Characterization of Unripe and Mature Avocado Seed Oil in Different Proportions as Phase Change Materials and Simulation of Their Cooling Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the PCM
2.1.1. Fourier Transformed Infrared Spectroscopy (FTIR) Analysis
2.1.2. Differential Scanning Calorimetry (DSC) Analysis
2.1.3. Thermogravimetric Analysis (TGA) Analysis
2.2. Simulation
3. Results and Discussion
3.1. FTIR Analysis Results
3.2. DSC Results
3.3. TGA Results
3.4. Material Selection
3.5. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
Frequency FTIR (cm−1) | Functional Group | Vibrational Mode |
---|---|---|
2922 | CH2 | Extension, asymmetric |
2852 | CH2 | Extension, symmetric |
2374 | CH3 | Extension, asymmetric |
2347 | CH3 | Extension, symmetric |
2310 | CH3 | Extension, asymmetric |
1744 | C=O | Extension, carbonyl ester |
1647 | C=C | Extension, (cis), unsaturation |
1543 | Amide II, N-H | Flexion |
1459 | CH2 | Flexion scissor deformation |
1340 | CH3 | Flexion, symmetric |
1317 | Amide III, C-N/N-H | (C-N) extension, (N-H) flexion the plane |
1163 | CH2 | Extension, flexion |
1097 | C-O | Symmetric, extension |
985 | HC=CH | Flexion out of plane, (trans) |
945 | HC=CH | Flexion out of plane, (cis) |
840 | (CH2) n | Outside Flexion |
Frequency FTIR (cm−1) | Functional Group | Vibrational Group |
---|---|---|
2923 | CH2 | Extension, asymmetric |
2853 | CH2 | Extension, symmetric |
2375 | CH3 | Extension, asymmetric |
2346 | CH3 | Extension, symmetric |
2314 | CH3 | Extension, asymmetric |
1745 | C=O | Extension, carbonyl ester |
1639 | C=C | Extension, (cis), unsaturation |
1544 | Amide II, N-H | Flexion |
1459 | CH2 | Flexion scissor deformation |
1339 | CH3 | Flexion, symmetric |
1156 | C-O | Extension |
1098 | C-O | Extension, symmetric |
966 | HC=CH | Flexion out of plane, (trans) |
852 | (CH2) n | Outside Flexion |
Frequency FTIR (cm−1) | Functional Group | Vibrational Mode |
---|---|---|
2925 | CH2 | Extension, asymmetric |
2854 | CH2 | Extension, symmetric |
2372 | CH2 | Extension, asymmetric |
2319 | CH2 | Extension, symmetric |
1745 | C=O | Extension, carbonyl ester |
1647 | C=C | Extension, (cis), unsaturation |
1544 | Amide II, N-H | Flexion |
1459 | CH2 | Flexion scissor deformation |
1163 | C-O, CH2 | Extension, flexion |
970 | HC=CH | Flexion out of plane, (trans) |
887 | (CH2) n | Outside flexion |
Frequency FTIR (cm−1) | Functional Group | Vibrational Mode |
---|---|---|
2925 | CH2 | Extension, asymmetric |
2855 | CH2 | Extension, symmetric |
2363 | CH2 | Extension, asymmetric |
2344 | CH2 | Extension, symmetric |
2307 | CH2 | Extension, asymmetric |
1746 | C=O | Extension, carbonyl ester |
1688 | Amide I, C=O | Extension |
1623 | Amide I, C=O | Extension |
1544 | Amide II, N-H/C-N | (N-H) flexion in the plane/(C-N) extension |
1362 | CH3 | Flexion, symmetric |
1171 | CH2 | Extension, flexion |
984 | (CH2) n | Outside Flexion |
Frequency FTIR (cm−1) | Functional Group | Vibrational Mode |
---|---|---|
2942 | CH3 | Extension, asymmetric |
2375 | CH2 | Extension, asymmetric |
2351 | CH2 | Extension, symmetric |
2319 | CH2 | Extension, symmetric |
1714 | C=O (Acid) | extension |
1194 | CH2 | Extension, flexion |
1128 | C-O | Extension |
950 | (CH2) n | Outside Flexion |
Appendix B
Appendix C
Sample | Trans. 1 (TI, TM, TF) (°C) | Trans. 1 (Enthalpy) (J·g−1) | Trans. 2 (TI, TM, TF) (°C) | Trans. 2 (Enthalpy) (J·g−1) | Trans. 3 (TI, TM, TF) (°C) | Trans. 3 (Enthalpy) (J·g−1) | Trans. 4 (TI, TM, TF) (°C) | Trans. 4 (Enthalpy) (J·g−1) | Trans. 5 (TI, TM, TF) (°C) | Trans. 5 (Enthalpy) (J·g−1) | Trans. 6 (TI, TM, TF) (°C) | Trans. 6 (Enthalpy) (J·g−1) | Trans. 7 (TI, TM, TF) (°C) | Trans. 7 (Enthalpy) (J·g−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AA-100T | −22.29 | 15.94 | −38.17 | 1.38 | −54.52 | 16.08 | −17.93 | 0.4 | −5.69 | 5.09 | 3.76 | 17.08 | 14.67 | 19.36 |
−4.22 | −31.33 | −47.08 | −19.44 | −13.41 | −0.58 | 10.82 | ||||||||
−3.75 | −25.8 | −42.59 | −22.23 | −17.93 | −5.69 | 3.76 | ||||||||
AA-75T-25M | −21.35 | 15.26 | −39.36 | 1.6 | −54.52 | 15.83 | −18.49 | 0.64 | −6.65 | 5.48 | 3.03 | 19.61 | 14.2 | 22.65 |
−4.16 | −31.21 | −47.43 | −19.92 | −13.67 | −1.47 | 10.33 | ||||||||
−3.67 | −25.29 | −43.06 | −22.7 | −18.49 | −6.4 | 3.03 | ||||||||
AA-50T-50M | −19.69 | 12.47 | −39.83 | 1.78 | −54.05 | 17.66 | −18.89 | 0.68 | −7.6 | 4.81 | 1.92 | 19.36 | 13.02 | 29.12 |
−4.08 | −31.66 | −47.89 | −20.34 | −14.62 | −2.16 | 9.64 | ||||||||
−3.37 | −26.1 | −43.24 | −23.15 | −18.89 | −6.86 | 1.92 | ||||||||
AA-25T-75M | −22.06 | 9.33 | −39.36 | 1.32 | −54.05 | 15.24 | −19.82 | 0.84 | −7.77 | 5.08 | 1.18 | 14.64 | 13.49 | 25.85 |
−7.73 | −31.28 | −47.66 | −21.85 | −16.64 | −3.11 | 9.57 | ||||||||
−3.58 | −26.24 | −43.23 | −23.99 | −19.82 | −7.77 | 1.18 | ||||||||
AA-100M | −23.24 | 11.91 | −35.36 | 0.51 | −54.52 | 17.02 | −15.1 | 1.09 | −9.02 | 5.03 | −0.97 | 16.03 | 14.44 | 30.78 |
−7.67 | −27.76 | −47.67 | −22.16 | −15.1 | −4.1 | 9.4 |
Appendix D
References
- Nazir, H.; Batool, M.; Bolivar Osorio, F.J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Lin, Y.; Alva, G.; Fang, G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy 2018, 165, 685–708. [Google Scholar] [CrossRef]
- Da Cunha, S.R.L.; de Aguiar, J.L.B. Phase change materials and energy efficiency of buildings: A review of knowledge. J. Energy Storage 2020, 27, 101083. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy storage technologies and real life applications–A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Voros, V.; Drioli, E.; Fonte, C.; Szekely, G. Process Intensification via Continuous and Simultaneous Isolation of Antioxidants: An Upcycling Approach for Olive Leaf Waste. ACS Sustain. Chem. Eng. 2019, 7, 18444–18452. [Google Scholar] [CrossRef]
- Elias, C.N.; Stathopoulos, V.N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia 2019, 161, 385–394. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Fabiani, C.; Pisello, A.L.; Barbanera, M.; Cabeza, L.F. Palm oil-based bio-PCM for energy e ffi cient building applications: Multipurpose thermal investigation and life cycle assessment. J. Energy Storage 2020, 28, 101129. [Google Scholar] [CrossRef]
- Dincer, I.; Midilli, A.; Kucuk, H. Progress in Sustainable Energy Technologies Vol II: Creating Sustainable Development; Springer: New York, NY, USA, 2014; Volume II, ISBN 9783319079776. [Google Scholar]
- Hyun, D.C.; Levinson, N.S.; Jeong, U.; Xia, Y. Emerging applications of phase-change materials (PCMs): Teaching an old dog new tricks. Angew. Chem. Int. Ed. 2014, 53, 3780–3795. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 2015, 95, 193–228. [Google Scholar] [CrossRef] [Green Version]
- Abuelnuor, A.A.A.; Omara, A.A.M.; Saqr, K.M.; Elhag, I.H.I. Improving indoor thermal comfort by using phase change materials: A review. Int. J. Energy Res. 2018, 42, 2084–2103. [Google Scholar] [CrossRef]
- Kurklo, A. Energy storage applications in greenhouses by means of phase change materials (PCMs): A review. Energy 1998, 13, 89–103. [Google Scholar]
- Zhang, N.; Yuan, Y.; Cao, X.; Du, Y.; Zhang, Z.; Gui, Y. Latent Heat Thermal Energy Storage Systems with Solid–Liquid Phase Change Materials: A Review. Adv. Eng. Mater. 2018, 20, 1–30. [Google Scholar] [CrossRef]
- Wei, G.; Wang, G.; Xu, C.; Ju, X.; Xing, L.; Du, X.; Yang, Y. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2018, 81, 1771–1786. [Google Scholar] [CrossRef]
- Oró, E.; Miró, L.; Farid, M.M.; Cabeza, L.F. Thermal analysis of a low temperature storage unit using phase change materials without refrigeration system. Int. J. Refrig. 2012, 35, 1709–1714. [Google Scholar] [CrossRef]
- Mastani Joybari, M.; Haghighat, F.; Moffat, J.; Sra, P. Heat and cold storage using phase change materials in domestic refrigeration systems: The state-of-the-art review. Energy Build. 2015, 106, 111–124. [Google Scholar] [CrossRef]
- Orozco, M.; Martinez, J.; Chico-Proano, A.; Acurio, K. Production and Characterization of Nitrates as Phase Change Materials to Evaluate their Energy Storage Ability Procesado y Caracterización de Nitratos como Materiales de Cambio de Fase para Evaluar su Capacidad de Almacenamiento Energético. Rev. Técnica Energ. 2018, 14, 224–235. [Google Scholar]
- Oró, E.; de Gracia, A.; Castell, A.; Farid, M.M.; Cabeza, L.F. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl. Energy 2012, 99, 513–533. [Google Scholar] [CrossRef] [Green Version]
- Nie, B.; Palacios, A.; Zou, B.; Liu, J.; Zhang, T.; Li, Y. Review on phase change materials for cold thermal energy storage applications. Renew. Sustain. Energy Rev. 2020, 134, 110340. [Google Scholar] [CrossRef]
- Veerakumar, C.; Sreekumar, A. Phase change material based cold thermal energy storage: Materials, techniques and applications—A review. Int. J. Refrig. 2016, 67, 271–289. [Google Scholar] [CrossRef]
- Du, K.; Calautit, J.; Wang, Z.; Wu, Y.; Liu, H. A review of the applications of phase change materials in cooling, heating and power generation in di ff erent temperature ranges. Appl. Energy 2018, 220, 242–273. [Google Scholar] [CrossRef]
- Domínguez, M.; García, C.; Arias, J.M.; Csic, F. Los PCM en el transporte de productos perecederos. Digit. CICS 2008, 1, 15. [Google Scholar]
- Li, S.F.; Liu, Z.H.; Wang, X.J. A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials. Appl. Energy 2019, 255, 113667. [Google Scholar] [CrossRef]
- Sharma, A.; Dong, L.; Buddhi, D.; Un, J. Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system. Renew. Energy 2005, 30, 2179–2187. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Rozanna, D.; Chuah, T.G.; Salmiah, A.; Choong, T.S.Y.; Sa’ari, M. Fatty Acids as Phase Change Materials (PCMs) for Thermal Energy Storage: A Review. Int. J. Green Energy 2005, 1, 495–513. [Google Scholar] [CrossRef]
- Cedeño, F.O.; Prieto, M.M.; Espina, A.; García, J.R. Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry. Thermochim. Acta 2001, 369, 39–50. [Google Scholar] [CrossRef]
- Suppes, G.J.; Goff, M.J.; Lopes, S. Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 2003, 58, 1751–1763. [Google Scholar] [CrossRef]
- Kahwaji, S.; White, M.A. Edible Oils as Practical Phase Change Materials for Thermal Energy Storage. Appl. Sci. 2019, 9, 1627. [Google Scholar] [CrossRef] [Green Version]
- Tieko, R.; Guaraldo, L. Determination of melting point of vegetable oils and fats by differential scanning calorimetry (DSC) technique. Grasas Aceites 1999, 50, 16–21. [Google Scholar]
- Alper, A.; Aydın, A. Solar Energy Materials & Solar Cells High-chain fatty acid esters of 1-hexadecanol for low temperature thermal energy storage with phase change materials. Sol. Energy Mater. Sol. Cells 2012, 96, 93–100. [Google Scholar]
- Acurio, K.; Chico-Proano, A.; Martínez-Gómez, J.; Ávila, C.F.; Ávila, Á.; Orozco, M. Thermal performance enhancement of organic phase change materials using spent diatomite from the palm oil bleaching process as support. Constr. Build. Mater. 2018, 192, 633–642. [Google Scholar] [CrossRef]
- Bora, P.S.; Narain, N.; Rocha, R.V.M.; Queiroz Paulo, M. Characterization of the oils from the pulp and seeds of avocado (cultivar: Fuerte) fruits. Grasas y Aceites 2001, 52, 171–174. [Google Scholar]
- Rasta, I.M.; Suamir, I.N. The role of vegetable oil in water based phase change materials for medium temperature refrigeration. J. Energy Storage 2018, 15, 368–378. [Google Scholar] [CrossRef]
- Castonera-Garcia, J.; Rojas-Lopez, M.; Delgado-Macuil, R.; de la Torre, R.R. Análisis de Pulpa y Aceite de Aguacate con Espectroscopia Infrarroja. Concienc. Tecnológica 2011, 42, 5–10. [Google Scholar]
- Taylor, P.; Rohman, A. Fourier transform infrared (FTIR) spectroscopy combined with multivariative calibrations for the autentication of avocado oil. Int. J. Food Prop. 2015, 19, 680–687. [Google Scholar]
- Wang, M.; Yu, P.; Chittiboyina, A.G.; Chen, D.; Zhao, J.; Avula, B.; Wang, Y.; Khan, I.A. Assessment of Avocado (Persea americana Mill) Oils. Molecules 2020, 25, 1453. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, M.; Araus, K.; Bonert, P.; Sa, F.; Miguel, G.S.; Toledo, M. The Avocado and Its Waste: An Approach of Fuel Potential/Application. In Environment, Energy and Climate Change II; Springer: Cham, Switzerland, 2016; pp. 199–223. [Google Scholar]
- Ejiofor, N.; Ezeagu, I.; Ayoola, M.; Umera, E. Determination of the chemical composition of avocado (Persea americana) seed. Adv. Food Technol. Nutr. Sci. Open J. 2018, S51–S55. [Google Scholar] [CrossRef]
- Gidigbi, J.; Ngoshe, A.; Martins, A. Industrial Viability Study of the Avocado Seed Oil. Int. J. Recent Innov. Acad. Res. 2019, 3, 48–57. [Google Scholar]
- Segovia, F.J.; Hidalgo, I.; Villasante, J.; Ramis, X. Avocado Seed: A Comparative Study of Antioxidant Content and Capacity in Protecting Oil Models from Oxidation. Molecules 2018, 23, 2421. [Google Scholar] [CrossRef] [Green Version]
- Alves, I.; Magnani, M.; Medeiros, F.; Sabino, K.; De Souza, J.; Queiroga, V. Characterization of chemical and structural properties of native and acetylated starches from avocado (Persea americana Mill.) seeds. Int. J. Food Prop. 2017, 20, S279–S289. [Google Scholar]
- Lee, S.K.; Young, R.E. Temperature Sensitivity of Avocado Fruit in Relation to C2H4 Treatment. J. Amer. Soc. Hort. Sci. 1984, 109, 689–692. [Google Scholar]
- Sanchéz, F.; Araus, K.; Domínguez, M.; San Miguel, G. Thermochemical Transformation of Residual Avocado Seeds: Torrefaction and Carbonization. Waste Biomass Valorization 2016, 8, 2495–2510. [Google Scholar] [CrossRef]
- Gidigbi, J.; Osemeahon, S.; Ngoshe, A.; Babanyaya, A. Modification of Polyvinyl Acetate with Hydroxylated Avocado Seed Oil as a Copolymer Binder for Possible Application in Coating Industry. Int. J. Recent Innov. Acad. Res. 2019, 3, 231–244. [Google Scholar]
- Durak, H.; Aysu, T. Effect of pyrolysis temperature and catalyst on production of bio-oil and bio-char from avocado. Res. Chem. Intermed. 2015, 41, 8067–8097. [Google Scholar] [CrossRef]
- Dagde, K. Extraction of Vegetable Oil from Avocado Seeds for Production of Biodiesel. J. Appl Sci. Environ. Manag. 2019, 23, 215. [Google Scholar] [CrossRef] [Green Version]
- Rachimoellah, H.M.; Resti, D.A.; Zibbeni, A.; Susila, I.W. Production of Biodiesel through Transesterification of Avocado (Persea gratissima) Seed Oil Using Base Catalyst. J. Tek. Mesin 2009, 11, 85–90. [Google Scholar]
- García-Fajardo, J.A.; Ramos-Godinez, M.; Mora-Galindo, J. Estructura de la semilla de aguacate y cuantificación de la grasa extraída por diferentes técnicas. Rev. Chapingo Ser. Hortic. 1999, 5, 123–128. [Google Scholar]
- Sutrisno, T.; Anggono, W.; Suprianto, F.D.; Santosa, C.D.; Suryajaya, M.; Gotama, G.J. Experimental Investigation of Avocado Seed Oil Utilization in Diesel Engine Performance. E3S Web Conf. 2019, 130, 1–10. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Gao, X.; Xu, T.; Fang, Y.; Zhang, Z. Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM. Energy Convers. Manag. 2016, 126, 889–897. [Google Scholar] [CrossRef]
- Zarajabad, O.G.; Ahmadi, R. Numerical investigation of di ff erent PCM volume on cold thermal energy storage system. J. Energy Storage 2018, 17, 515–524. [Google Scholar] [CrossRef]
- Macphee, D.; Dincer, I.; Beyene, A. Numerical simulation and exergetic performance assessment of charging process in encapsulated ice thermal energy storage system. Energy 2012, 41, 491–498. [Google Scholar] [CrossRef]
- Melone, L.; Altomare, L.; Cigada, A.; Nardo, L. De Phase change material cellulosic composites for the cold storage of perishable products: From material preparation to computational evaluation. Appl. Energy 2012, 89, 339–346. [Google Scholar] [CrossRef]
- Jaguemont, J.; Omar, N.; Van den Bossche, P.; Mierlo, J. Phase-change materials (PCM) for automotive applications: A review. Appl. Therm. Eng. 2018, 132, 308–320. [Google Scholar] [CrossRef]
- Solís-Fuentes, J.A.; Durán-De-Bazúa, M.C. Mango seed uses: Thermal behaviour of mango seed almond fat and its mixtures with cocoa butter. Bioresour. Technol. 2004, 92, 71–78. [Google Scholar] [CrossRef]
- Ixtaina, V.Y.; Martínez, M.L.; Spotorno, V.; Mateo, C.M.; Martı, M.L.; Maestri, D.M.; Diehl, B.W.K.; Nolasco, S.M.; Toma, M.C. Characterization of chia seed oils obtained by pressing and solvent extraction. J. Food Compos. Anal. 2011, 24, 166–174. [Google Scholar] [CrossRef]
- Nicolalde, J.F.; Martinez-Gomez, J.; Maiguashca, J. Characterization of the mocora leaf for mechanical purposes. Espacios 2020, 41, 13. [Google Scholar]
- Granta-Design, L. CES-Edupack; Granta Design Limited: Cambridge, UK, 2019. [Google Scholar]
- Balderas-López, J.; Monsivais-Alvarado, T.; Gálvez Coyt, G.; Muñoz-Diosdado, A.; Díaz-Reyes, J. Thermal characterization of vegetable oils by means of photoacoustic techniques. Sol. Energy 2013, 59, 168–172. [Google Scholar]
- Mondragón Cortez, P. Espectroscopia de Infrarrojo Para Todos; Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco: Jalisco, Mexico, 2015; ISBN 9786079754846. [Google Scholar]
Designation | Unripe Avocado Seed Oil (%) | Mature Avocado Seed Oil (%) |
---|---|---|
AA-100M | 0 | 100 |
AA-25T-75M | 25 | 75 |
AA-50M-50T | 50 | 50 |
AA-75T-25M | 75 | 25 |
AA-100T | 100 | 0 |
Material | Density (kg·m−3) | Thermal Conductivity (W·m−1·°K−1) | Specific Heat (J·kg−1·°K−1) | Size (mm) |
---|---|---|---|---|
Polypropylene (PP) | 40 | 0.040 | 1870 | 330 × 270 × 117 |
High density polyethylene (HDPE) | 958 | 0.48 | 1779 | 325 × 265 × 30 × 1 |
Avocado seed oil (100%M) | 687 | 0.16 | 1916 (at −27 °C) | - |
Solid | Temperature |
---|---|
Isothermal Box | −14 °C |
PCM BOX | −27 °C |
Environment | 25 °C |
Sample | State of Phase | Begin of Transition (°C) | End of Transition (°C) | Peak 1 (°C) | Peak 2 (°C) | Total Enthalpy (J·g−1) |
---|---|---|---|---|---|---|
AA-100T | Crystallization | −3.8 | −54.5 | −47.1 | −4.2 | 33.4 |
Fusion | −22.2 | 14.7 | −0.6 | 10.8 | 41.9 | |
AA-75T-25M | Crystallization | −3.7 | −54.5 | −47.4 | −4.1 | 32.7 |
Fusion | −22.7 | 14.2 | −1.5 | 10.3 | 48.4 | |
AA-50T-50M | Crystallization | −3.4 | −54.1 | −47.9 | −4.1 | 31.9 |
Fusion | −23.2 | 13.1 | −2.2 | 9.6 | 53.9 | |
AA-25T-75M | Crystallization | −3.6 | −54.1 | −47.7 | −7.7 | 25.9 |
Fusion | −23.9 | 13.5 | −3.1 | 9.6 | 46.4 | |
AA-100M | Crystallization | −3.6 | −54.5 | −47.7 | −7.7 | 29.4 |
Fusion | −24.4 | 14.4 | −4.1 | 9.4 | 52.9 |
Sample | Atmosphere | Initial Temp. (°C) | Final Temp (°C) | Initial Mass (mg) | Mass Loss (mg) | Percentage of Loss (%) |
---|---|---|---|---|---|---|
AA-100T | Nitrogen | 30A | 447 | 6.7 | −6.4 | 96.3 |
Air | 232 | 519 | 5.5 | −5.4 | 98.9 | |
AA-75T-25M | Nitrogen | 229 | 428 | 3.4 | −3.2 | 93.9 |
Air | 206 | 556 | 3.6 | −3.4 | 95.3 | |
AA-50T-50M | Nitrogen | 301 | 431 | 3.1 | −3.0 | 96.3 |
Air | 209 | 574 | 3.6 | −3.6 | 98.3 | |
AA-25T-75M | Nitrogen | 250 | 552 | 5.8 | −5.7 | 97.7 |
Air | 215 | 572 | 5.7 | −5.6 | 97.9 | |
AA-100M | Nitrogen | 309 | 441 | 4.5 | −4.4 | 96.9 |
Air | 240 | 545 | 5.4 | −5.4 | 98.7 |
Material | Initial Temperature (°C) | 7 h Average Temperature (°C) | 7 h Maximum Temperature (°C) | 7 h Minimum Temperature (°C) | ||||
---|---|---|---|---|---|---|---|---|
With PCM | Non PCM | With PCM | Non PCM | With PCM | Non PCM | With PCM | Non PCM | |
Interior Air | −14 | −14 | −12.7 | −11.8 | −6 | −1.5 | −14 | −14 |
PCM | −27 | −13.8 | 13 | −14 | ||||
Container | −14 | −14 | 2 | 2.5 | 25 | 25 | −11 | −14 |
PCM holder | −14 | −14 | 0 | 3.6 | 25 | 25 | −14 | −14 |
Top | −14 | −14 | 10 | 3.6 | 25 | 25 | −10 | −14 |
Material | Gradient with PCM °C·cm−1 | Gradient without PCM °C·cm−1 | Heat Flux with PCM W·m−2 | Heat Flux without PCM W·m−2 |
---|---|---|---|---|
Air | 16 | 13 | 22 | 52 |
Container | 16 | 16 | 66 | 66 |
Support | 17.5 | 17.5 | 141 | 72 |
Top | 17.5 | 16 | 69 | 65 |
PCM | 17.5 | - | 69 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Cueva, E.; Nicolalde, J.F.; Martínez-Gómez, J. Characterization of Unripe and Mature Avocado Seed Oil in Different Proportions as Phase Change Materials and Simulation of Their Cooling Storage. Molecules 2021, 26, 107. https://doi.org/10.3390/molecules26010107
Reyes-Cueva E, Nicolalde JF, Martínez-Gómez J. Characterization of Unripe and Mature Avocado Seed Oil in Different Proportions as Phase Change Materials and Simulation of Their Cooling Storage. Molecules. 2021; 26(1):107. https://doi.org/10.3390/molecules26010107
Chicago/Turabian StyleReyes-Cueva, Evelyn, Juan Francisco Nicolalde, and Javier Martínez-Gómez. 2021. "Characterization of Unripe and Mature Avocado Seed Oil in Different Proportions as Phase Change Materials and Simulation of Their Cooling Storage" Molecules 26, no. 1: 107. https://doi.org/10.3390/molecules26010107
APA StyleReyes-Cueva, E., Nicolalde, J. F., & Martínez-Gómez, J. (2021). Characterization of Unripe and Mature Avocado Seed Oil in Different Proportions as Phase Change Materials and Simulation of Their Cooling Storage. Molecules, 26(1), 107. https://doi.org/10.3390/molecules26010107