Lignins from Agroindustrial by-Products as Natural Ingredients for Cosmetics: Chemical Structure and In Vitro Sunscreen and Cytotoxic Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition and Molecular Properties of Lignins from Shells
2.2. Total Phenolic Content (TPC) and Antioxidant Properties of Lignin from Shells
2.3. Cytotoxic Properties
2.4. Sun Protection Properties
3. Materials and Methods
3.1. Materials
3.2. Lignin Isolation from Nutshells
3.3. Chemical Composition
3.4. Structural Properties
3.4.1. Gel Permeation–High-Performance Liquid Chromatography (GPC)
3.4.2. Analytical Pyrolysis
3.4.3. 1H-13C HSQC NMR
3.5. Total Phenolic Content (TPC) and Antioxidant Activity
3.6. Cytotoxicity Test
3.7. Preparation and Evaluation of Lignin Sunscreen Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chisvert, A.; Salvador, A. Ultraviolet Filters in Cosmetics: Regulatory Aspects and Analytical Methods. In Analysis of Cosmetic Products, 2th ed.; Salvador, A., Chisvert, A., Eds.; Elsevier: San Diego, CA, USA, 2017; pp. 85–106. [Google Scholar]
- Rodrigues, F.; de la Cádiz-Gurrea, L.M.; Nunes, M.A.; Pinto, D.; Vinha, A.F.; Linares, I.B.; Oliveira, M.B.P.P.; Carretero, A.S. Cosmetics. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C., Ed.; Elsevier: San Diego, CA, USA, 2018; pp. 393–427. [Google Scholar]
- Balmer, M.E.; Buser, H.R.; Müller, M.D.; Poiger, T. Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environ. Sci. Technol. 2005, 39, 953–962. [Google Scholar] [CrossRef]
- Jurado, A.; Gago-Ferrero, P.; Vàzquez-Suñé, E.; Carrera, J.; Pujades, E.; Díaz-Cruz, M.S.; Barceló, D. Urban groundwater contamination by residues of UV filters. J. Hazard. Mater. 2014, 271, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Apel, C.; Joerss, H.; Ebinghaus, R. Environmental occurrence and hazard of organic UV stabilizers and UV filters in the sediment of European North and Baltic Seas. Chemosphere 2018, 212, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Rodríguez, A.; Rodrigo Sanz, M.; Betancort Rodríguez, J.R. Occurrence of eight UV filters in beaches of Gran Canaria (Canary Islands). An approach to environmental risk assessment. Chemosphere 2015, 131, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.; Zenker, A.; Rapp, M. Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland. Environ. Pollut. 2010, 158, 1817–1824. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Díaz-Cruz, M.S.; Barceló, D. UV filters bioaccumulation in fish from Iberian river basins. Sci. Total Environ. 2015, 518–519, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Molins-Delgado, D.; Muñoz, R.; Nogueira, S.; Alonso, M.B.; Torres, J.P.; Malm, O.; Ziolli, R.L.; Hauser-Davis, R.A.; Eljarrat, E.; Barceló, D.; et al. Occurrence of organic UV filters and metabolites in lebranche mullet (Mugil liza) from Brazil. Sci. Total Environ. 2018, 618, 451–459. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Alonso, M.B.; Bertozzi, C.P.; Marigo, J.; Barbosa, L.; Cremer, M.; Secchi, E.R.; Azevedo, A.; Lailson-Brito, J.; Torres, J.P.M.; et al. First determination of UV filters in marine mammals. octocrylene levels in Franciscana dolphins. Environ. Sci. Technol. 2013, 47, 5619–5625. [Google Scholar] [CrossRef]
- León, Z.; Chisvert, A.; Tarazona, I.; Salvador, A. Solid-phase extraction liquid chromatography-tandem mass spectrometry analytical method for the determination of 2-hydroxy-4-methoxybenzophenone and its metabolites in both human urine and semen. Anal. Bioanal. Chem. 2010, 398, 831–843. [Google Scholar] [CrossRef]
- Molins-Delgado, D.; del Olmo-Campos, M.M.; Valeta-Juan, G.; Pleguezuelos-Hernández, V.; Barceló, D.; Díaz-Cruz, M.S. Determination of UV filters in human breast milk using turbulent flow chromatography and babies’ daily intake estimation. Environ. Res. 2018, 161, 532–539. [Google Scholar] [CrossRef]
- Matta, M.K.; Zusterzeel, R.; Pilli, N.R.; Patel, V.; Volpe, D.A.; Florian, J.; Oh, L.; Bashaw, E.; Zineh, I.; Sanabria, C.; et al. Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients. JAMA 2019, 321, 2082–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisbrod, C.J.; Kunz, P.Y.; Zenker, A.K.; Fent, K. Effects of the UV filter benzophenone-2 on reproduction in fish. Toxicol. Appl. Pharmacol. 2007, 225, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Valle-Sistac, J.; Molins-Delgado, D.; Díaz, M.; Ibáñez, L.; Barceló, D.; Silvia Díaz-Cruz, M. Determination of parabens and benzophenone-type UV filters in human placenta: First description of the existence of benzyl paraben and benzophenone-4. Environ. Int. 2016, 88, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.B.; Feo, M.L.; Corcellas, C.; Gago-Ferrero, P.; Bertozzi, C.P.; Marigo, J.; Flach, L.; Meirelles, A.C.O.; Carvalho, V.L.; Azevedo, A.F.; et al. Toxic heritage: Maternal transfer of pyrethroid insecticides and sunscreen agents in dolphins from Brazil. Environ. Pollut. 2015, 207, 391–402. [Google Scholar] [CrossRef]
- Molins-Delgado, D.; Mánez, M.; Andreu, A.; Hiraldo, F.; Eljarrat, E.; Barceló, D.; Díaz-Cruz, M.S. A Potential New Threat to Wild Life: Presence of UV Filters in Bird Eggs from a Preserved Area. Environ. Sci. Technol. 2017, 51, 10983–10990. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration: Part 352-Sunscreen Drug Products for over-the-Counter Human Use. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=352 (accessed on 9 September 2019).
- Qian, Y.; Qiu, X.; Zhu, S. Lignin: A nature-inspired sun blocker for broadspectrum Sunscreens. Green Chem. 2015, 17, 320–324. [Google Scholar] [CrossRef]
- Espinoza-Acosta, J.L.; Torres-Chávez, P.I.; Ramírez-Wong, B.; López-Saiz, C.M.; Montaño-Leyva, B. Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. BioResources 2016, 11, 5452–5481. [Google Scholar] [CrossRef]
- Spiridon, I.; Poni, P.; Chemistry, M.; Ghica, G.; Alley, V. Biological and pharmaceutical applications of lignin and its derivatives: A Mini-Review. Cellul. Chem. Technol. 2018, 52, 543–550. [Google Scholar]
- Barapatre, A.; Meena, A.S.; Mekala, S.; Das, A.; Jha, H. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int. J. Biol. Macromol. 2016, 86, 443–453. [Google Scholar] [CrossRef]
- Vinardell, M.P.; Ugartondo, V.; Mitjans, M. Potential applications of antioxidant lignins from different sources. Ind. Crops Prod. 2008, 27, 220–223. [Google Scholar] [CrossRef]
- Demirbaş, A. Estimating of structural composition of wood and non-wood biomass samples. Energy Sources 2005, 27, 761–767. [Google Scholar] [CrossRef]
- Ponomarenko, J.; Lauberts, M.; Dizhbite, T.; Lauberte, L.; Jurkjane, V.; Telysheva, G. Antioxidant activity of various lignins and lignin-related phenylpropanoid units with high and low molecular weight. Holzforschung 2015, 69, 795–805. [Google Scholar] [CrossRef]
- Kaur, R.; Uppal, S.K. Structural characterization and antioxidant activity of lignin from sugarcane bagasse. Colloid Polym. Sci. 2015, 293, 2585–2592. [Google Scholar] [CrossRef]
- Monteil-Rivera, F.; Phuong, M.; Ye, M.; Halasz, A.; Hawari, J. Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind. Crops Prod. 2013, 41, 356–364. [Google Scholar] [CrossRef]
- Kumar, A.; Anushree, K.J.; Bhaskar, T. Utilization of lignin: A sustainable and eco-friendly approach. J. Energy Inst. 2020, 93, 235–271. [Google Scholar] [CrossRef]
- Weinwurm, F.; Drljo, A.; Waldmüller, W.; Fiala, B.; Niedermayer, J.; Friedl, A. Lignin concentration and fractionation from ethanol organosolv liquors by ultra- and nanofiltration. J. Clean. Prod. 2016, 136, 62–71. [Google Scholar] [CrossRef]
- Cybulska, I.; Brudecki, G.P.; Zembrzuska, J.; Schmidt, J.E.; Lopez, C.G.B.; Thomsen, M.H. Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates. Appl. Energy 2017, 185, 1040–1050. [Google Scholar] [CrossRef]
- Sequeiros, A.; Labidi, J. Characterization and determination of the S/G ratio via Py-GC/MS of agricultural and industrial residues. Ind. Crops Prod. 2017, 97, 469–476. [Google Scholar] [CrossRef]
- Gordobil, O.; Moriana, R.; Zhang, L.; Labidi, J.; Sevastyanova, O. Assessment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Ind. Crops Prod. 2016, 83, 155–165. [Google Scholar] [CrossRef]
- Pan, X.; Kadla, J.F.; Ehara, K.; Gilkes, N.; Saddler, J.N. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 2006, 54, 5806–5813. [Google Scholar] [CrossRef]
- Gordobil, O.; Delucis, R.; Egüés, I.; Labidi, J. Kraft lignin as filler in PLA to improve ductility and thermal properties. Ind. Crops Prod. 2015, 72, 46–53. [Google Scholar] [CrossRef]
- Jiang, X.; Savithri, D.; Du, X.; Pawar, S.; Jameel, H.; Chang, H.M.; Zhou, X. Fractionation and Characterization of Kraft Lignin by Sequential Precipitation with Various Organic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 835–842. [Google Scholar] [CrossRef]
- Rossberg, C.; Bremer, M.; Machill, S.; Koenig, S.; Kerns, G.; Boeriu, C.; Windeisen, E.; Fischer, S. Separation and characterisation of sulphur-free lignin from different agricultural residues. Ind. Crops Prod. 2015, 73, 81–89. [Google Scholar] [CrossRef]
- Jiang, G.; Nowakowski, D.J.; Bridgwater, A.V. Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuels 2010, 24, 4470–4475. [Google Scholar] [CrossRef]
- Shao, L.; Zhang, X.; Chen, F.; Xu, F. Fast pyrolysis of Kraft lignins fractionated by ultrafiltration. J. Anal. Appl. Pyrolysis 2017, 128, 27–34. [Google Scholar] [CrossRef]
- Lin, X.; Sui, S.; Tan, S.; Pittman, C.; Sun, J.; Zhang, Z. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS. Energies 2015, 8, 5107–5121. [Google Scholar] [CrossRef] [Green Version]
- Constant, S.; Wienk, H.L.J.; Frissen, A.E.; de Peinder, P.; Boelens, R.; van Es, D.S.; Grisel, R.J.H.; Weckhuysen, B.M.; Huijgen, W.J.J.; Gosselink, R.J.A.; et al. New insights into the structure and composition of technical lignins: A comparative characterisation study. Green Chem. 2016, 18, 2651–2665. [Google Scholar] [CrossRef] [Green Version]
- Derkacheva, O.Y. Estimation of aromatic structure contents in hardwood lignins from IR absorption spectra. J. Appl. Spectrosc. 2013, 80, 1–7. [Google Scholar] [CrossRef]
- Zhao, J.; Xiuwen, W.; Hu, J.; Liu, Q.; Shen, D.; Xiao, R. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym. Degrad. Stab. 2014, 108, 133–138. [Google Scholar] [CrossRef]
- Queirós, C.S.G.P.; Cardoso, S.; Lourenço, A.; Ferreira, J.; Miranda, I.; Lourenço, M.J.V.; Pereira, H. Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers. Biorefinery 2020, 10, 175–188. [Google Scholar] [CrossRef]
- Avelino, F.; de Oliveira, D.R.; Mazzetto, S.E.; Lomonaco, D. Poly(methyl methacrylate) films reinforced with coconut shell lignin fractions to enhance their UV-blocking, antioxidant and thermo-mechanical properties. Int. J. Biol. Macromol. 2019, 125, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Qiu, X.; Zhu, S. Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. ACS Sustain. Chem. Eng. 2016, 4, 4029–4035. [Google Scholar] [CrossRef]
- Ponomarenko, J.; Dizhbite, T.; Lauberts, M.; Viksna, A.; Dobele, G.; Bikovens, O.; Telysheva, G. Characterization of softwood and hardwood lignoboost kraft lignins with emphasis on their antioxidant activity. BioResources 2014, 9, 2051–2068. [Google Scholar] [CrossRef]
- Rencoret, J.; Marques, G.; Gutiérrez, A.; Nieto, L.; Santos, J.I.; Jiménez-Barbero, J.; Martínez, Á.T.; Del Río, J.C. HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state. Holzforschung 2009, 63, 691–698. [Google Scholar]
- Yuan, T.-Q.; Sun, S.-N.; Xu, F.; Sun, R.-C. Characterization of lignin structures and LCC linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 2011, 174–178. [Google Scholar]
- Del Río Andrade, J.C.; Rencoret, J.; Prinsen, P.; Martínez, Á.T.; Gutiérrez Suárez, A.; Ralph, J. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 2012, 60, 5922–5935. [Google Scholar]
- Wen, J.L.; Sun, S.L.; Xue, B.L.; Sun, R.C. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 2013, 6, 359–391. [Google Scholar] [CrossRef] [Green Version]
- Ponomarenko, J.; Dizhbite, T.; Lauberts, M.; Volperts, A.; Dobele, G.; Telysheva, G. Analytical pyrolysis-A tool for revealing of lignin structure-antioxidant activity relationship. J. Anal. Appl. Pyrolysis 2015, 113, 360–369. [Google Scholar] [CrossRef]
- Dizhbite, T.; Telysheva, G.; Jurkjane, V.; Viesturs, U. Characterization of the radical scavenging activity of lignins-Natural antioxidants. Bioresour. Technol. 2004, 95, 309–317. [Google Scholar] [CrossRef]
- Alzagameem, A.; El Khaldi-Hansen, B.; Büchner, D.; Larkins, M.; Kamm, B.; Witzleben, S.; Schulze, M. Lignocellulosic biomass as source for lignin-based environmentally benign antioxidants. Molecules 2018, 23, 2664. [Google Scholar] [CrossRef] [Green Version]
- Jayalakshmi, C.P.; Sharma, J.D. Effect of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on rat erythrocytes. Environ. Res. 1986, 41, 235–238. [Google Scholar] [CrossRef]
- Diffey, B.L.; Robson, J. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J. Soc. Cosmet. Chem. 1989, 40, 127–133. [Google Scholar]
- Gould, R.F. Lignin Structure and Reactions, Edition 267, Advances in Chemistry Series N° 59; Gould, R.F., Ed.; American Chemical Society: Washington, DC, USA, 1966. [Google Scholar]
- Glasser, G.W.; Sarkanen, S. Lignin Structure and Reactions. Am. Chem. Soc. 1989, 59, 1–21. [Google Scholar]
- Toh, K.; Nakano, S.; Yokoyama, H.; Ebe, K.; Gotoh, K.; Noda, H. Anti-deterioration effect of lignin as an ultraviolet absorbent in polypropylene and polyethylene. Polym. J. 2005, 37, 633–635. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Hernández, J.M.; Escalante, A.; Murillo-Vázquez, R.N.; Delgado, E.; González, F.J.; Toríz, G. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. J. Photochem. Photobiol. B Biol. 2016, 163, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; Li, M.F.; Bian, J.; Wu, X.F.; Peng, F.; Ma, M.G. Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent. Int. J. Biol. Macromol. 2019, 132, 836–843. [Google Scholar] [CrossRef]
- Gordobil, O.; Egüés, I.; Llano-Ponte, R.; Labidi, J. Physicochemical properties of PLA lignin blends. Polym. Degrad. Stab. 2014, 108, 1–9. [Google Scholar] [CrossRef]
- TAPPI T 211 om-02. Ash in wood, pulp, paper and paperboard: Combustion at 525 °C. TAPPI test methods 2002, 5. [Google Scholar]
- Wang, S.; Ru, B.; Lin, H.; Sun, W.; Luo, Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour. Technol. 2015, 182, 120–127. [Google Scholar] [CrossRef]
- Zhang, J.; Fleury, E.; Chen, Y.; Brook, M.A. Flame retardant lignin-based silicone composites. RSC Adv. 2015, 5, 103907–103914. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, J.; Gordobil, O.; Robles, E.; González-Alriols, M.; Labidi, J. Lignin valorization from side-streams produced during agricultural waste pulping and total chlorine free bleaching. J. Clean. Prod. 2017, 142, 2609–2617. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Leb. Wiss. Technol. 1995, 30, 25–30. [Google Scholar] [CrossRef]
Sample Availability: Lignins isolated from hazelnut and walnut shells are available from the authors. |
HL | WL | |
---|---|---|
Klason lignin (%) | 94.2 ± 0.5 | 85.7 ± 0.4 |
ASL (%) | 0.8 ± 0.2 | 3.4 ± 0.3 |
Carbohydrate content (%) | 2.2 ± 0.0 | 2.7 ± 0.1 |
Ash content (%) | <0.5 | <0.5 |
S (%) | nd* | nd* |
Mn | 1613 | 1545 |
Mw | 9282 | 9630 |
PDI | 5.7 | 6.2 |
Pyrolysis Products | Hazelnut Lignin (HL) | Walnut Lignin (WL) |
---|---|---|
S-type compounds | 5.3 | 53.2 |
G-type compounds | 83.6 | 32.2 |
Ca-type compounds | 8.7 | 7.9 |
H-type compounds | 2.5 | 6.7 |
S/G | 0.2 | 1.9 |
Methoxylated aromatic compounds (%)1 | 88.9 | 91.6 |
Non-substituted saturated chains (%)2 | 49.1 | 45.1 |
Unsaturated side chains (Cα=Cβ) (%) | 28.4 | 9.7 |
Unsaturated side chains (Cβ=Cγ) (%) | 0.5 | 7.6 |
Oxygenated groups in the side chains (C=O) (%) | 9.7 | 11.5 |
Short side chain (C1+C2) | 70.2 | 63.4 |
Long side chain (C3) | 17.0 | 2.9 |
(ArC1+ArC2)/ArC3 3 | 4.1 | 21.9 |
Label | δC/δH (ppm) | Assignments |
---|---|---|
H | 127.74/7.17 | C2-H2 and C6-H6 in H units |
F´β | 126.24/6.96 | Cβ–Hβ of cinnamyl acetate end-groups (F´) |
G6 | 119.20/6.77 | C6-H6 in guaiacyl units (G) |
G5 | 115.78/6.77 | C5-H5 in guaiacyl units (G) |
G2 | 111.00/6.98 | C2-H2 in guaiacyl units (G) |
S´2,6 | 106.97/7.33 | C2-H2 and C6-H6 in oxidized S units (S´) |
S2,6 | 104.14/6.61 | C2-H2 and C6-H6 in S units (S) |
Cα | 87.58/5.45 | Cα-Hα in β-5´ (phenylcoumaran) substructrures (C) |
A´β (S) | 86.51/4.13 | Cβ-Hβ in γ-acetylated β-O-4´ substructures linked to S unit (A) |
Bα | 85.76/4.63 | Cα-Hα in β-β´ resinol substructures (B) |
Aβ (G) | 84.20/4.31 | Cβ-Hβ in β-O-4´ substructures linked to G unit (A) |
Aα (G) | 71.70/4.76 | Cα-Hα in β-O-4´ substructures (A) |
Bγ | 71.62/3.80–4.20 | Cγ-Hγ in β-β´ resinol substructures (B) |
Cγ | 63.28/3.73 | Cγ-Hγ in β-5 (phenylcoumaran) substructrures (C) |
Aγ | 60.3/3.70 | Cγ–Hγ in β-O-4´ substructures (A) |
Cβ | 53.64/3.46 | Cβ-Hβ in β-5´ (phenylcoumaran) substructrures (C) |
-OCH3 | 56.11/3.76 | C-H in methoxyl groups |
Linkage Abundance (%) | β-O-4´ (A) | β-O-4´ (A´) | β-β´ (B) | β-5´ (C) |
---|---|---|---|---|
Hazelnut lignin (HL) | 54.1 | - | - | 45.9 |
Walnut lignin (WL) | 44.7 | 8.3 | 20.1 | 26.8 |
Samples | TPC | ABTS | DPPH |
---|---|---|---|
μg GAE/mg Dry Lignin | IC50 (μg/mL) | IC50 (μg/mL) | |
HL | 498.0 ± 23.7 | 9.74 ± 0.7 | 20.07 ± 0.3 |
WL | 281.5 ± 12.1 | 9.63 ± 0.4 | 19.17 ± 0.5 |
BHT | - | 7.74 ± 0.2 | 18.96 ± 0.1 |
Ascorbic acid | - | 2.40 ± 0.0 | 2.93 ± 0.0 |
Lignin Content (%) | SPF | UVA/UVB | Cλ | |
---|---|---|---|---|
N-HL | 0.5 | 1.4 | 0.44 | 374.5 |
N-HL | 1 | 1.7 | 0.56 | 377.0 |
N-HL | 2.5 | 3.0 | 0.62 | 381.5 |
N-HL | 5 | 6.5 | 0.62 | 382.0 |
N-WL | 0.5 | 1.3 | 0.56 | 383.0 |
N-WL | 1 | 1.6 | 0.60 | 383.0 |
N-WL | 2.5 | 2.0 | 0.65 | 384.0 |
N-WL | 5 | 4.5 | 0.69 | 384.5 |
Control-N | - | 0.9 | 0.23 | 365.5 |
Nivea-SPF30 | - | 28.4 | 0.76 | 383.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordobil, O.; Olaizola, P.; Banales, J.M.; Labidi, J. Lignins from Agroindustrial by-Products as Natural Ingredients for Cosmetics: Chemical Structure and In Vitro Sunscreen and Cytotoxic Activities. Molecules 2020, 25, 1131. https://doi.org/10.3390/molecules25051131
Gordobil O, Olaizola P, Banales JM, Labidi J. Lignins from Agroindustrial by-Products as Natural Ingredients for Cosmetics: Chemical Structure and In Vitro Sunscreen and Cytotoxic Activities. Molecules. 2020; 25(5):1131. https://doi.org/10.3390/molecules25051131
Chicago/Turabian StyleGordobil, Oihana, Paula Olaizola, Jesus M. Banales, and Jalel Labidi. 2020. "Lignins from Agroindustrial by-Products as Natural Ingredients for Cosmetics: Chemical Structure and In Vitro Sunscreen and Cytotoxic Activities" Molecules 25, no. 5: 1131. https://doi.org/10.3390/molecules25051131