Geissospermiculatine, a New Alkaloid from Geissospermum reticulatum Bark
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Determination by 1D and 2D NMR Spectroscopy
2.2. Cytotoxic Activity on In Vitro Cultured Cells
2.3. Effect on Zebrafish (Danio rerio)
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Cell Culture
3.5. Cytotoxic Activity Test with 7-AAD
3.6. Zebrafish (Danio rerio) Embryo Toxicity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Camargo, M.R.M.; das Neves Amorim, R.C.; Rocha, L.F.; Carneiro, A.L.B.; Vital, M.J.S.; Pohlit, A.M. Chemical composition, ethnopharmacology and biological activity of Geissospermum Allemao species (Apocynaceae Juss.). Rev. Fitos 2013, 8, 137–146. [Google Scholar]
- Gentry, A.H. New species and combinations in Apocynaceae from Peru and adjacent Amazonia. Ann. Missouri Bot. Gard. 1984, 71, 1075–1081. [Google Scholar] [CrossRef]
- Reina, M.; Ruiz-Mesia, W.; Rodriguez, M.L.; Mesia, L.R.; Coloma, A.G.; Diaz, R.M. Indole alkaloids from Geissospermum reticulatum. J. Nat. Prod. 2012, 75, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Kozielewicz, J.J.S.; Kozielewicz, P.; Barnes, N.M.; Wawer, I.; Paradowska, K. Antioxidant, cytotoxic and anti-proliferative activities and total polyphenol contents of the extracts of Geissospermum reticulatum bark. Oxid. Med. Cell Longev. 2016, 2016, 2573580. [Google Scholar]
- Liu, L.; Cao, J.X.; Yao, Y.C.; Xu, S.P. Progress of pharmacological studies on alkaloids from Apocynaceae. J. Asian Nat. Prod. Res. 2013, 15, 166–184. [Google Scholar] [CrossRef] [PubMed]
- Bemis, D.L.; Capodice, J.L.; Desai, M.; Katz, A.E.; Buttyan, R. β-Carboline Alkaloid-Enriched Extract from the Amazonian Rain Forest Tree Pao Pereira Suppresses Prostate Cancer Cells. J. Soc. Integr. Oncol. 2009, 7, 59–65. [Google Scholar]
- Werner, J.A.; Oliveira, S.M.; Martins, D.F.; Mazzardo, L.; de Dias, F.; Lordello, A.L.; Miguel, O.G.; Royes, L.F.; Ferreira, J.; Santos, A.R. Evidence for a role of 5-HT1A receptor on antinociceptive action from Geissospermum vellosii. J. Ethnopharmacol. 2009, 125, 163–169. [Google Scholar] [CrossRef]
- Lima, J.A.; Costa, R.S.; Epifanio, R.A.; Castro, N.G.; Rocha, M.S.; Pinto, A.C. Geissospermum vellosii stembark: Anticholinesterase activity and improvement of scopolamine-induced memory deficits. Pharmacol. Biochem. Behav. 2009, 92, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.F.; Segovia, J.F.; Goncalves, M.C.; de Oliveira, V.L.; Silveira, D.; Carvalho, J.C.; Kanzaki, L.I. Amazonian plant crude extract screening for activity against multidrug-resistant bacteria. Eur. Rev. Med. Pharmacol. Sci. 2008, 12, 369–380. [Google Scholar]
- Sajkowska-Kozielewicz, J.J.; Gulik, K.; Makarova, K.; Paradowska, K. Antioxidant Properties and Stability of Geissospermum Reticulatum Tinctures: Lag Phase ESR and Chemometric Analysis. Acta Phys. Pol. A 2017, 132, 68–72. [Google Scholar] [CrossRef]
- de Andrade-Neto, V.F.; Pohlit, A.M.; Pinto, A.C.; Silva, E.C.; Nogueira, K.L.; Melo, M.R.; Henrique, M.C.; Amorim, R.C.; Silva, L.F.; Costa, M.R.; et al. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants. Mem. Inst. Oswaldo Cruz 2007, 102, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, V.; Sauvain, M.; Bourdy, G.; Callapa, J.; Bergeron, S.; Rojas, I.; Bravo, J.A.; Balderrama, L.; Ortiz, B.; Gimenez, A.; et al. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part I. Evaluation of the antimalarial activity of plants used by the Chacobo Indians. J. Ethnopharmacol. 2000, 69, 127–137. [Google Scholar] [CrossRef]
- Steele, J.C.; Veitch, N.C.; Kite, G.C.; Simmonds, M.S.; Warhurst, D.C.J. Indole and ß-Carboline Alkaloids from Geissospermum sericeum. J. Nat. Prod. 2002, 65, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Mbeunkui, F.; Grace, M.H.; Lategan, C.; Smith, P.J.; Raskin, I.; Lila, M.A. In vitro antiplasmodial activity of indole alkaloids from the stem bark of Geissospermum vellosii. J. Ethnopharmacol. 2012, 139, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Ayesh, B.M.; Abed, A.A.; Faris, D.M. In vitro inhibition of human leukemia THP-1 cells by Origanum syriacum L. and Thymus vulgaris L. extracts. BMC Res. Notes 2014, 7, 612–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, F.F.; Almagro, L.; Pedreño, M.A.; Ros, L.V.G. Synergistic and cytotoxic action of indole alkaloids produced from elicited cell cultures of Catharanthus roseus. Pharm. Biol. 2013, 51, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Caballero, M.V.; Cadiracii, M. Zebrafish as screening model for detecting toxicity and drug efficacy. J. Unexplored Med. Data 2018, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Scholz, S.; Fischer, S.; Gündel, U.; Küster, E.; Luckenbasch, T.; Voelker, D. The zebrafish embryo model in environmental risk assessment—Applications beyond acute toxicity testing. Environ. Sci. Pollut. Res. 2008, 15, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Pilarski, R.; Zielinski, H.; Ciesiolka, D.; Gulewicz, K. Antioxidant activity of ethanolic and aqueous extracts of Uncaria tomentosa (Willd.) DC. J. Ethnopharmacol. 2006, 104, 18–23. [Google Scholar] [CrossRef] [PubMed]
Compound | |||
---|---|---|---|
Position | δH (mult., J in HZ) | δC | HMBC b |
2 | 3.97 (d, 5.5) | 64.44 | 6, 7, 14 |
3 | 1.91 (br s) | 33.76 | |
5 | 2.99 (m) and 3.47 (m) | 54.75 | 7, 16 |
6 | 2.17 (ddd, 11.6, 11.1, 3.4) and 2.37 (m) | 37.93 | 2, 5, 7 |
7 | 52.14 | ||
8 | 135.97 | ||
9 | 6.57 (d, 7.7) | 109.75 | 8, 10 |
10 | 6.74 (d, 7.4) | 119.47 | 8, 9 |
11 | 7.02 (d, 7.6) | 128.01 | 12, 13 |
12 | 7.04 (d, 7.4) | 122.30 | 11, 13 |
13 | 149.51 | ||
14 | 3.38 (m) | 66.35 | |
15 | 1.66 (dt, 9.9, 14.7) | 41.38 | |
16 | 2.40 (m) and 3.04 (s) | 49.28 | 14, 15 |
17 | 1.69 (dt, 9.9, 14.7) and 2.21 (m) | 25.27 | |
18 | 1.21 and 1.24 (m) | 23.70 | 15, 16 |
19 | 0.89 (t) | 11.45 | 15, 18 |
20 | 172.51 | ||
21 | 2.00 (m) | 22.59 | 20 |
Substance | E3 [%] | Alkaloidal Fraction | |
---|---|---|---|
Time | 100 µg/mL [%] | 300 µg/mL [%] | |
24 h | 2 | 2.5 | 50 |
48 h | 0 | 0 | 0 |
72 h | 0 | 0 | 100 |
Substance | E3 [%] | Alkaloidal Fraction | ||
---|---|---|---|---|
Development Features | 100 µg/mL [%] | 300 µg/mL [%] | ||
24 h | n = 8 | n = 39 | n = 20 | |
length [%] | not hatched | not hatched | not hatched | |
heartbeats [/min] | 132 ± 3 | 139 ± 2 * | 125 ± 2 | |
pericardial edema [%] | none | none | none | |
48 h | n = 8 | n = 7, 32 not hatched | n = 6, 14 not hatched | |
length [%] | reference (100%) | ↓ 5% * | ↓ 12% * | |
heartbeats [/min] | 154 ± 5 | 133 ± 3 * | 44 ± 2 * | |
pericardial edema [%] | reference (100%) | ↑ 8% | ↑ 46% | |
72 h | n = 8 | n = 8, 1 not hatched | n = 8 | |
length [%] | reference (100%) | ↓ 16% * | death | |
heartbeats [/min] | not measured | not measured | death | |
pericardial edema [%] | reference (100%) | ↑ 33% | death |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajkowska-Kozielewicz, J.J.; Kozielewicz, P.; Makarova, K.; Stocki, M.; Barnes, N.M.; Paradowska, K. Geissospermiculatine, a New Alkaloid from Geissospermum reticulatum Bark. Molecules 2021, 26, 143. https://doi.org/10.3390/molecules26010143
Sajkowska-Kozielewicz JJ, Kozielewicz P, Makarova K, Stocki M, Barnes NM, Paradowska K. Geissospermiculatine, a New Alkaloid from Geissospermum reticulatum Bark. Molecules. 2021; 26(1):143. https://doi.org/10.3390/molecules26010143
Chicago/Turabian StyleSajkowska-Kozielewicz, Joanna J., Paweł Kozielewicz, Katerina Makarova, Marcin Stocki, Nicholas M. Barnes, and Katarzyna Paradowska. 2021. "Geissospermiculatine, a New Alkaloid from Geissospermum reticulatum Bark" Molecules 26, no. 1: 143. https://doi.org/10.3390/molecules26010143
APA StyleSajkowska-Kozielewicz, J. J., Kozielewicz, P., Makarova, K., Stocki, M., Barnes, N. M., & Paradowska, K. (2021). Geissospermiculatine, a New Alkaloid from Geissospermum reticulatum Bark. Molecules, 26(1), 143. https://doi.org/10.3390/molecules26010143