Dielectric Spectroscopy of Water Dynamics in Functionalized UiO-66 Metal-Organic Frameworks
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Sample Preparation
3.2. Dielectric Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MOF | Metal-organic framework |
SBU | Secondary building unit |
BDC | 1,4-benzene-dicarboxylate |
References
- Meek, S.T.; Greathouse, J.A.; Allendorf, M.D. Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials. Adv. Mater. 2011, 23, 249–267. [Google Scholar] [PubMed]
- Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar] [CrossRef]
- Wu, H.; Gong, Q.; Olson, D.H.; Li, J. Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chem. Rev. 2012, 112, 836–868. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.H.; Long, J.R. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Sculley, J.; Zhou, H.C. Metal-Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef]
- Murray, L.J.; Dinca, M.; Long, J.R. Hydrogen Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314. [Google Scholar] [CrossRef]
- He, Y.; Zhou, W.; Qian, G.; Chen, B. Methane Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2014, 43, 5657–5678. [Google Scholar] [CrossRef] [PubMed]
- Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and Photocatalysis by Metal Organic Frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, M.; Xie, Z. Nanoscale Metal-Organic Frameworks for Drug Delivery: A Conventional Platform with New Promise. J. Mater. Chem. B 2018, 6, 707–717. [Google Scholar] [CrossRef]
- Kuppler, R.J.; Timmons, D.J.; Fang, Q.R.; Li, J.R.; Makal, T.A.; Young, M.D.; Yuan, D.; Zhao, D.; Zhuang, W.; Zhou, H.C. Potential Applications of Metal-Organic Frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M.H.; Jakobsen, S.; Lillerud, K.P.; Lamberti, C. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chem. Mater. 2011, 23, 1700–1718. [Google Scholar] [CrossRef]
- Bristow, J.K.; Svane, K.L.; Tiana, D.; Skelton, J.M.; Gale, J.D.; Walsh, A. Free Energy of Ligand Removal in the Metal-Organic Framework UiO-66. J. Phys. Chem. C 2016, 120, 9276–9281. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, M.; Usseglio, S.; Svelle, S.; Olsbye, U.; Lillerud, K.P.; Tilset, M. Post-Synthetic Modification of the Metal-Organic Framework Compound UiO-66. J. Mater. Chem. 2010, 20, 9848–9851. [Google Scholar] [CrossRef]
- Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. [Google Scholar] [CrossRef]
- Yang, Q.; Vaesen, S.; Ragon, F.; Wiersum, A.D.; Wu, D.; Lago, A.; Devic, T.; Martineau, C.; Taulelle, F.; Llewellyn, P.L.; et al. A Water Stable Metal-Organic Framework with Optimal Features for CO2 Capture. Angew. Chem. Int. Ed. 2013, 52, 10316–10320. [Google Scholar] [CrossRef]
- Huang, Y.H.; Lo, W.S.; Kuo, Y.W.; Chen, W.J.; Lin, C.H.; Shieh, F.K. Green and Rapid Synthesis of Zirconium Metal-Organic Frameworks via Mechanochemistry: UiO-66 Analog Nanocrystals Obtained in One Hundred Seconds. Chem. Commun. 2017, 53, 5818–5821. [Google Scholar] [CrossRef]
- Katz, M.J.; Moon, S.Y.; Mondloch, J.E.; Beyzavi, M.H.; Stephenson, C.J.; Hupp, J.T.; Farha, O.K. Exploiting Parameter Space in MOFs: A 20-Fold Enhancement of Phosphate-Ester Hydrolysis with UiO-66-NH2. Chem. Sci. 2015, 6, 2286–2291. [Google Scholar] [CrossRef]
- Peterson, G.W.; McEntee, M.; Harris, C.R.; Klevitch, A.D.; Fountain, A.W.; Soliz, J.R.; Balboa, A.; Hauser, A.J. Detection of an Explosive Simulant via Electrical Impedance Spectroscopy Utilizing the UiO-66-NH2 Metal-Organic Framework. Dalton Trans. 2016, 45, 17113–17116. [Google Scholar] [CrossRef]
- Yot, P.G.; Yang, K.; Ragon, F.; Dmitriev, V.; Devic, T.; Horcajada, P.; Serre, C.; Maurin, G. Exploration of the Mechanical Behavior of Metal Organic Frameworks UiO-66(Zr) and MIL-125(Ti) and their NH2 Functionalized Versions. Dalton Trans. 2016, 45, 4283–4288. [Google Scholar] [CrossRef]
- Yang, Q.; Wiersum, A.D.; Llewellyn, P.L.; Guillerm, V.; Serre, C.; Maurin, G. Functionalizing Porous Zirconium Terephthalate UiO-66(Zr) for Natural Gas Upgrading: A Computational Exploration. Chem. Commun. 2011, 47, 9603–9605. [Google Scholar] [CrossRef]
- Jasuja, H.; Zang, J.; Sholl, D.S.; Walton, K.S. Rational Tuning of Water Vapor and CO2 Adsorption in Highly Stable Zr-Based MOFs. J. Phys. Chem. C 2012, 116, 23526–23532. [Google Scholar] [CrossRef]
- Kolokolov, D.I.; Stepanov, A.G.; Jobic, H. Mobility of the 2-Methylimidazolate Linkers in ZIF-8 Probed by 2H NMR: Saloon Doors for the Guests. J. Phys. Chem. C 2015, 119, 27512–27520. [Google Scholar] [CrossRef]
- Khudozhitkov, A.E.; Kolokolov, D.I.; Stepanov, A.G. Characterization of Fast Restricted Librations of Terephthalate Linkers in MOF UiO-66(Zr) by 2H NMR Spin-Lattice Relaxation Analysis. J. Phys. Chem. C 2018, 122, 12956–12962. [Google Scholar] [CrossRef]
- Kolokolov, D.I.; Maryasov, A.G.; Ollivier, J.; Freude, D.; Haase, J.; Stepanov, A.G.; Jobic, H. Uncovering the Rotation and Translational Mobility of Benzene Confined in UiO-66 (Zr) Metal-Organic Framework by the 2H NMR-QENS Experimental Toolbox. J. Phys. Chem. C 2017, 121, 2844–2857. [Google Scholar] [CrossRef]
- Bermudez-Garcia, J.M.; Vicent-Luna, J.M.; Yanez-Vilar, S.; Hamad, S.; Sanchez-Andujar, M.; Castro-Garcia, S.; Calero, S.; Senaris-Rodriguez, M.A. Liquid Self-Diffusion of H2O and DMF Molecules in Co-MOF-74: Molecular Dynamics Simulations and Dielectric Spectroscopy Studies. Phys. Chem. Chem. Phys. 2016, 18, 19605–19612. [Google Scholar] [CrossRef]
- Knebel, A.; Geppert, B.; Volgmann, K.; Kolokolov, D.I.; Stepanov, A.G.; Twiefel, J.; Heitjans, P.; Volkmer, D.; Caro, J. Defibrillation of Soft Porous Metal-Organic Frameworks with Electric Fields. Science 2017, 358, 347–351. [Google Scholar] [CrossRef]
- Balciunas, S.; Simenas, M.; Pavlovaite, D.; Kinka, M.; Shieh, F.K.; Wu, K.C.W.; Banys, J.; Grigalaitis, R. Low-Frequency Dipolar Dynamics and Atmospheric Effects in ZIF-90 Metal-Organic Framework. J. Phys. Chem. C 2019, 123, 631–636. [Google Scholar] [CrossRef]
- Gonzalez-Nelson, A.; Coudert, F.X.; van der Veen, M.A. Rotational Dynamics of Linkers in Metal-Organic Frameworks. Nanomaterials 2019, 9. [Google Scholar] [CrossRef]
- Devautour-Vinot, S.; Maurin, G.; Serre, C.; Horcajada, P.; Paula da Cunha, D.; Guillerm, V.; de Souza Costa, E.; Taulelle, F.; Martineau, C. Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations. Chem. Mater. 2012, 24, 2168–2177. [Google Scholar] [CrossRef]
- Devautour-Vinot, S.; Martineau, C.; Diaby, S.; Ben-Yahia, M.; Miller, S.; Serre, C.; Horcajada, P.; Cunha, D.; Taulelle, F.; Maurin, G. Caffeine Confinement into a Series of Functionalized Porous Zirconium MOFs: A Joint Experimental/Modeling Exploration. J. Phys. Chem. C 2013, 117, 11694–11704. [Google Scholar] [CrossRef]
- Devautour-Vinot, S.; Diaby, S.; da Cunha, D.; Serre, C.; Horcajada, P.; Maurin, G. Ligand Dynamics of Drug-Loaded Microporous Zirconium Terephthalates-Based Metal-Organic Frameworks: Impact of the Nature and Concentration of the Guest. J. Phys. Chem. C 2014, 118, 1983–1989. [Google Scholar] [CrossRef]
- Planchais, A.; Devautour-Vinot, S.; Salles, F.; Ragon, F.; Devic, T.; Serre, C.; Maurin, G. A Joint Experimental/ Computational Exploration of the Dynamics of Confined Water/Zr-Based MOFs Systems. J. Phys. Chem. C 2014, 118, 14441–14448. [Google Scholar] [CrossRef]
- El-Mehalmey, W.A.; Ibrahim, A.H.; Abugable, A.A.; Hassan, M.H.; Haikal, R.R.; Karakalos, S.G.; Zaki, O.; Alkordi, M.H. Metal-Organic Framework@Silica as a Stationary Phase Sorbent for Rapid and Cost-Effective Removal of Hexavalent Chromium. J. Mater. Chem. A 2018, 6, 2742–2751. [Google Scholar] [CrossRef]
- Kim, H.; Yang, S.; Rao, S.R.; Narayanan, S.; Kapustin, E.A.; Furukawa, H.; Umans, A.S.; Yaghi, O.M.; Wang, E.N. Water Harvesting from Air with Metal-Organic Frameworks Powered by Natural Sunlight. Science 2017, 356, 430–434. [Google Scholar] [CrossRef]
- Schonhals, A.; Kremer, F. Broadband Dielectric Spectroscopy, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Sieradzki, A.; Pawlus, S.; Tripathy, S.N.; Gągor, A.; Ciupa, A.; Mączka, M.; Paluch, M. Dielectric Relaxation Behavior in Antiferroelectric Metal Organic Framework [(CH3)2NH2][FeIIIFeII(HCOO)6] Single Crystals. Phys. Chem. Chem. Phys. 2016, 18, 8462–8467. [Google Scholar] [CrossRef][Green Version]
- Hodge, I.; Ngai, K.; Moynihan, C. Comments on the Electric Modulus Function. J. Non-Cryst. Solids 2005, 351, 104–115. [Google Scholar] [CrossRef]
- Cerveny, S.; Mallamace, F.; Swenson, J.; Vogel, M.; Xu, L. Confined Water as Model of Supercooled Water. Chem. Rev. 2016, 116, 7608–7625. [Google Scholar] [CrossRef]
- Bergman, R.; Swenson, J. Dynamics of Supercooled Water in Confined Geometry. Nature 2000, 403, 283–286. [Google Scholar] [CrossRef]
- Sharp, C.H.; Abelard, J.; Plonka, A.M.; Guo, W.; Hill, C.L.; Morris, J.R. Alkane-OH Hydrogen Bond Formation and Diffusion Energetics of n-Butane within UiO-66. J. Phys. Chem. C 2017, 121, 8902–8906. [Google Scholar] [CrossRef]
- Paesani, F. Molecular Mechanisms of Water-Mediated Proton Transport in MIL-53 Meta-Organic Frameworks. J. Phys. Chem. C 2013, 117, 19508–19516. [Google Scholar] [CrossRef]
- Sanchez-Andujar, M.; Yanez-Vilar, S.; Pato-Doldan, B.; Gomez-Aguirre, C.; Castro-Garcia, S.; Senaris-Rodriguez, M.A. Apparent Colossal Dielectric Constants in Nanoporous Metal Organic Frameworks. J. Phys. Chem. C 2012, 116, 13026–13032. [Google Scholar] [CrossRef]
- Xue, C.; Yao, Z.Y.; Liu, S.X.; Luo, H.B.; Zou, Y.; Li, L.; Ren, X.M. Dielectric Anomaly and Relaxation Natures in a Zn-Cr Pillar-Layered Metal-Organic Framework with Cages and Channels. J. Solid State Chem. 2017, 250, 107–113. [Google Scholar] [CrossRef]
- Liu, M.; Chen, L.; Lewis, S.; Chong, S.Y.; Little, M.A.; Hasell, T.; Aldous, I.M.; Brown, C.M.; Smith, M.W.; Morrison, C.A.; et al. Three-Dimensional Protonic Conductivity in Porous Organic Cage Solids. Nat. Commun. 2016, 7, 12750. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, P.; Wong, N.E.; Shimizu, G.K.H. MOFs as Proton Conductors—Challenges and Opportunities. Chem. Soc. Rev. 2014, 43, 5913–5932. [Google Scholar] [CrossRef]
- Lim, D.W.; Sadakiyo, M.; Kitagawa, H. Proton Transfer in Hydrogen-Bonded Degenerate Systems of Water and Ammonia in Metal-Organic Frameworks. Chem. Sci. 2019, 10, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Marx, D. Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations. ChemPhysChem 2006, 7, 1848–1870. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.J. Hydrogen Bonds with Fluorine. Studies in Solution, in Gas Phase and by Computations, Conflicting Conclusions from Crystallographic Analyses. Chem. Sci. 2012, 3, 1381–1394. [Google Scholar] [CrossRef]
UiO-66-NH2 | ||
---|---|---|
Process | (s) | (eV) |
P1 | 0.76(2) | |
P2 | 0.65(1) | |
P3 | 0.34(1) | |
UiO-66-F4 | ||
Process | (s) | (eV) |
P1 | 0.85(2) | |
P2 | 0.73(1) | |
P3 | 0.62(1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balčiūnas, S.; Pavlovaitė, D.; Kinka, M.; Yeh, J.-Y.; Han, P.-C.; Shieh, F.-K.; Wu, K.C.-W.; Šimėnas, M.; Grigalaitis, R.; Banys, J. Dielectric Spectroscopy of Water Dynamics in Functionalized UiO-66 Metal-Organic Frameworks. Molecules 2020, 25, 1962. https://doi.org/10.3390/molecules25081962
Balčiūnas S, Pavlovaitė D, Kinka M, Yeh J-Y, Han P-C, Shieh F-K, Wu KC-W, Šimėnas M, Grigalaitis R, Banys J. Dielectric Spectroscopy of Water Dynamics in Functionalized UiO-66 Metal-Organic Frameworks. Molecules. 2020; 25(8):1962. https://doi.org/10.3390/molecules25081962
Chicago/Turabian StyleBalčiūnas, Sergejus, Diana Pavlovaitė, Martynas Kinka, Jyun-Yi Yeh, Po-Chun Han, Fa-Kuen Shieh, Kevin C.-W. Wu, Mantas Šimėnas, Robertas Grigalaitis, and Jūras Banys. 2020. "Dielectric Spectroscopy of Water Dynamics in Functionalized UiO-66 Metal-Organic Frameworks" Molecules 25, no. 8: 1962. https://doi.org/10.3390/molecules25081962
APA StyleBalčiūnas, S., Pavlovaitė, D., Kinka, M., Yeh, J.-Y., Han, P.-C., Shieh, F.-K., Wu, K. C.-W., Šimėnas, M., Grigalaitis, R., & Banys, J. (2020). Dielectric Spectroscopy of Water Dynamics in Functionalized UiO-66 Metal-Organic Frameworks. Molecules, 25(8), 1962. https://doi.org/10.3390/molecules25081962