In Vivo Targeted Metabolomic Profiling of Prostanit, a Novel Anti-PAD NO-Donating Alprostadil-Based Drug
Abstract
:1. Introduction
2. Results
2.1. Identification and Pharmacokinetics of Prostanit Metabolites
2.2. NO Generation from Prostanit in Rat Isolated Aorta
2.3. NO Generation from Prostanit in Differentiated Human Smooth Muscle Cells
2.4. Targeted Metabolite Changes Induced by Prostanit Treatment
2.5. Network Visualization and Analysis of Biochemical Pathways
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Stock and Working Solutions
4.3. Sample Collection
4.4. Sample Preparation
4.5. Instrumental Analysis
4.6. Analytical Validation
4.7. Data Processing and Statistical Analysis
4.8. Rat Aorta Isolation
4.9. NO Generation from Prostanit with Rat Aorta Fragments
4.10. NO Quantification
4.11. NO Generation by Human Smooth Muscle Cells
4.12. Cell Culture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Criqui, M.H. Peripheral arterial disease-epidemiological aspects. Vasc. Med. 2001, 6, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouriel, K. Peripheral arterial disease. Lancet 2001, 358, 1257–1264. [Google Scholar] [CrossRef]
- Diehm, C.; Balzer, K.; Bisler, H.; Bulling, B.; Camci, M.; Creutzig, A.; Gruss, J.; Horsch, S.; Odemar, F.; Piehler, U.; et al. Efficacy of a new prostaglandin E1 regimen in outpatients with severe intermittent claudication: Results of a multicenter placebo-controlled double-blind trial. J. Vasc. Surg. 1997, 25, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, P.; De La Hamette, D.; Leipnitz, G. Therapeutic efficacy of intravenously applied prostaglandin E1. VASA. Suppl. 1989, 28, 19–25. [Google Scholar] [PubMed]
- Balzer, K.; Rogatti, W.; Rüttgerodt, K. Efficacy and tolerability of intra-arterial and intravenous prostaglandin E1 infusions in occlusive arterial disease stage III/IV. VASA. Suppl. 1989, 28, 31–38. [Google Scholar] [PubMed]
- Francis, S.H.; Corbin, J.D. Phosphodiesterase-5 Inhibition: The Molecular Biology of Erectile Function and Dysfunction. Urol. Clin. N. Am. 2005, 32, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Escrig, A.; Marin, R.; Mas, M. Repeated Pge1 Treatment Enhances Nitric Oxide and Erection Responses to Nerve Stimulation in the Rat Penis by Upregulating Constitutive Nos Isoforms. J. Urol. 1999, 162, 2205–2210. [Google Scholar] [CrossRef]
- Karetova, D.; Bultas, J.; Vondracek, V.; Aschermann, M. Alprostadil: Modes of actions in peripheral arterial occlusive disease. Am. J. Ther. 1999, 4, 359–364. [Google Scholar] [CrossRef]
- Wahlberg, E. Vascular and Endovascular Surgery: A Companion to Specialist Surgical Practice. Eur. J. Vasc. Endovasc. Surg. 2010, 40, 681. [Google Scholar] [CrossRef] [Green Version]
- Brand, D.L.; Roufall, W.M.; Thomson, A.B.R.; Tapper, E.J. Misoprostol, a synthetic PGE1 analog, in the treatment of duodenal ulcers. Dig. Dis. Sci. 1985, 30, 147S–158S. [Google Scholar] [CrossRef]
- Ohtori, S.; Yamashita, M.; Murata, Y.; Eguchi, Y.; Aoki, Y.; Ataka, H.; Hirayama, J.; Ozawa, T.; Morinaga, T.; Arai, H. Limaprost, a prostaglandin E1 analog, improves pain and ABI in patients with lumbar spinal stenosis. Chiba Med. J. 2012, 88, 41–46. [Google Scholar]
- Griffith, T.M.; Edwards, D.H.; Lewis, M.J.; Newby, A.C.; Henderson, A.H. The nature of endothelium-derived vascular relaxant factor. Nat. Cell Biol. 1984, 308, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Korbut, R.; Adamek-Guzik, T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2003, 54, 469–487. [Google Scholar]
- Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; et al. Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite. Hypertension 2008, 51, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza, M.A.; Robles, H.; Romo, E.; Rios, A.; Escalante, B. Nitric Oxide-Dependent Neovascularization Role in the Lower Extremity Disease. Curr. Pharm. Des. 2007, 13, 3591–3596. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Branch, B.G.; Pattillo, C.B.; Hood, J.; Thoma, S.; Simpson, S.; Illum, S.; Arora, N.; Chidlow, J.H.; Langston, W.; et al. Chronic sodium nitrite therapy augments ischemia-induced angiogenesis and arteriogenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 7540–7545. [Google Scholar] [CrossRef] [Green Version]
- Duranski, M.R.; Greer, J.J.; Dejam, A.; Jaganmohan, S.; Hogg, N.; Langston, W.; Patel, R.P.; Yet, S.-F.; Wang, X.; Kevil, C.G.; et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Investig. 2005, 115, 1232–1240. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The Vascular Endothelium and Human Diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Nava, E.; Llorens, S. The Local Regulation of Vascular Function: From an Inside-Outside to an Outside-Inside Model. Front. Physiol. 2019, 10, 729. [Google Scholar] [CrossRef]
- Falconer, D.; Papageorgiou, N.; Salem, K.M.; Lim, W.Y.; Katsargyris, A.; Avgerinos, E.; Tousoulis, D. Nitric oxide donors for peripheral artery disease. Curr. Opin. Pharmacol. 2018, 39, 77–85. [Google Scholar] [CrossRef]
- Bezuglov, V.V.; Serkov, I.V. Dinitroglycerol Esters of Unsaturated Fatty Acids and Prostaglandins. U.S. Patent 1997 5,625,083, 29 April 1997. [Google Scholar]
- Serkov, I.V.; Bezuglov, V.V. 1,3-Dinitrates of cyclooxygenase metabolites of endocannabinoid 2-arachidonoylglycerol. Synthesis and properties. Russ. J. Bioorganic Chem. 2009, 35, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Bezuglov, V.V.; Lyubimov, I.I.; Serkov, I.V.; Gretskaya, N.M.; Teterin, I.Y.; Akimov, M.G. Agent for Treating Chronic Obliterating Peripheral Vascular Diseases Based on Prostaglandin. RU Pat. 2018 2,695,068 C1, 26 June 2018. [Google Scholar]
- Katzenschlager, R.; Weiss, K.; Rogatti, W.; Stelzeneder, M.; Sinzinger, H. Interaction between prostaglandin el and nitric oxide (NO). Thromb. Res. 1991, 62, 299–304. [Google Scholar] [CrossRef]
- Sinzinger, H.; Fitscha, P.; O’Grady, J.; Rauscha, F.; Rogatti, W.; Vane, J. Synergistic effect of prostaglandin E1 and isosorbide dinitrate in peripheral vascular disease. Lancet 1990, 335, 627–628. [Google Scholar] [CrossRef]
- Smith, D.A.; Jones, B.C.; Walker, D.K. Design of drugs involving the concepts and theories of drug metabolism and pharmacokinetics. Med. Res. Rev. 1996, 16, 243. [Google Scholar] [CrossRef]
- Kell, D.B.; Goodacre, R. Metabolomics and systems pharmacology: Why and how to model the human metabolic network for drug discovery. Drug Discov. Today 2014, 19, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Kohler, I.; Hankemeier, T.; Van Der Graaf, P.H.; Knibbe, C.A.J.; Van Hasselt, J.G.C. Integrating clinical metabolomics-based biomarker discovery and clinical pharmacology to enable precision medicine. Eur. J. Pharm. Sci. 2017, 109, S15–S21. [Google Scholar] [CrossRef]
- Appolonova, S.A.; Dikunets, M.A.; Rodchenkov, G.M. Possible Indirect Detection of rHuEPO Administration in Human Urine by High-Performance Liquid Chromatography Tandem Mass Spectrometry. Eur. J. Mass Spectrom. 2008, 14, 201–209. [Google Scholar] [CrossRef]
- Shestakova, K.; Brito, A.; Mesonzhnik, N.V.; Moskaleva, N.E.; Kurynina, K.O.; Grestskaya, N.M.; Serkov, I.V.; Lyubimov, I.I.; Bezuglov, V.V.; Appolonova, S.A. Rabbit plasma metabolomic analysis of Nitroproston®: A multi target natural prostaglandin based-drug. Metabolomics 2018, 14, 112. [Google Scholar] [CrossRef]
- A Peskar, B.; Cawello, W.; Rogatti, W.; Rudofsky, G. On the metabolism of prostaglandin E1 administered intravenously to human volunteers. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 1991, 42, 3. [Google Scholar]
- Änggård, E. STUDIES ON THE ANALYSIS AND METABOLISM OF THE PROSTAGLANDINS. Ann. N. Y. Acad. Sci. 1971, 180, 200–217. [Google Scholar] [CrossRef]
- Hamberg, M.; Samuelsson, B. On the metabolism of prostaglandins E 1 and E 2 in man. J. Biol. Chem. 1971, 246, 6713–6721. [Google Scholar] [PubMed]
- Kingsley, P.J.; Rouzer, C.A.; Morgan, A.J.; Patel, S.; Marnett, L.J. Aspects of Prostaglandin Glycerol Ester Biology. In The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases; Honn, K.V., Zeldin, D.C., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2019; Volume 1161, pp. 77–88. ISBN 978-3-030-21636-8. [Google Scholar]
- Stefano, G.B.; Bilfinger, T.V.; Rialas, C.M.; Deutsch, D.G. 2-arachidonyl-glycerol stimulates nitric oxide release from human immune and vascular tissues and invertebrate immunocytes by cannabinoid receptor 1. Pharmacol. Res. 2000, 42, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Ismaeel, A.; Franco, M.E.; Lavado, R.; Papoutsi, E.; Casale, G.P.; Fuglestad, M.A.; Mietus, C.J.; Haynatzki, G.R.; Smith, R.S.; Bohannon, W.T.; et al. Altered Metabolomic Profile in Patients with Peripheral Artery Disease. J. Clin. Med. 2019, 8, 1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raizel, R.; Leite, J.S.M.; Hypólito, T.M.; Coqueiro, A.Y.; Newsholme, P.; Cruzat, V.F.; Tirapegui, J. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br. J. Nutr. 2016, 116, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Ifrim, S.; Amălinei, C.; Cojocaru, E.; Matei, M.C. Administration of valine, leucine, and isoleucine improved plasma cholesterol and mitigated the preatherosclerotic lesions in rats fed with hypercholesterolemic diet. Rev. Romana Med. Lab. 2018, 26, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Stegen, S.; Stegen, B.; Aldini, G.; Altomare, A.; Cannizzaro, L.; Orioli, M.; Gerlo, S.; Deldicque, L.; Ramaekers, M.; Hespel, P.; et al. Plasma carnosine, but not muscle carnosine, attenuates high-fat diet-induced metabolic stress. Appl. Physiol. Nutr. Metab. 2015, 40, 868–876. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Khare, P.; Nagar, H.K.; Raghuwanshi, N.; Srivastava, R. Hydroxyproline: A Potential Biochemical Marker and Its Role in the Pathogenesis of Different Diseases. Curr. Protein Pept. Sci. 2016, 17, 596–602. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Inoue, M.; Gunji, H.; Ono, I.; Kaneko, F. Effects of prostaglandin E1 on cultured dermal fibroblasts from normal and hypertrophic scarred skin. J. Dermatol. Sci. 1997, 14, 217–224. [Google Scholar] [CrossRef]
- Yanni, A.E.; Agrogiannis, G.; Nomikos, T.; Fragopoulou, E.; Pantopoulou, A.; Antonopoulou, S.; Perrea, D. Oral supplementation with l-aspartate and l-glutamate inhibits atherogenesis and fatty liver disease in cholesterol-fed rabbit. Amino Acids 2010, 38, 1323–1331. [Google Scholar] [CrossRef]
- El-Hafidi, M.; Franco, M.; Ramírez, A.R.; Sosa, J.S.; Flores, J.A.P.; Acosta, O.L.; Salgado, M.C.; Cardoso-Saldaña, G. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance. Oxidative Med. Cell. Longev. 2018, 2018, 2101562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afrisham, R.; Sadegh-Nejadi, S.; SoliemaniFar, O.; Kooti, W.; Ashtary-Larky, D.; AlAmiri, F.; Aberomand, M.; Najjar-Asl, S.; Khaneh-Keshi, A. Salivary Testosterone Levels Under Psychological Stress and Its Relationship with Rumination and Five Personality Traits in Medical Students. Psychiatry Investig. 2016, 13, 637–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Mustafa, S.; Barratt, D.T.; Hutchinson, M.R. Corticosterone Preexposure Increases NF-κB Translocation and Sensitizes IL-1β Responses in BV2 Microglia-Like Cells. Front. Immunol. 2018, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, M.; Kudo, T.; Matsuki, A. Role of prostaglandin E1 in steroidogenesis by isolated rat adrenal cells]. Masui. Jpn. J. Anesthesiol. 1991, 40, 1819. [Google Scholar]
- Saksena, S.; El Safoury, S.; Bartke, A. Prostaglandins E2 and F2α decrease plasma testosterone levels in male rats. Prostaglandins 1973, 4, 235–242. [Google Scholar] [CrossRef]
- Ignarro, L.J. Nitric oxide as a unique signaling molecule in the vascular system: A historical overview. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2002, 53, 503–514. [Google Scholar]
- Akimov, M.G.; Fomina-Ageeva, E.V.; Bezuglov, V.V. Optimization of the procedure of nitrogen oxide quantitation in mammalian cell culture media. Russ. J. Bioorganic Chem. 2015, 41, 63–69. [Google Scholar] [CrossRef]
Name of the Metabolite | Cmax (ng/mL) | T1/2 (min) |
---|---|---|
1,3-DNG | 16.27 ± 5.8 | 16.87 ± 6.9 |
PGE1 | 10.8 ± 1.9 | 17.05 ± 2.7 |
13,14-dihydro-15-keto-PGE1 | 101.44 ± 41.1 | 11.42 ± 4.6 |
Name of the Metabolite | Class | Calculated p-Value |
---|---|---|
Androsterone | Steroids | 7.73 × 10−7 |
Testosterone | Steroids | 4.15 × 10−4 |
Corticosterone | Steroids | 1.08 × 10−10 |
Cortisol | Steroids | 5.55 × 10−11 |
GABA | Amino acid | 0.035 |
Aminoisobutyric acid | Amino acid | 3.49 × 10−6 |
Adenosine | Purines | 2.71 × 10−4 |
Guanosine | Purines | 0.031 |
Glycine | Amino acid | 4.67 × 10−−4 |
Alanine | Amino acid | 0.0191 |
Proline | Amino acid | 1.49 × 10−5 |
4-Hydroxyproline | Amino acid | 7.44 × 10−8 |
Isoleucine | Amino acid | 3.86 × 10−3 |
Aspartate | Amino acid | 5.55 × 10−11 |
Phenylalanine | Amino acid | 6.57 × 10−4 |
Carnosine | Amino acid | 4.037 × 10−7 |
Sample Availability: Samples of the compounds PGE1, 1,3-DNG, and Prostanit are available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shestakova, K.M.; Moskaleva, N.E.; Mesonzhnik, N.V.; Kukharenko, A.V.; Serkov, I.V.; Lyubimov, I.I.; Fomina-Ageeva, E.V.; Bezuglov, V.V.; Akimov, M.G.; Appolonova, S.A. In Vivo Targeted Metabolomic Profiling of Prostanit, a Novel Anti-PAD NO-Donating Alprostadil-Based Drug. Molecules 2020, 25, 5896. https://doi.org/10.3390/molecules25245896
Shestakova KM, Moskaleva NE, Mesonzhnik NV, Kukharenko AV, Serkov IV, Lyubimov II, Fomina-Ageeva EV, Bezuglov VV, Akimov MG, Appolonova SA. In Vivo Targeted Metabolomic Profiling of Prostanit, a Novel Anti-PAD NO-Donating Alprostadil-Based Drug. Molecules. 2020; 25(24):5896. https://doi.org/10.3390/molecules25245896
Chicago/Turabian StyleShestakova, Ksenia M., Natalia E. Moskaleva, Natalia V. Mesonzhnik, Alexey V. Kukharenko, Igor V. Serkov, Igor I. Lyubimov, Elena V. Fomina-Ageeva, Vladimir V. Bezuglov, Mikhail G. Akimov, and Svetlana A. Appolonova. 2020. "In Vivo Targeted Metabolomic Profiling of Prostanit, a Novel Anti-PAD NO-Donating Alprostadil-Based Drug" Molecules 25, no. 24: 5896. https://doi.org/10.3390/molecules25245896
APA StyleShestakova, K. M., Moskaleva, N. E., Mesonzhnik, N. V., Kukharenko, A. V., Serkov, I. V., Lyubimov, I. I., Fomina-Ageeva, E. V., Bezuglov, V. V., Akimov, M. G., & Appolonova, S. A. (2020). In Vivo Targeted Metabolomic Profiling of Prostanit, a Novel Anti-PAD NO-Donating Alprostadil-Based Drug. Molecules, 25(24), 5896. https://doi.org/10.3390/molecules25245896