boraginaceae from Sinai (Egypt). Biochem. Syst. Ecol. 1998, 26, 619–636. [Google Scholar] [CrossRef]
- Özgen, U.; Coşkun, M.; Kazaz, C.; Secen, H. Naphthoquinones from the roots of Onosma argentatum Hub.-Mor. (Boraginaceae). Turk. J. Chem. 2004, 28, 451–454. [Google Scholar]
- Noula, E.; Samanidou, V.F.; Assimopoulou, A.N.; Papageorgiou, V.P.; Papadoyannis, I.N. Solid-phase extraction for purification of alkannin/shikonin samples and isolation of monomeric and dimeric fractions. Anal. Bioanal. Chem. 2010, 397, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Chaudhury, A. High frequency direct plant regeneration, micropropagation and shikonin induction in Arnebia hispidissima. J. Crop. Sci. Biotechnol. 2010, 13, 13–19. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Sahinler, S.S.; Husunet, M.T.; Istifli, E.S.; Tepe, B. Two endemic Onosma species (O. sieheana and O. stenoloba): A comparative study including docking data on biological activity and phenolic composition. Ind. Crops Prod. 2020, 154, 112656. [Google Scholar] [CrossRef]
- Özgen, U.; Houghton, P.; Ogundipe, Y.; Coşkun, M. Antioxidant and antimicrobial activities of Onosma argentatum and Rubia peregrina. Fitoterapia 2003, 74, 682–685. [Google Scholar] [CrossRef]
- Sharma, S.; Khan, N.; Sultana, S. Effect of Onosma echioides on DMBA/croton oil mediated carcinogenic response, hyperproliferation and oxidative damage in murine skin. Life Sci. 2004, 75, 2391–2410. [Google Scholar] [CrossRef]
- Mroczek, T.; Baj, S.; Chrobok, A.; Glowniak, K. Screening for pyrrolizidine alkaloids in plant materials by electron ionization RP-HPLC-MS with thermabeam interface. Biomed. Chromatogr. 2004, 18, 745–751. [Google Scholar] [CrossRef]
- Naz, S.; Ahmad, S.; Rasool, S.A.; Sayeed, S.A.; Siddiqi, R. Antibacterial activity directed isolation of compounds from Onosma hispidum. Microbiol. Res. 2006, 161, 43–48. [Google Scholar] [CrossRef]
- Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef]
- Rienks, J.; Barbaresko, J.; Nöthlings, U. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: A systematic review and meta-analysis of observational studies. Nutrients 2017, 9, 415. [Google Scholar]
- Phan, M.A.T.; Wang, J.; Tang, J.; Lee, Y.Z.; Ng, K. Evaluation of α-glucosidase inhibition potential of some flavonoids from Epimedium brevicornum. LWT Food Sci. Technol. 2013, 53, 492–498. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, X.; Li, W.; Tan, S.; Zheng, Q. Phenolic content, antioxidant capacity, and α-amylase and α-glucosidase inhibitory activities of Dimocarpus longan Lour. Food Sci. Biotechnol. 2019, 29, 683–692. [Google Scholar] [CrossRef]
- Maack, A.; Pegard, A. Populus nigra (Salicaceae) absolute rich in phenolic acids, phenylpropanoïds and flavonoids as a new potent tyrosinase inhibitor. Fitoterapia 2016, 111, 95–101. [Google Scholar] [CrossRef]
- Chang, V.; Teo, S. Evaluation of heavy metal, antioxidant and anti-tyrosinase activities of red seaweed (Eucheuma cottonii). Int. Food Res. J. 2016, 23, 2370–2373. [Google Scholar]
- Jeong, C.H.; Shim, K.H. Tyrosinase inhibitor isolated from the leaves of Zanthoxylum piperitum. Biosci. Biotechnol. Biochem. 2004, 68, 1984–1987. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.-S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [Green Version]
- Dolorosa, M.; Purwaningsih, S.; Anwar, E.; Hidayat, T. Tyrosinase Inhibitory Activity of Sargassum plagyophyllum and Eucheuma cottonii Methanol Extracts. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 012020. [Google Scholar]
- Micheau, J.; Marighetto, A. Acetylcholine and memory: A long, complex and chaotic but still living relationship. Behav. Brain Res. 2011, 221, 424–429. [Google Scholar] [CrossRef]
- Mesulam, M.; Guillozet, A.; Shaw, P.; Quinn, B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol. Dis. 2002, 9, 88–93. [Google Scholar] [CrossRef]
- Öztaşkın, N.; Cetinkaya, Y.; Taslimi, P.; Göksu, S.; Gülçin, İ. Antioxidant and acetylcholinesterase inhibition properties of novel bromophenol derivatives. Bioorg. Chem. 2015, 60, 49–57. [Google Scholar] [CrossRef]
- Bayrak, Ç.; Taslimi, P.; Gülçin, İ.; Menzek, A. The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Bioorg. Chem. 2017, 72, 359–366. [Google Scholar] [CrossRef]
- Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 2013, 36, 375–399. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Sahinler, S.S.; Ceylan, O.; Tepe, B. Onosma ambigens: Phytochemical composition, antioxidant and enzyme inhibitory activity. Ind. Crops Prod. 2020, 154, 112651. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Eskici, M.; Karanfil, A.; Tepe, B. Phenolic profile, enzyme inhibitory and antioxidant activities of two endemic Nepeta species: Nepeta nuda subsp. glandulifera and N. cadmea. S. Afr. J. Bot. 2019, 120, 298–301. [Google Scholar] [CrossRef]
- Ozer, M.S.; Kirkan, B.; Sarikurkcu, C.; Cengiz, M.; Ceylan, O.; Atilgan, N.; Tepe, B. Onosma heterophyllum: Phenolic composition, enzyme inhibitory and antioxidant activities. Ind. Crops Prod. 2018, 111, 179–184. [Google Scholar] [CrossRef]
- Sarikurkcu, C. Anthemis chia: Biological capacity and phytochemistry. Ind. Crops Prod. 2020, 153, 112578. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Sahinler, S.S.; Tepe, B. Onosma aucheriana, O. frutescens, and O. sericea: Phytochemical profiling and biological activity. Ind. Crops Prod. 2020, 154, 112633. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Ahmed, I.A.M.; Al Juhaimi, F.; Uslu, N.; Osman, M.A.; Gassem, M.A.; Babiker, E.E.; Ghafoor, K. The influence of fermentation and bud sizes on antioxidant activity and bioactive compounds of three different size buds of Capparis ovata Desf. var. canescens plant. J. Food Sci. Technol. 2020, 57, 2705–2712. [Google Scholar] [CrossRef]
- Chelly, S.; Chelly, M.; Ben Salah, H.; Athmouni, K.; Bitto, A.; Sellami, H.; Kallel, C.; Bouaziz-Ketata, H. HPLC-DAD analysis, antioxidant and protective effects of Tunisian Rhanterium suaveolens against acetamiprid induced oxidative stress on mice erythrocytes. Chem. Biodivers. 2019, 16, e1900428. [Google Scholar] [CrossRef]
- Attanzio, A.; D’Anneo, A.; Pappalardo, F.; Bonina, F.P.; Livrea, M.A.; Allegra, M.; Tesoriere, L. Phenolic composition of hydrophilic extract of manna from sicilian Fraxinus angustifolia Vahl and its reducing, antioxidant and anti-inflammatory activity in vitro. Antioxidants 2019, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Essafi, H.; Trabelsi, N.; Benincasa, C.; Tamaalli, A.; Perri, E.; Zarrouk, M. Phytochemical profile, antioxidant and antiproliferative activities of olive leaf extracts from autochthonous tunisian cultivars. Acta Aliment. 2019, 48, 384–390. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Afshari, M.; Sarfaraz, D.; Miroliaei, M. Using HPLC and multivariate analyses to investigate variations in the polyphenolic compounds as well as antioxidant and antiglycative activities of some Lamiaceae species native to Iran. Ind. Crops Prod. 2020, 154, 112640. [Google Scholar] [CrossRef]
- Fateminasab, F.; Bordbar, A.K.; Shityakov, S.; Saboury, A.A. Molecular insights into inclusion complex formation between beta- and gamma-cyclodextrins and rosmarinic acid. J. Mol. Liq. 2020, 314, 113802. [Google Scholar] [CrossRef]
- Righi, N.; Boumerfeg, S.; Fernandes, P.A.R.; Deghima, A.; Baali, F.; Coelho, E.; Cardoso, S.M.; Coimbra, M.A.; Baghiani, A. Thymus algeriensis Bioss & Reut: Relationship of phenolic compounds composition with in vitro/in vivo antioxidant and antibacterial activity. Food Res. Int. 2020, 136, 109500. [Google Scholar]
- Selseleh, M.; Ebrahimi, S.N.; Aliahmadi, A.; Sonboli, A.; Mirjalili, M.H. Metabolic profiling, antioxidant, and antibacterial activity of some Iranian Verbascum L. species. Ind. Crops Prod. 2020, 153, 112609. [Google Scholar] [CrossRef]
- Singh, A.; Srivastava, N.; Yadav, K.S.; Sinha, P.; Yadav, N.P. Preparation, optimization, characterization and bioevaluation of rosmarinic acid loaded phytovesicles for anti-inflammatory activity. J. Drug Deliv. Sci. Technol. 2020, 59, 101888. [Google Scholar] [CrossRef]
- Witkowska-Banaszczak, E.; Krajka-Kuzniak, V.; Papierska, K. The effect of luteolin 7-glucoside, apigenin 7-glucoside and Succisa pratensis extracts on NF-kappa B activation and alpha-amylase activity in HepG2 cells. Acta Biochim. Pol. 2020, 67, 41–47. [Google Scholar]
- Ma, T.T.; Sun, X.Y.; Tian, C.R.; Luo, J.Y.; Zheng, C.P.; Zhan, J.C. Enrichment and purification of polyphenol extract from sphallerocarpus gracilis stems and leaves and in vitro evaluation of DNA damage-protective activity and inhibitory effects of alpha-amylase and alpha-glucosidase. Molecules 2015, 20, 21442–21457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, N.; Zheng, B.S.; Li, T.; Hu, X.D.; Liu, R.H. Phenolic profiles, antioxidant, antiproliferative, and hypoglycemic activities of Ehretia macrophyla Wall. (EMW) fruit. J. Food Sci. 2020, 85, 2177–2185. [Google Scholar] [CrossRef] [PubMed]
- Kirkan, B. Antioxidant potential, enzyme inhibition activity, and phenolic profile of extracts from Stachys cretica subsp. vacillans. Ind. Crops Prod. 2019, 140, 111639. [Google Scholar] [CrossRef]
- Bouzaiene, N.N.; Chaabane, F.; Sassi, A.; Chekir-Ghedira, L.; Ghedira, K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci. 2016, 144, 80–85. [Google Scholar] [CrossRef]
- Crespo, M.I.; Chaban, M.F.; Lanza, P.A.; Joray, M.B.; Palacios, S.M.; Vera, D.M.A.; Carpinella, M.C. Inhibitory effects of compounds isolated from Lepechinia meyenii on tyrosinase. Food Chem. Toxicol. 2019, 125, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Bilska, A.; Kobus-Cisowska, J.; Kmiecik, D.; Danyluk, B.; Kowalski, R.; Szymanowska, D.; Gramza-Michalowska, A.; Szczepaniak, O. Cholinesterase inhibitory activity, antioxidative potential and microbial stability of innovative liver pate fortified with rosemary extract (Rosmarinus officinalis). Electron. J. Biotechnol. 2019, 40, 22–29. [Google Scholar] [CrossRef]
- Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol. 2008, 443, 365–382. [Google Scholar]
- Zengin, G.; Sarikurkcu, C.; Gunes, E.; Uysal, A.; Ceylan, R.; Uysal, S.; Gungor, H.; Aktumsek, A. Two Ganoderma species: Profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer’s disease and skin disorders. Food Funct. 2015, 6, 2794–2802. [Google Scholar] [CrossRef]
- Cittan, M.; Çelik, A. Development and validation of an analytical methodology based on Liquid Chromatography–Electrospray Tandem Mass Spectrometry for the simultaneous determination of phenolic compounds in olive leaf extract. J. Chromatogr. Sci. 2018, 56, 336–343. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçaǧ, E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
- Kocak, M.S.; Sarikurkcu, C.; Cengiz, M.; Kocak, S.; Uren, M.C.; Tepe, B. Salvia cadmica: Phenolic composition and biological activity. Ind. Crops Prod. 2016, 85, 204–212. [Google Scholar] [CrossRef]
- Tepe, B.; Sarikurkcu, C.; Berk, S.; Alim, A.; Akpulat, H.A. Chemical composition, radical scavenging and antimicrobial activity of the essential oils of Thymus boveii and Thymus hyemalis. Rec. Nat. Prod. 2011, 5, 208–220. [Google Scholar]
- Zengin, G.; Sarikurkcu, C.; Uyar, P.; Aktumsek, A.; Uysal, S.; Kocak, M.S.; Ceylan, R. Crepis foetida L. subsp rhoeadifolia (Bleb.) Celak. as a source of multifunctional agents: Cytotoxic and phytochemical evaluation. J. Funct. Foods 2015, 17, 698–708. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar]
- Nasab, R.R.; Hassanzadeh, F.; Khodarahmi, G.A.; Rostami, M.; Mirzaei, M.; Jahanian-Najafabadi, A.; Mansourian, M. Docking study, synthesis and antimicrobial evaluation of some novel 4-anilinoquinazoline derivatives. Res. Pharm. Sci. 2017, 12, 425–433. [Google Scholar] [PubMed] [Green Version]
- Ricci, C.G.; Netz, P.A. Docking studies on DNA-ligand interactions: Building and application of a protocol to identify the binding mode. J. Chem. Inf. Model. 2009, 49, 1925–1935. [Google Scholar] [CrossRef]
- Qin, L.; Chen, Z.; Yang, L.; Shi, H.; Wu, H.; Zhang, B.; Zhang, W.; Xu, Q.; Huang, F.; Wu, X. Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice. Toxicology 2019, 426, 152256. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kregiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
Rt (min) | Compounds | Linear Equation | R2 | LOD (μg/L) | LOQ (μg/L) |
---|---|---|---|---|---|
8.891 | Gallic acid | y = 4.82x − 26.48 | 0.9988 | 1.46 | 4.88 |
10.818 | Protocatechuic acid | y = 5.65x − 9.99 | 0.9990 | 1.17 | 3.88 |
11.224 | 3,4-Dihydroxyphenylacetic acid | y = 5.13x − 12.39 | 0.9990 | 1.35 | 4.51 |
11.369 | (+)-Catechin | y = 1.45x + 1.95 | 0.9974 | 3.96 | 13.20 |
11.506 | Pyrocatechol | y = 0.11x − 0.52 | 0.9916 | 9.62 | 32.08 |
11.802 | Chlorogenic acid | y = 12.14x + 32.34 | 0.9995 | 0.55 | 1.82 |
12.412 | 2,5-Dihydroxybenzoic acid | y = 3.79x − 14.12 | 0.9980 | 2.12 | 7.08 |
12.439 | 4-Hydroxybenzoic acid | y = 7.62x + 22.79 | 0.9996 | 1.72 | 5.72 |
12.458 | (−)-Epicatechin | y = 9.11x − 9.99 | 0.9971 | 1.85 | 6.18 |
12.841 | Caffeic acid | y = 11.09x + 16.73 | 0.9997 | 3.15 | 10.50 |
12.843 | Vanillic acid | y = 0.49x − 1.61 | 0.9968 | 2.56 | 8.54 |
12.963 | Syringic acid | y = 0.74x − 1.54 | 0.9975 | 3.75 | 12.50 |
13.259 | 3-Hydroxybenzoic acid | y = 3.69x − 12.29 | 0.9991 | 1.86 | 6.20 |
13.397 | Vanillin | y = 2.02x + 135.49 | 0.9926 | 15.23 | 50.77 |
13.589 | Verbascoside | y = 8.59x − 28.05 | 0.9988 | 0.82 | 2.75 |
13.909 | Taxifolin | y = 12.32x + 9.98 | 0.9993 | 1.82 | 6.05 |
13.992 | Sinapic acid | y = 2.09x − 6.79 | 0.9974 | 2.64 | 8.78 |
14.022 | p-Coumaric acid | y = 17.51x + 53.73 | 0.9997 | 1.93 | 6.44 |
14.120 | Ferulic acid | y = 3.32x − 4.30 | 0.9992 | 1.43 | 4.76 |
14.266 | Luteolin-7-glucoside | y = 45.25x + 156.48 | 0.9996 | 0.45 | 1.51 |
14.412 | Hesperidin | y = 5.98x + 0.42 | 0.9993 | 1.73 | 5.77 |
14.506 | Hyperoside | y = 16.32x − 1.26 | 0.9998 | 0.99 | 3.31 |
14.600 | Rosmarinic acid | y = 9.82x − 17.98 | 0.9989 | 0.57 | 1.89 |
14.781 | Apigenin-7-glucoside | y = 21.33x − 31.69 | 0.9983 | 0.41 | 1.35 |
15.031 | 2-Hydroxycinnamic acid | y = 16.72x − 26.94 | 0.9996 | 0.61 | 2.03 |
15.118 | Pinoresinol | y = 0.80x − 2.69 | 0.9966 | 3.94 | 13.12 |
15.247 | Eriodictyol | y = 14.24x − 0.50 | 0.9998 | 0.80 | 2.68 |
15.668 | Quercetin | y = 14.68x − 18.25 | 0.9997 | 1.23 | 4.10 |
15.923 | Luteolin | y = 8.96x + 26.80 | 0.9992 | 1.34 | 4.46 |
16.236 | Kaempferol | y = 0.82x − 3.06 | 0.9959 | 3.30 | 10.99 |
16.382 | Apigenin | y = 11.29x + 38.05 | 0.9987 | 0.96 | 3.20 |
Compound | O. bourgaei (µg/g) | O. trachytricha (µg/g) |
---|---|---|
Gallic acid | 5.30 ± 0.16 a | 4.47 ± 0.25 a |
Protocatechuic acid | 35.53 ± 0.57 a | 138.34 ± 2.44 b |
3,4-Dihydroxyphenylacetic acid | nd | 11.40 ± 0.29 |
(+)-Catechin | nd | nd |
Pyrocatechol | nd | nd |
Chlorogenic acid | 18.52 ± 0.39 a | 136.40 ± 10.35 b |
2,5-Dihydroxybenzoic acid | 71.05 ± 0.61 a | 163.26 ± 0.93 b |
4-Hydroxybenzoic acid | 297.18 ± 1.54 a | 392.63 ± 22.47 b |
(−)-Epicatechin | nd | nd |
Caffeic acid | 142.69 ± 4.28 a | 465.37 ± 16.12 b |
Vanillic acid | 57.43 ± 2.39 a | 943.21 ± 14.90 b |
Syringic acid | 13.76 ± 1.38 a | 32.83 ± 1.83 b |
3-Hydroxybenzoic acid | 5.63 ± 0.36 a | 6.27 ± 0.06 a |
Vanillin | 13.83 ± 0.96 a | 127.75 ± 3.12 b |
Verbascoside | 1.89 ± 0.01 | nd |
Taxifolin | nd | nd |
Sinapic acid | 18.72 ± 0.41 a | 39.65 ± 2.26 b |
p-Coumaric acid | 58.46 ± 0.39 a | 119.23 ± 5.30 b |
Ferulic acid | 112.78 ± 0.94 a | 559.18 ± 47.28 b |
Luteolin 7-glucoside | 23,908.22 ± 922.89 a | 22,326.01 ± 216.87 a |
Hesperidin | 8.63 ± 0.01 a | 79.04 ± 2.02 b |
Hyperoside | 19.47 ± 0.10 a | 120.51 ± 4.32 b |
Rosmarinic acid | 10,013.76 ± 175.93 a | 24,837.51 ± 1069.14 b |
Apigenin 7-glucoside | 21,689.17 ± 215.93 b | 17,949.03 ± 468.50 a |
2-Hydroxycinnamic acid | nd | nd |
Pinoresinol | 1224.04 ± 1.94 b | 762.64 ± 36.65 a |
Eriodictyol | 2.47 ± 0.08 | nd |
Quercetin | 2.75 ± 0.06 a | 3.21 ± 0.23 a |
Luteolin | 1890.26 ± 85.62 | nd |
Kaempferol | nd | 3.97 ± 0.18 |
Apigenin | 211.32 ± 1.04 a | 280.06 ± 7.68 b |
Enzyme | Ligand | Binding Affinity (ΔG°; kcal/mol) | Inhibition Constant (mM) |
---|---|---|---|
AChE | Galantamine (inhibitor) | −7.25 | 0.0048 |
Luteolin 7-glucoside | −8.92 | 0.0003 | |
Apigenin 7-glucoside | −9.26 | 0.0001 | |
Rosmarinic acid | −6.72 | 0.0110 | |
BChE | Tacrine (inhibitor) | −6.93 | 0.0082 |
Luteolin 7-glucoside | −10.87 | 0.00001 | |
Apigenin 7-glucoside | −9.86 | 0.00006 | |
Rosmarinic acid | −7.91 | 0.0015 | |
Tyrosinase | Kojic acid (inhibitor) | −5.64 | 0.0728 |
Luteolin 7-glucoside | −5.83 | 0.0536 | |
Apigenin 7-glucoside | −5.41 | 0.1081 | |
Rosmarinic acid | −4.58 | 0.4383 | |
α-Amylase | Acarbose (inhibitor) | −10.4 | 0.00002 |
Luteolin 7-glucoside | −8.19 | 0.0009 | |
Apigenin 7-glucoside | −7.64 | 0.0025 | |
Rosmarinic acid | −6.17 | 0.0301 | |
Acarbose (inhibitor) | −9.53 | 0.0001 | |
Luteolin 7-glucoside | −9.22 | 0.0001 | |
α-Glucosidase | Apigenin 7-glucoside | −9.09 | 0.0002 |
Rosmarinic acid | −5.26 | 0.139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Istifli, E.S. Chemical Composition, Antioxidant and Enzyme Inhibitory Activities of Onosma bourgaei and Onosma trachytricha and in Silico Molecular Docking Analysis of Dominant Compounds. Molecules 2021, 26, 2981. https://doi.org/10.3390/molecules26102981
Istifli ES. Chemical Composition, Antioxidant and Enzyme Inhibitory Activities of Onosma bourgaei and Onosma trachytricha and in Silico Molecular Docking Analysis of Dominant Compounds. Molecules. 2021; 26(10):2981. https://doi.org/10.3390/molecules26102981
Chicago/Turabian StyleIstifli, Erman Salih. 2021. "Chemical Composition, Antioxidant and Enzyme Inhibitory Activities of Onosma bourgaei and Onosma trachytricha and in Silico Molecular Docking Analysis of Dominant Compounds" Molecules 26, no. 10: 2981. https://doi.org/10.3390/molecules26102981
APA StyleIstifli, E. S. (2021). Chemical Composition, Antioxidant and Enzyme Inhibitory Activities of Onosma bourgaei and Onosma trachytricha and in Silico Molecular Docking Analysis of Dominant Compounds. Molecules, 26(10), 2981. https://doi.org/10.3390/molecules26102981