Next Article in Journal
A Fast and Validated High Throughput Bar Adsorptive Microextraction (HT-BAµE) Method for the Determination of Ketamine and Norketamine in Urine Samples
Previous Article in Journal
Exploring the Polymorphism of Drostanolone Propionate
Open AccessArticle

Glycosylation of Stilbene Compounds by Cultured Plant Cells

1
Department of Biomedical Chemistry, Faculty of Medicine, Oita University, 1-1 Hasama-machi, Oita 879-5593, Japan
2
Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
3
National Institute of Fitness and Sports in Kanoya, 1 Shiromizu-cho, Kagoshima 891-2390, Japan
*
Author to whom correspondence should be addressed.
Molecules 2020, 25(6), 1437; https://doi.org/10.3390/molecules25061437 (registering DOI)
Received: 29 February 2020 / Revised: 18 March 2020 / Accepted: 21 March 2020 / Published: 22 March 2020
Oxyresveratrol and gnetol are naturally occurring stilbene compounds, which have diverse pharmacological activities. The water-insolubility of these compounds limits their further pharmacological exploitation. The glycosylation of bioactive compounds can enhance their water-solubility, physicochemical stability, intestinal absorption, and biological half-life, and improve their bio- and pharmacological properties. Plant cell cultures are ideal systems for propagating rare plants and for studying the biosynthesis of secondary metabolites. Furthermore, the biotransformation of various organic compounds has been investigated as a target in the biotechnological application of plant cell culture systems. Cultured plant cells can glycosylate not only endogenous metabolic intermediates but also xenobiotics. In plants, glycosylation reaction acts for decreasing the toxicity of xenobiotics. There have been a few studies of glycosylation of exogenously administrated stilbene compounds at their 3- and 4′-positions by cultured plant cells of Ipomoea batatas and Strophanthus gratus so far. However, little attention has been paid to the glycosylation of 2′-hydroxy group of stilbene compounds by cultured plant cells. In this work, it is described that oxyresveratrol (3,5,2′,4′–tetrahydroxystilbene) was transformed to 3-, 2′-, and 4′-β-glucosides of oxyresveratrol by biotransformation with cultured Phytolacca americana cells. On the other hand, gnetol (3,5,2′,6′–tetrahydroxystilbene) was converted into 2′-β-glucoside of gnetol by cultured P. americana cells. Oxyresveratrol 2′-β-glucoside and gnetol 2′-β-glucoside are two new compounds. This paper reports, for the first time, the glycosylation of stilbene compounds at their 2′-position by cultured plant cells. View Full-Text
Keywords: glycosylation; oxyresveratrol; gnetol; β-glucoside; cultured plant cells; Phytolacca americana glycosylation; oxyresveratrol; gnetol; β-glucoside; cultured plant cells; Phytolacca americana
Show Figures

Figure 1

MDPI and ACS Style

Shimoda, K.; Kubota, N.; Uesugi, D.; Kobayashi, Y.; Hamada, H.; Hamada, H. Glycosylation of Stilbene Compounds by Cultured Plant Cells. Molecules 2020, 25, 1437.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop