Antioxidant Potential of Antiviral Drug Umifenovir
Abstract
1. Introduction
2. Results
2.1. The Antioxidant Capacity of Umifenovir Assessed by Modified TRAP Method
2.2. The Antioxidant Activity of Umifenovir Studied with Computer Simulation
- (1)
- ABAP + Lum → R• (rate constant kR)
- (2)
- R• → P + light, (kLum)
- (3)
- R• + In → P (kIn),
- (3’)
- R• + In1 → P (kIn1)
- (4)
- R• + In2 → P (kIn2)
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Chen, F.; Liu, T.; Liu, S.; Yang, J. The role of oxidative stress in influenza virus infection. Microbes Infect. 2017, 19, 580–586. [Google Scholar] [CrossRef]
- Yoshizumi, T.; Imamura, H.; Taku, T.; Kuroki, T.; Kawaguchi, A.; Ishikawa, K.; Nakada, K.; Koshiba, T. LR-mediated antiviral innate immunity requires oxidative phosphorylation activity. Sci. Rep. 2017, 7, 5379. [Google Scholar] [CrossRef] [PubMed]
- Kocic, G.; Sokolovic, D.; Jevtovic, T.; Veljkovic, A.; Kocic, R.; Nikolic, G.; Basic, J.; Stojanovic, D.; Cencic, A.; Stojanovic, S. Hyperglycemia, oxidative and nitrosative stress affect antiviral, inflammatory and apoptotic signaling of cultured thymocytes. Redox. Rep. 2010, 15, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Noshy, M.M.; Hussien, N.A.; El-Ghor, A.A. Evaluation of the role of the antioxidant silymarin in modulating the in vivo genotoxicity of the antiviral drug ribavirin in mice. Mutat. Res. 2013, 752, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Panchal, R.G.; Reid, S.P.; Tran, J.P.; Bergeron, A.A.; Wells, J.; Kota, K.P.; Aman, J.; Bavari, S. Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral. Res. 2012, 93, 23–29. [Google Scholar] [CrossRef]
- Aruoma, O.I.; Spencer, J.P.; Rossi, R.; Aeschbach, R.; Khan, A.; Mahmood, N.; Munoz, A.; Murcia, A.; Butler, J.; Halliwell, B. An evaluation of the antioxidant and antiviral action of extracts of rosemary and Provencal herbs. Food Chem. Toxicol. 1996, 34, 449–456. [Google Scholar] [CrossRef]
- Lin, C.C.; Cheng, H.Y.; Yang, C.M.; Lin, T.C. Antioxidant and antiviral activities of Euphorbia thymifolia L. J. Biomed. Sci. 2002, 9, 656–664. [Google Scholar] [CrossRef]
- Shahat, A.A.; Cos, P.; de Bruyne, T.; Apers, S.; Hammouda, F.M.; Ismail, S.I.; Azzam, S.; Claeys, M.; Goovaerts, E.; Pieters, L.; et al. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica. Planta Med. 2002, 68, 539–541. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Ma, A.; Bao, Y.; Wang, M.; Sun, Z. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L. Food Sci. Biotechnol. 2017, 26, 1675–1683. [Google Scholar] [CrossRef]
- Vasil’ev, A.N. Antioxidant impact on specific antiviral activity of human recombinant interferon alpha-2b with respect to Herpes simplex in cell culture. Antibiot. Khimioter. 2010, 55, 20–25. [Google Scholar]
- Fedoreyev, S.A.; Krylova, N.V.; Mishchenko, N.P.; Vasileva, E.A.; Pislyagin, E.A.; Iunikhina, O.V.; Lavrov, V.F.; Svitich, O.A.; Ebralidze, L.K.; Leonova, G.N. Antiviral and Antioxidant Properties of Echinochrome A. Mar. Drugs 2018, 16, 509. [Google Scholar] [CrossRef] [PubMed]
- Camini, F.C.; da Silva, T.F.; da Silva Caetano, C.C.; Almeida, L.T.; Ferraz, A.C.; Vitoreti, V.M.; de Mello Silva, B.; de Queiroz Silva, S.; de Magalhães, J.C.; de Brito Magalhães, C.L. Antiviral activity of silymarin against Mayaro virus and protective effect in virus-induced oxidative stress. Antiviral. Res. 2018, 158, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Oda, T.; Akaike, T.; Hamamoto, T.; Suzuki, F.; Hirano, T.; Maeda, H. Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 1989, 244, 974–976. [Google Scholar] [CrossRef] [PubMed]
- Taubenberger, J.; Morens, D.M. The pathology of influenza virus infection. Ann. Rev. Pathol. 2008, 3, 499–522. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Wang, S.; Yao, W.F.; Wu, H.Z.; Meng, S.N.; Weiю, M.J. Pharmacokinetic properties and bioequivalence of two formulations of arbidol: An open-label, single-dose, randomized-sequence, two-period crossover study in healthy Chinese male volunteers. Clin. Ther. 2009, 31, 784–792. [Google Scholar] [CrossRef]
- Leneva, I.A.; Russell, R.J.; Boriskin, Y.S.; Hay, A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antivir. Res. 2009, 81, 132–140. [Google Scholar] [CrossRef]
- Brooks, M.J.; Burtseva, E.I.; Ellery, P.J.; Marsh, G.A.; Lew, A.M.; Slepushkin, A.N.; Crowe, S.M.; Tannock, G.A. Antiviral activity of arbidol, a broad-spectrum drug for use against respiratory viruses, varies according to test conditions. J. Med. Virol. 2012, 84, 170–181. [Google Scholar] [CrossRef]
- Kiselev, O.I.; Maleev, V.V.; Deeva, E.G.; Leneva, I.A.; Selkova, E.P.; Osipov, E.A.; Obukhov, A.A.; Nadorov, S.A.; Kulikova, E.V. Clinical efficacy of arbidol (umifenovir) in the therapy of influenza in adults: Preliminary results of the multicenter double-blind randomized placebo-controlled study ARBITR. Terapevticheskii Arkhiv 2015, 87, 88–96. [Google Scholar] [CrossRef]
- Leneva, I.A.; Fedyakina, I.T.; Eropkin, M.Y.; Gudova, N.V.; Romanovskaya, A.A.; Danilenko, D.M.; Vinogradova, S.M.; Lepeshkin, A.Y.; Shestopalov, A.M. Study of the antiviral activity of domestic anti-influenza chemotherapy in cell culture and animal models. Voprosy Virusologii 2010, 55, 19–27. [Google Scholar]
- Leneva, I.A.; Falynskova, I.N.; Leonova, E.I.; Fedyakina, I.T.; Makhmudova, N.R.; Osipova, E.A.; Lepekha, L.N.; Mikhailova, N.A.; Zverev, V.V. Umifenovir (Arbidol) efficacy in experimental mixed viral and bacterial pneumonia of mice. Antibiot. Khimioter. 2014, 59, 17–24. [Google Scholar]
- Haviernik, J.; Stefanik, M.; Fojtikova, M.; Kali, S.; Tordo, N.; Rudolf, I.; Hubalek, Z.; Eyer, L.; Ruzek, D. Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses. Viruses 2018, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Leneva, I.A.; Falynskova, I.N.; Makhmudova, N.R.; Poromov, A.A.; Yatsyshina, S.B.; Maleev, V.V. Umifenovir susceptibility monitoring and characterization of influenza viruses isolated during ARBITR clinical study. J. Med. Virol. 2019, 91, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Khamitov, R.A.; Loginova, S.; Shchukina, V.N.; Borisevich, S.V.; Maksimov, V.A.; Shuster, A.M. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Voprosy Virusologii 2008, 53, 9–13. [Google Scholar] [PubMed]
- Pshenichnaya, N.Y.; Bulgakova, V.A.; Lvov, N.I.; Poromov, A.A.; Selkova, E.P.; Grekova, A.I.; Shestakova, I.V.; Maleev, V.V.; Leneva, I.A. Clinical efficacy of umifenovir in influenza and ARVI (study ARBITR). Terapevticheskii Arkhiv 2019, 91, 56–63. [Google Scholar] [CrossRef]
- Bulgakova, V.A.; Poromov, A.A.; Grekova, A.I.; Pshenichnaya, N.Y.; Selkova, E.P.; Leneva, I.A.; Shestakova, I.V.; Maleev, V.V. Pharmacoepidemiological study of influenza and other acute respiratory viral infections in risk groups. Terapevticheskii Arkhiv 2017, 89, 61–72. [Google Scholar] [CrossRef]
- Kubar, O.I.; Stepanova, L.A.; Safonova, L.S. IV Russian National Congress “Man and Medicine”. VIDOX LLC: Moscow, Russia, 1997; p. 269. [Google Scholar]
- Du, Q.; Gu, Z.; Leneva, I.; Jiang, H.; Li, R.; Deng, L.; Yang, Z. The antiviral activity of arbidol hydrochloride against herpes simplex virus type II (HSV-2) in a mouse model of vaginitis. Int. Immunopharmacol. 2019, 68, 58–67. [Google Scholar] [CrossRef]
- Glushkov, R.G.; Gus’kova, T.A.; Krylova, L.I.; Nikolaeva, I.S. Mechanisms of arbidole’s immunomodulating action. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk 1999, 3, 36–40. [Google Scholar]
- Huang, L.; Zhang, L.; Liu, Y.; Luo, R.; Zeng, L.; Telegina, I.; Vlassov, V.V. Arbidol for preventing and treating influenza in adults and children. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Vasil’eva, O.V.; Liubitskii, O.B.; Gus’kova, T.A.; Glushkov, R.G.; Medvedev, O.S.; Vladimirov, Y.A. Antioxidant properties of arbidol and its structural analogs. Voprosy Meditsinskoi Khimii 1999, 45, 326–331. [Google Scholar]
- Lissi, E.; Salim-Hanna, M.; Pascual, C.; del Castillo, M.D. Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic. Biol. Med. 1995, 18, 153–158. [Google Scholar] [CrossRef]
- Magin, D.V.; Izmailov, D.Y.; Popov, I.N.; Levin, G.; Vladimirov, Y.A. Photochemiluminescent study of the antioxidant activity in biological systems. Mathematical modeling. Voprosy Meditsinskoi Khimii 2000, 46, 419–425. [Google Scholar] [PubMed]
- Vladimirov, Y.A.; Proskurnina, E.V.; Izmajlov, D.Y. Kinetic chemiluminescence as a method for study of free radical reactions. Biophysics (Moscow) 2011, 56, 1055–1062. [Google Scholar] [CrossRef]
- Alekseev, A.V.; Proskurnina, E.V.; Vladimirov, Y.A. Determination of Antioxidants by Sensitized Chemiluminescence Using 2,2’_azo_bis(2_amidinopropane). Mosc. Univ. Chem. Bull. 2012, 67, 127–132. [Google Scholar] [CrossRef]
- Izmailov, D.Y. Determination of antioxidant activity by measuring the chemiluminescence kinetics. Fotobiologiya I Fotomeditsina 2011, 7, 70–76. [Google Scholar]
- Niki, E.; Kawakami, A.; Saito, M.; Yamamoto, Y.; Tsuchiya, J.; Kamiya, Y. Effect of phytyl side chain of vitamin E on its antioxidant activity. J. Biol. Chem. 1985, 260, 2191–2196. [Google Scholar] [PubMed]
- Ohlsson, A.B.; Berglund, T.; Komlos, P.; Rydstrom, J. Plant defense metabolism is increased by the free radical-generating compound AAPH. Free Radic. Biol. Med. 1995, 19, 319–327. [Google Scholar] [CrossRef]
Sample Availability: All substances were obtained from specified commercial sources and are available for purchase. |
Concentration of Umifenovir | Antioxidant Capacity in μM of Trolox, Mean ± Standard Deviation, n = 9 |
---|---|
0.1 μM | S1 = 0.049 ± 0.004 (“Fast” capacity) S2 = 0.095 ± 0.010 (“Slow” capacity) S = 0.14 ± 0.12 (Total capacity) |
0.9 μM (maximal concentration of Umifenovir in blood after taking 200 mg per os) | S1 = 0.45 ± 0.04 (“Fast” capacity) S2 = 1.20 ± 0.13 (“Slow” capacity) S = 1.65 ± 0.18 (Total capacity) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proskurnina, E.V.; Izmailov, D.Y.; Sozarukova, M.M.; Zhuravleva, T.A.; Leneva, I.A.; Poromov, A.A. Antioxidant Potential of Antiviral Drug Umifenovir. Molecules 2020, 25, 1577. https://doi.org/10.3390/molecules25071577
Proskurnina EV, Izmailov DY, Sozarukova MM, Zhuravleva TA, Leneva IA, Poromov AA. Antioxidant Potential of Antiviral Drug Umifenovir. Molecules. 2020; 25(7):1577. https://doi.org/10.3390/molecules25071577
Chicago/Turabian StyleProskurnina, Elena V., Dmitry Yu. Izmailov, Madina M. Sozarukova, Tatiana A. Zhuravleva, Irina A. Leneva, and Artem A. Poromov. 2020. "Antioxidant Potential of Antiviral Drug Umifenovir" Molecules 25, no. 7: 1577. https://doi.org/10.3390/molecules25071577
APA StyleProskurnina, E. V., Izmailov, D. Y., Sozarukova, M. M., Zhuravleva, T. A., Leneva, I. A., & Poromov, A. A. (2020). Antioxidant Potential of Antiviral Drug Umifenovir. Molecules, 25(7), 1577. https://doi.org/10.3390/molecules25071577