Development and Validation of Analytical Method for SH-1242 in the Rat and Mouse Plasma by Liquid Chromatography/Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mass Spectrometry and Chromatography
2.2. Selectivity
2.3. LLOQ and Linearity
2.4. Accuracy, Precision, and Dilution Integrity
2.5. Matrix Effect, Extraction Efficiency, and Recovery
2.6. Stability
2.7. Applicability of the Assay to Pharmacokinetic Studies
3. Materials and Methods
3.1. Chemicals, Reagents, and Experimental Animals
3.2. HPLC Conditions
3.3. Mass Spectrometer Conditions
3.4. Standards and Quality Control (QC) Samples
3.5. Sample Preparation
3.6. Method Validation
3.6.1. Selectivity
3.6.2. LLOQ and Linearity
3.6.3. Precision, Accuracy, and Dilution Integrity
3.6.4. Matrix Effect, Extraction Efficiency, and Recovery
3.6.5. Stability
3.7. Application of the Assay to Pharmacokinetic Studies of SH-1242
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pearl, L.H.; Prodromou, C.; Workman, P. The Hsp90 molecular chaperone: An open and shut case for treatment. Biochem. J. 2008, 410, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Ke, Q.; Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 2006, 70, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Volm, M.; Koomägi, R. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res. 2000, 20, 1527–1533. [Google Scholar]
- Lin, M.; Chen, Y.; Jin, J.; Hu, Y.; Zhou, K.; Zhu, M.; Le, Y.-Z.; Ge, J.; Johnson, R.; Ma, J.-X. Ischaemia-induced retinal neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-inducible factor-1 in retinal Müller cells. Diabetologia 2011, 54, 1554–1566. [Google Scholar] [CrossRef] [Green Version]
- Krishna Vadlapatla, R.; Dutt Vadlapudi, A.; Mitra, A.K. Hypoxia-inducible factor-1 (HIF-1): A potential target for intervention in ocular neovascular diseases. Curr. Drug Targets 2013, 14, 919–935. [Google Scholar] [CrossRef]
- Oh, S.H.; Woo, J.K.; Yazici, Y.D.; Myers, J.N.; Kim, W.-Y.; Jin, Q.; Hong, S.S.; Park, H.-J.; Suh, Y.-G.; Kim, K.-W. Structural basis for depletion of heat shock protein 90 client proteins by deguelin. J. Natl. Cancer Inst. 2007, 99, 949–961. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Hong, M.; Ann, J.; Yoon, S.; Nguyen, C.-T.; Lee, S.-C.; Lee, H.-Y.; Suh, Y.-G.; Seo, J.H.; Choi, H. Synthesis and biological evaluation of C-ring truncated deguelin derivatives as heat shock protein 90 (HSP90) inhibitors. Bioorg. Med. Chem. 2016, 24, 6082–6093. [Google Scholar] [CrossRef]
- Kim, H.S.; Hong, M.; Lee, S.-C.; Lee, H.-Y.; Suh, Y.-G.; Oh, D.-C.; Seo, J.H.; Choi, H.; Kim, J.Y.; Kim, K.-W. Ring-truncated deguelin derivatives as potent Hypoxia Inducible Factor-1α (HIF-1α) inhibitors. Eur. J. Med. Chem. 2015, 104, 157–164. [Google Scholar] [CrossRef]
- Chang, D.-J.; An, H.; Kim, K.-s.; Kim, H.H.; Jung, J.; Lee, J.M.; Kim, N.-J.; Han, Y.T.; Yun, H.; Lee, S. Design, synthesis, and biological evaluation of novel deguelin-based heat shock protein 90 (HSP90) inhibitors targeting proliferation and angiogenesis. J. Med. Chem. 2012, 55, 10863–10884. [Google Scholar] [CrossRef] [PubMed]
- Jo, D.H.; An, H.; Chang, D.-J.; Baek, Y.-Y.; Cho, C.S.; Jun, H.O.; Park, S.-J.; Kim, J.H.; Lee, H.-Y.; Kim, K.-W. Hypoxia-mediated retinal neovascularization and vascular leakage in diabetic retina is suppressed by HIF-1α destabilization by SH-1242 and SH-1280, novel hsp90 inhibitors. J. Mol. Med. (Heidelberg, Ger.) 2014, 92, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-C.; Min, H.-Y.; Choi, H.; Bae, S.Y.; Park, K.H.; Hyun, S.Y.; Lee, H.J.; Moon, J.; Park, S.-H.; Kim, J.Y. Deguelin analogue SH-1242 inhibits Hsp90 activity and exerts potent anticancer efficacy with limited neurotoxicity. Cancer Res. 2016, 76, 686–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prestes, O.D.; Padilla-Sánchez, J.A.; Romero-González, R.; Grio, S.L.; Frenich, A.G.; Martínez-Vidal, J.L. Comparison of several extraction procedures for the determination of biopesticides in soil samples by ultrahigh pressure LC-MS/MS. J. Sep. Sci. 2012, 35, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Caboni, P.; Sarais, G.; Angioni, A.; Garau, V.L.; Cabras, P. Fast and versatile multiresidue method for the analysis of botanical insecticides on fruits and vegetables by HPLC/DAD/MS. J. Agric. Food Chem. 2005, 53, 8644–8649. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Pereira, A.; Serrano, M.A.A.; De Aquino Neto, F.R.; Da Cunha Pinto, A.; Texeira, D.F.; Gilbert, B. Analysis and quantitation of rotenoids and flavonoids in Derris (Lonchocarpus urucu) by high-temperature high-resolution gas chromatography. J. Chromatogr. Sci. 2000, 38, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Chen, L.; Li, Y.; Peng, A.; Fu, A.; Song, H.; Tang, M.; Luo, H.; Luo, Y.; Xu, Y. Preparative isolation and purification of three rotenoids and one isoflavone from the seeds of Millettia pachycarpa Benth by high-speed counter-current chromatography. J. Chromatogr. A 2008, 1178, 101–107. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry: Bioanalytical Method Validation; US Department of Heath and Human Services Food and Drug Administration: Rockville, MD, USA, 2018.
- Caboni, P.; Sarais, G.; Vargiu, S.; De Luca, M.A.; Garau, V.L.; Ibba, A.; Cabras, P. LC–MS–MS determination of rotenone, deguelin, and rotenolone in human serum. Chromatographia 2008, 68, 739–745. [Google Scholar] [CrossRef]
- Jacobson, B.-M.; Olsson, A.; Fakt, C.; Öhman, D. The use of human plasma as matrix for calibration standards in pre-clinical LC–MS/MS methods—A way to reduce animal use. J. Pharm. Biomed. Anal. 2011, 54, 826–829. [Google Scholar] [CrossRef]
- Matuszewski, B.; Constanzer, M.; Chavez-Eng, C. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC− MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Udeani, G.O.; Zhao, G.-M.; Shin, Y.G.; Kosmeder Ii, J.W.; Beecher, C.W.; Kinghorn, A.D.; Moriarty, R.M.; Moon, R.C.; Pezzuto, J.M. Pharmacokinetics of deguelin, a cancer chemopreventive agent in rats. Cancer Chemother. Pharmacol. 2001, 47, 263–268. [Google Scholar] [CrossRef]
- Kromidas, S. More practical problem solving in HPLC; John Wiley & Sons: Weinheim, Germany, 2008. [Google Scholar]
- Lee, J.H.; Woo, Y.A.; Hwang, I.C.; Kim, C.Y.; Kim, D.D.; Shim, C.K.; Chung, S.J. Quantification of CKD-501, lobeglitazone, in rat plasma using a liquid-chromatography/tandem mass spectrometry method and its applications to pharmacokinetic studies. J. Pharm. Biomed. Anal. 2009, 50, 872–877. [Google Scholar] [CrossRef]
- Lee, M.; Kim, D.; Shin, J.; Lee, H.-Y.; Park, S.; Lee, H.-S.; Kang, J.-H.; Chung, S.-J. Quantification of IDP-73152, a novel antibiotic, in plasma from mice, rats and humans using an ultra-high performance liquid chromatography/tandem mass spectrometry method for use in pharmacokinetic studies. J. Pharm. Biomed. Anal. 2017, 145, 364–371. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples are available from the authors. |
MATRIX LOT | Response (Peak Area) | |||||||
---|---|---|---|---|---|---|---|---|
Rat Plasma | Mouse Plasma | |||||||
Double Blank a | Zero Blank b | LLOQ (1 ng/mL) | HQC (800 ng/mL) | Double Blank | Zero Blank | LLOQ (2 ng/mL) | HQC (800 ng/mL) | |
1 | 0 | 0 | 209 | 71,500 | 0 | 0 | 150 | 23,800 |
2 | 0 | 0 | 214 | 80,700 | 0 | 0 | 137 | 24,500 |
3 | 0 | 0 | 212 | 77,100 | 0 | 0 | 121 | 22,100 |
4 | 0 | 0 | 225 | 78,000 | 0 | 0 | 119 | 22,400 |
5 | 0 | 0 | 238 | 77,600 | 0 | 0 | 114 | 23,700 |
6 | 0 | 0 | 211 | 77,200 | 0 | 0 | 134 | 24,400 |
Mean | 0 | 0 | 218 | 77,000 | 0 | 0 | 129 | 23,500 |
CV(%) c | 0 | 0 | 5.15 | 3.91 | 0 | 0 | 10.5 | 4.30 |
Run | Rat Plasma | Mouse Plasma | ||||
---|---|---|---|---|---|---|
Slope | Intercept | R | Slope | Intercept | R | |
1 | 0.00349 | 0.00340 | 0.999 | 0.00633 | 0.00982 | 0.995 |
2 | 0.00329 | 0.00281 | 0.999 | 0.00450 | 0.00679 | 0.999 |
3 | 0.00339 | 0.00227 | 0.998 | 0.00515 | 0.00378 | 0.999 |
4 | 0.00335 | 0.00402 | 0.999 | 0.00583 | 0.00897 | 0.996 |
5 | 0.00337 | 0.00417 | 0.999 | 0.00616 | 0.00194 | 0.998 |
Mean | 0.00338 | 0.00333 | 0.999 | 0.00559 | 0.00626 | 0.997 |
CV(%) a | 2.16 | - | - | 13.6 | - | - |
Batch | Rat Plasma | Mouse Plasma | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Theoretical Concentration (ng/mL) | Theoretical Concentration (ng/mL) | |||||||||
LLOQ | LQC | MQC | HQC | HQC a | LLOQ | LQC | MQC | HQC | HQC a | |
1 | 2 | 40 | 800 | 800 | 2 | 4 | 40 | 800 | 800 | |
Intra-day (n = 6) | ||||||||||
Mean | 1 | 1.98 | 41.9 | 759 | 764 | 1.95 | 4.06 | 39.7 | 752 | 757 |
Precision (CV%) b | 12.7 | 4.64 | 4.41 | 3.85 | 1.39 | 2.56 | 2.55 | 2.96 | 3.09 | 4.47 |
Accuracy (RE%) c | 0.38 | −0.83 | 4.83 | −5.15 | −4.48 | −2.42 | 1.42 | −0.83 | −6.02 | −5.35 |
Inter-day (n = 30) | ||||||||||
Mean | 1.04 | 2.04 | 41.9 | 777 | 743 | 1.99 | 4.04 | 40.7 | 780 | 782 |
Precision (CV%) b | 12.8 | 5.04 | 5.03 | 4.24 | 2.84 | 5.87 | 4.43 | 3.57 | 5.27 | 6.72 |
Accuracy (RE%) c | 3.95 | 2.22 | 4.63 | −2.83 | −7.15 | −0.73 | 0.91 | 1.63 | −2.53 | −2.30 |
Nominal Concentration (ng/mL) | Matrix Effect (%) a | Extraction Efficiency (%) b | Recovery (%) c | IS-Normalized Recovery (%) c | CV (%) d | |||
---|---|---|---|---|---|---|---|---|
Analyte | IS | |||||||
Rat plasma | Set 1 | Set 2 | Set 1 | Set 2 | ||||
2 | 92.8 | 107 | 99 | 110 | 9.08 | 2.92 | 5.95 | 2.13 |
40 | 90.4 | 119 | 108 | 118 | 7.11 | 6.05 | 2.96 | 2.01 |
800 | 82.2 | 111 | 91.3 | 103 | 2.31 | 6.72 | 3.12 | 1.95 |
Mouse plasma | Set 1 | Set 2 | Set 1 | Set 2 | ||||
2 | 45.9 | 101 | 46.3 | 74.4 | 6.38 | 2.92 | 6.77 | 2.13 |
40 | 44.7 | 107 | 47.8 | 74.3 | 7.10 | 6.05 | 2.65 | 2.01 |
800 | 48 | 91.1 | 43.7 | 73.4 | 10.5 | 6.72 | 7.52 | 1.95 |
Batch (n = 3) | Response (Peak Area) | |||||
---|---|---|---|---|---|---|
Initial (0 h) | Room Temp. (6 h) | Refrigerated (4 °C, 24 h) | Refrigerated (4 °C, 2 Weeks) | Refrigerated (−20 °C, 2 Weeks) | Refrigerated (−80 °C, 2 Weeks) | |
SH-1242 a | ||||||
Mean | 18,000 | 19,700 | 19,000 | 15,400 | 16,100 | 16,400 |
CV(%) b | 3.93 | 13.5 | 11.1 | 9.14 | 5.44 | 3.01 |
Relative conc. (%) c | 100 | 109 | 105 | 85.2 | 89.1 | 90.8 |
IS | ||||||
Mean | 19,100 | 19,200 | 20,000 | 17,600 | 17,400 | 16,400 |
CV(%) | 4.27 | 6.20 | 0.762 | 4.65 | 8.36 | 1.53 |
Relative conc. (%) | 100 | 101 | 105 | 92.3 | 91.4 | 86.2 |
Batch | Rat Plasma | Mouse Plasma | ||||
---|---|---|---|---|---|---|
Theoretical Concentration (ng/mL) | Theoretical Concentration (ng/mL) | |||||
LQC | MQC | HQC | LQC | MQC | HQC | |
2 | 40 | 800 | 4 | 40 | 800 | |
Benchtop stability at room temperature (25 °C) for 24 h (n = 3) | ||||||
Mean | 1.87 | 37.3 | 737 | 4.21 | 41.7 | 810 |
Precision (CV%) a | 6.95 | 4.35 | 2.62 | 9.47 | 4.38 | 5.57 |
Accuracy (RE%) b | –6.33 | –6.83 | –7.88 | 5.25 | 4.25 | 1.25 |
Autosampler stability at 4 °C for 3 days (n = 3) | ||||||
Mean | 2.00 | 38.9 | 773 | 4.19 | 42.6 | 863 |
Precision (CV%) | 8.27 | 6.05 | 3.16 | 4.90 | 5.15 | 0.699 |
Accuracy (RE%) | –0.167 | –2.75 | –3.33 | 4.67 | 6.50 | 7.83 |
Freeze-thaw stability (3 cycles, n = 3) | ||||||
Mean | 1.84 | 41.97 | 780 | 4.45 | 42.4 | 840 |
Precision (CV%) | 3.85 | 4.20 | 3.57 | 2.00 | 4.32 | 1.33 |
Accuracy (RE%) | –7.83 | 4.92 | –2.50 | 11.3 | 6.00 | 5.00 |
Long term stability at 4 °C for 2 weeks (n = 3) | ||||||
Mean | 2.02 | 37.3 | 730 | 3.84 | 44.8 | 865 |
Precision (CV%) | 8.54 | 2.56 | 0.825 | 12.0 | 1.77 | 4.37 |
Accuracy (RE%) | 0.833 | –6.75 | –8.71 | –4.08 | 12.0 | 8.08 |
Pharmacokinetic Parameters (Units) | Rats | Mice |
---|---|---|
Mean ± S.D. | Representative a | |
T1/2 (min) | 146 ± 59 | 26.3 |
CL (mL/min/kg) | 30.5 ± 4.49 | 69.4 |
AUCinf (ng·min/mL) | 3350 ± 573 | 1440 |
MRT (min) | 149 ± 46.9 | 29.6 |
Vss (mL/kg) | 4380 ± 716 | 2060 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.-S.; Baek, M.; Lee, S.; Kim, M.-S.; Maeng, H.-J.; Lee, J.-H.; Suh, Y.-G.; Chung, S.-J. Development and Validation of Analytical Method for SH-1242 in the Rat and Mouse Plasma by Liquid Chromatography/Tandem Mass Spectrometry. Molecules 2020, 25, 531. https://doi.org/10.3390/molecules25030531
Jeong Y-S, Baek M, Lee S, Kim M-S, Maeng H-J, Lee J-H, Suh Y-G, Chung S-J. Development and Validation of Analytical Method for SH-1242 in the Rat and Mouse Plasma by Liquid Chromatography/Tandem Mass Spectrometry. Molecules. 2020; 25(3):531. https://doi.org/10.3390/molecules25030531
Chicago/Turabian StyleJeong, Yoo-Seong, Minjeong Baek, Seungbeom Lee, Min-Soo Kim, Han-Joo Maeng, Jong-Hwa Lee, Young-Ger Suh, and Suk-Jae Chung. 2020. "Development and Validation of Analytical Method for SH-1242 in the Rat and Mouse Plasma by Liquid Chromatography/Tandem Mass Spectrometry" Molecules 25, no. 3: 531. https://doi.org/10.3390/molecules25030531
APA StyleJeong, Y.-S., Baek, M., Lee, S., Kim, M.-S., Maeng, H.-J., Lee, J.-H., Suh, Y.-G., & Chung, S.-J. (2020). Development and Validation of Analytical Method for SH-1242 in the Rat and Mouse Plasma by Liquid Chromatography/Tandem Mass Spectrometry. Molecules, 25(3), 531. https://doi.org/10.3390/molecules25030531