Straw in Clay Bricks and Plasters—Can We Use Its Molecular Decay for Dating Purposes?
Abstract
:1. Introduction
2. Results
2.1. Spectral Pattern of Different Straw Parts
2.2. Mineral Matrix of Historical Samples
2.3. Molecular Changes over Time
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Sample Preparation
4.2.2. Fourier Transform Infrared (FTIR) Spectroscopy and Statistical Evaluation
4.2.3. X-ray Diffractometry
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schroeder, H. Building with earth—The current situation of a traditional construction. In Earth Construction & Tradition; Feiglstorfer, H., Ed.; IVA-Verlag: Vienna, Austria, 2016; Volume 1, pp. 25–37. [Google Scholar]
- Meingast, R.; Feiglstorfer, H. Earth building history in eastern Austria. In Earth Construction & Tradition; Feiglstorfer, H., Ed.; IVA-ICRA Institute for Comparative Research in Architecture: Wien, Austria, 2018; Volume 2, pp. 21–83. [Google Scholar]
- Pacheco-Torgal, F.; Jalali, S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012, 29, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Laborel-Préneron, A.; Aubert, J.; Magniont, C.; Tribout, C.; Bertron, A. Plant aggregates and fibers in earth construction materials: A review. Constr. Build. Mater. 2016, 111, 719–734. [Google Scholar] [CrossRef]
- Hurter, A.M. Utilization of annual plants and agricultural residues for the production of pulp and paper. In Proceedings of the Pulping Conference, New Orleans, LA, USA, 30 October–2 November 1988. [Google Scholar]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating, [Nachdr.]; University of Arizona Press: Tucson, AZ, USA, 2008. [Google Scholar]
- Tintner, J.; Smidt, E.; Tieben, J.; Reschreiter, H.; Kowarik, K.; Grabner, M. Aging of wood under long-term storage in a salt environment. Wood Sci. Technol. 2016, 50, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Tintner, J.; Smidt, E.; Aumuller, C.; Martin, P.; Ottner, F.; Wriessnig, K.; Reschreiter, H. Taphonomy of prehistoric bark in a salt environment at the archaeological site in Hallstatt, Upper Austria—An analytical approach based on FTIR spectroscopy. Vib. Spectrosc. 2018, 97, 39–43. [Google Scholar] [CrossRef]
- Smidt, E.; Tintner, J.; Klemm, S.; Scholz, U. FT-IR spectral and thermal characterization of ancient charcoals—A tool to support archeological and historical data interpretation. Quat. Int. 2017, 457, 43–49. [Google Scholar] [CrossRef]
- Tintner, J.; Spangl, B.; Reiter, F.; Smidt, E.; Grabner, M. Infrared spectral characterization of the molecular wood decay in terms of age. Wood Sci. Technol. 2020, 54, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.L.; Emerson, R.; Tumuluru, J.S. Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals. In Biomass Volume Estimation and Valorization for Energy; IntechOpen: London, UK, 2017. [Google Scholar]
- Smidt, E.; Schwanninger, M.; Tintner, J.; Bohm, K. Ageing and Deterioration of Materials in the Environment – Application of Multivariate Data Analysis. In Multivariate Analysis in Management, Engineering and the Sciences; Freitas, L., Ed.; InTech: London, UK, 2013; pp. 134–160. [Google Scholar]
- Schwanninger, M.; Rodrigues, J.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Nopp-Mayr, U.; Zohmann-Neuberger, M.; Tintner, J.; Kriechbaum, M.; Rosenberger, R.; Nopp, H.; Bosa, A.; Smidt, E. From plants to feces: pilot applications of FTIR spectroscopy for studies on the foraging ecology of an avian herbivore. J. Ornithol. 2019, 161, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.C. Infrared Spectral Interpretation. A Systematic Approach; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Ghaffar, S.H.; Fan, M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 2013, 57, 264–279. [Google Scholar] [CrossRef]
- Del Río, J.C.; Lino, A.G.; Colodette, J.L.; Lima, C.F.; Gutiérrez, A.; Martinez, M.J.; Lu, F.; Ralph, J.; Rencoret, J. Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenergy 2015, 81, 322–338. [Google Scholar] [CrossRef] [Green Version]
- Marechal, Y.; Chanzy, H. The hydrogen bond network in I β cellulose as observed by infrared spectrometry. J. Mol. Struct. 2000, 523, 183–196. [Google Scholar] [CrossRef]
- Tollmann, A. Geologie von Österreich; Deuticke: Vienna, Austria, 1985. [Google Scholar]
- Pizzo, B.; Pecoraro, E.; Alves, A.; Macchioni, N.; Rodrigues, J. Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Talanta 2015, 131, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.B. Microscopic and Spectroscopic Characterisation of Waterlogged Archaeological Softwood from Anoxic Environments. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2015. [Google Scholar]
- Smidt, E.; Eckhardt, K.-U.; Lechner, P.; Schulten, H.-R.; Leinweber, P. Characterization of different decomposition stages of biowaste using FT-IR spectroscopy and pyrolysis-field ionization mass spectrometry. Biodgegradationchem 2005, 16, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; DeCourrsou, L.B. Killer clays! Natural antibacterial clay minerals. Mineral. Soc. Bull. 2004, 139, 3–8. [Google Scholar]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B: Biointerfaces 2010, 79, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Syrová, Z.; Syrový, J. Historic daubed corner-timbered constructions in Czech Republic. In Proceedings of the Vernacular Heritage and Earthen Architecture; Informa UK Limited: London, UK, 2013; Volume 16, pp. 29–34. [Google Scholar]
- Škabrada, J.; Syrová-Anýžová, Z. (Eds.) Nejstarší venkovské domy ve východních Čechách; Univerzita Pardubice, Fakulta filozofická; Společnost pro obnovu vesnice a malého města, z.s: Pardubice, Czech Republic, 2018; ISBN 8090744001. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Village, Year (AD) | Quar | Calc | Dolo | Mica | Fsp | Sm–V | Kaol | Chlo | Amp | Gyps |
---|---|---|---|---|---|---|---|---|---|---|
Niedersulz, 2017 | ** | ** | ** | ** | ** | ** | * | |||
Niedersulz, 2015 | ** | ** | ** | ** | ** | ** | * | |||
Kučerov, ~1875 | *** | * | . | * | * | * | . | |||
Lysovice, ~1850 | ** | ** | * | * | * | ** | * | . | ||
Kučerov, ~1825 | ** | * | . | * | * | * | * | * | . | |
Zvonovice, ~1815 | ** | ** | * | ** | * | * | . | |||
Benátky, 1810 | ** | * | * | . | ||||||
Vračovice, 1777 | ** | * | * | * | . | |||||
Čistá, 1702 | ** | * | * | . | . | |||||
Čistá, 1689 | ** | * | * | . | ||||||
Čistá, 1672 | ** | * | * | . | ||||||
Benátky, 1668 | ** | * | ** | ** | * | * | . | |||
Vraclav, 1651 | *** | . | * | * | ||||||
Čistá, 1583 | ** | * | * | . | ||||||
Vračovice, 1538 | *** | * | * | * | . |
Location | Year (AD) | Plant Parts |
---|---|---|
Recent reference material | 2019 | NO, EA, CU |
Niedersulz, Lower Austria | 2017 | NO, CU |
Niedersulz, Lower Austria | 2015 | NO |
Vračovice, Bohemia * | 1926 | NO, CU |
Kučerov, Moravia | ~1875 | NO, EA, CU |
Lysovice, Moravia | ~1850 | NO, EA, CU |
Kučerov, Moravia | ~1825 | NO, EA, CU |
Zvonovice, Moravia | ~1815 | NO, EA, CU |
Benátky u Litomyšle, Bohemia ** | 1810 | NO, EA, CU |
Vračovice, Bohemia ** | 1777 | NO, CU |
Čistá u Litomyšle, Bohemia ** | 1702 | NO, EA, CU |
Čistá u Litomyšle, Bohemia ** | 1689 | NO, EA, CU |
Čistá u Litomyšle, Bohemia * | 1672 | NO, EA, CU |
Benátky u Litomyšle, Bohemia * | 1669 | NO, CU |
Vraclav, Bohemia * | 1651 | NO, EA, CU |
Čistá u Litomyšle, Bohemia * | 1583 | NO, EA, CU |
Vračovice, Bohemia * | 1538 | NO, EA, CU |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tintner, J.; Roth, K.; Ottner, F.; Syrová-Anýžová, Z.; Žabičková, I.; Wriessnig, K.; Meingast, R.; Feiglstorfer, H. Straw in Clay Bricks and Plasters—Can We Use Its Molecular Decay for Dating Purposes? Molecules 2020, 25, 1419. https://doi.org/10.3390/molecules25061419
Tintner J, Roth K, Ottner F, Syrová-Anýžová Z, Žabičková I, Wriessnig K, Meingast R, Feiglstorfer H. Straw in Clay Bricks and Plasters—Can We Use Its Molecular Decay for Dating Purposes? Molecules. 2020; 25(6):1419. https://doi.org/10.3390/molecules25061419
Chicago/Turabian StyleTintner, Johannes, Kimberly Roth, Franz Ottner, Zuzana Syrová-Anýžová, Ivana Žabičková, Karin Wriessnig, Roland Meingast, and Hubert Feiglstorfer. 2020. "Straw in Clay Bricks and Plasters—Can We Use Its Molecular Decay for Dating Purposes?" Molecules 25, no. 6: 1419. https://doi.org/10.3390/molecules25061419
APA StyleTintner, J., Roth, K., Ottner, F., Syrová-Anýžová, Z., Žabičková, I., Wriessnig, K., Meingast, R., & Feiglstorfer, H. (2020). Straw in Clay Bricks and Plasters—Can We Use Its Molecular Decay for Dating Purposes? Molecules, 25(6), 1419. https://doi.org/10.3390/molecules25061419