β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review
Abstract
:1. Introduction
2. β-Carotene: General Characteristics
3. Obesity
4. Type 2 Diabetes Mellitus
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Namitha, K.K.; Negi, P.S. Chemistry and biotechnology of carotenoids. Food Sci. Nutr. 2010, 50, 728–760. [Google Scholar] [CrossRef] [PubMed]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotake-Nara, E.; Nagao, A. Absorption and metabolism of xanthophylls. Mar. Drugs 2011, 9, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Liting, J. Colors with functions: Elucidating the biochemical and molecular basis of carotenoid metabolism. Annu. Rev. Nutr. 2010, 30, 35–56. [Google Scholar] [CrossRef]
- Borel, P.; Desmarchelier, C. Genetic variations associated with vitamin A status and vitamin A bioavailability. Nutrients 2017, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/nutrition/publications/micronutrients/vitamin_a_deficiency/9789241598019/en/ (accessed on 14 August 2020).
- World Health Organization. Available online: Apps.who.int/iris/handle/10665/44203 (accessed on 14 August 2020).
- Xiao, Y.D.; Huang, W.Y.; Li, D.J.; Song, J.F.; Liu, C.Q.; Wei, Q.Y.; Yang, Q.M. Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system. Food Chem. 2018, 239, 360–368. [Google Scholar] [CrossRef]
- Shete, V.; Quadro, L. Mammalian metabolism of β-carotene: Gaps in knowledge. Nutrients 2013, 5, 4849–4868. [Google Scholar] [CrossRef] [Green Version]
- Mounien, L.; Tourniaire, F.; Landrier, J.F. Anti-obesity effect of carotenoid: Direct impact on adipose tissue and adipose tissue-driven indirect effects. Nutrients 2019, 11, 1562. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Lourdes, G.G.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [Green Version]
- Perera, C.R.; Yen, G.M. Functional properties of carotenoids in human health. Int. J. Food Prop. 2007, 10, 201–230. [Google Scholar] [CrossRef]
- Amengual, J.; Gouranton, E.; Helden, Y.G.J.; Hessel, S.; Ribot, J.; Kramer, E.; Kiec-Wilk, B.; Razny, U.; Lietz, A.; Wyss, A.; et al. Beta-carotene reduces body adiposity of mice via BCMO1. PLoS ONE 2011, 6, e20644. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Chen, X.; Jha, K.; Beydoun, H.A.; Zonderman, A.B.; Canas, J.A. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 32–45. [Google Scholar] [CrossRef]
- Canas, J.A.; Lochrie, A.; McGowan, A.G.; Hossain, J.; Schettino, C.; Balagopal, P.B. Effects of mixed carotenoids on adipokines and abdominal adiposity in children: A pilot study. J. Clin. Endocrinol. Metab. 2017, 102, 1983–1990. [Google Scholar] [CrossRef] [Green Version]
- Asemi, Z.; Alizadeh, S.A.; Ahmad, K.; Goli, M.; Esmailzadeh, A. Effects of beta-carotene fortified symbiotic food on metabolic control of patients with type 2 diabetes mellitus: A double-blind randomized cross-over controlled clinical trial. Clin. Nutr. 2016, 35, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, Y.K.; Lim, Y.; Oh, B.; Kim, J.Y.; Bouwman, J.; Kwon, O. Combination of diet quality score, plasma carotenoids, and lipid peroxidation to monitor oxidative stress. Oxid. Med. Cell Longev. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Carotenoids Database Information. Available online: Carotenoiddb.jp/Entries/list1.html (accessed on 10 September 2020).
- Yabuzaki, J. Carotenoids database: Structures, chemical fingerprints and distribution among organisms. Database 2017, 2017, bax004. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015, 76, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Paiva, S.A.R.; Russell, R.M. β-carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Kiokas, S.; Gordon, M.H. Antioxidant properties of carotenoids in vitro and in vivo. Food Rev. Int. 2004, 20, 99–121. [Google Scholar] [CrossRef]
- Moran, N.E.; Mohn, E.S.; Hason, N.; Erdman Jr, J.W.; Johnson, E.J. Intrinsic and extrinsic factors impacting absorption, metabolism, and health effects of dietary carotenoids. Adv. Nutr. 2018, 9, 465–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, F.; McClements, D.J.; Xiao, H. Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocoll. 2017, 69, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Guo, X.; Wang, W.; Medeiros, D.M.; Clarke, S.L.; Lucas, E.A.; Smith, B.J.; Lin, D. Molecular aspects of β,β-carotene-9′,10′-oxygenase 2 in carotenoid metabolism and diseases. Exp. Biol. Med. 2016, 241, 1879–1887. [Google Scholar] [CrossRef] [Green Version]
- Pénicaud, C.; Achir, N.; Dhuique-Mayer, C.; Dornier, M.; Bohuon, P. Degradation of β-carotene during fruit and vegetable processing or storage: Reaction mechanisms and kinetic aspects: A review. Fruits 2011, 66, 417–440. [Google Scholar] [CrossRef]
- Grune, T.; Lietz, G.; Palou, A.; Ross, A.C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.; Biesalski, H.K. β-carotene is an important vitamin A source for humans. J. Nutr. 2010, 140, 2268S–2285S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Amaya, D.B. Natural food pigments and colorants. Cur. Opin. Food Sci. 2015, 7, 20–26. [Google Scholar] [CrossRef]
- Palmero, P.; Lemmens, L.; Hendrickx, M.; Loew, A.V. Role of carotenoid type on the effect of thermal processing on bioaccessibility. Food Chem. 2014, 157, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Knockart, G.; Lemmens, L.; Buggenhout, S.V.; Hendrickx, M.; Loey, A.V. Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chem. 2012, 133, 60–67. [Google Scholar] [CrossRef]
- Heymann, T.; Heinz, P.; Glomb, M.A. Lycopene inhibits the isomerization of β-carotene during quenching of singlet oxygen and free radicals. J. Agric. Food Chem. 2015, 63, 3279–3287. [Google Scholar] [CrossRef]
- Bohn, T. Determinants and determination of carotenoid bioavailability from infant food formulas and adult nutritionals including liquid dairy products. J. AOAC Int. 2019, 102, 1044–1058. [Google Scholar] [CrossRef]
- Hix, L.M.; Lockwood, S.F.; Bertram, J.S. Bioactive carotenoids: Potent antioxidants and regulators of gene expression. Redox Rep. 2004, 9, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuchi, K.; Saito, I.; Maruyama, K.; Eguchi, E.; Mori, H.; Tanno, S.; Sakurai, S.; Kishida, T.; Nishida, W.; Osawa, H.; et al. Associations of serum β-carotene and retinol concentrations with insulin resistance: The Toon Health Study. Nutrition 2015, 31, 975–980. [Google Scholar] [CrossRef]
- Bonet, M.L.; Canas, J.A.; Ribot, J.; Palou, A. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch. Biochem. Biophys. 2015, 572, 112–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okechukwu, G.N.; Nweke, O.B.; Nwafor, A.J.; Godson, A.G.; Kenneth, E.U.; Ibegbu, A.O. Beta (β)- carotene-induced effects on the hepato-biochemical parameters in wistar rats fed dietary fats. Jordan J. Biol. Sci. 2019, 12, 283–288. [Google Scholar]
- Rühl, R.; Landrier, J.F. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors. Mol. Nutr. Food Res. 2016, 60, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Dommermuth, R.; Ewing, K. Metabolic syndrome systems thinking in heat disease. Prim. Care Clin. Office Pract. 2018, 45, 109–129. [Google Scholar] [CrossRef]
- Cho, S.O.; Kim, M.H.; Kim, H. Β-carotene inhibits activations of NF-κβ, activatior protein-1, and STAT3 and regulates abnormal expression of some adipokines in 3T3-L1 adipocytes. J. Cancer Prev. 2018, 23, 37–43. [Google Scholar] [CrossRef]
- Ponesakki, G. Antiobese properties of carotenoids. In Carotenoids: Properties, Processing and Applications, 1st ed.; Galanakis, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Francisqueti, F.V.; Chaverini, L.C.T.; Santos, K.C.; Minatel, I.O.; Ronchini, C.B.; Ferron, A.J.T.; Ferreira, A.L.; Corrêa, C.R. The role of oxidative stress on the pathophysiology of metabolic syndrome. Rev. Assoc. Med. Bras. 2017, 63, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Bonet, M.L.; Ribot, J.; Galmés, S.; Serra, F.; Palou, A. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Mol. Cell Biol. Lipids 2020, 1865, 158676. [Google Scholar] [CrossRef]
- Miyashita, K.; Hosokawa, M. Carotenoids as a nutraceutical therapy for visceral obesity. In Nutrition in the Prevention and Treatment of Abdominal Obesity, 2nd ed.; Watson, R.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 459–477. [Google Scholar]
- Harari, A.; Melnikov, N.; Kfir, M.K.; Kamari, Y.; Mahler, L.; Bem-Amotz, A.; Harats, D.; Cohen, H.; Shaish, A. Dietary β-carotene rescues vitamin A deficiency and inhibits atherogenesis in apolipoprotein E-deficient mice. Nutrients 2020, 12, 1625. [Google Scholar] [CrossRef]
- Bonet, M.L.; Canas, J.A.; Ribot, J.; Palou, A. Carotenoids in adipose tissue biology and obesity. In Carotenoids in Nature; Stange, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 79, pp. 377–414. [Google Scholar]
- Amara, N.B.; Tourniaire, F.; Maraninchi, M.; Attia, N.; Amiot-Carlin, M.J.; Raccah, D.; Valéro, R.; Landrier, J.F.; Darmon, P. Independent positive association of plasma β-carotene concentrations with adiponectin among non-diabetic obese subjects. Eur. J. Nutr. 2015, 54, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Shi, G.; Gu, H.; Nguyen, B.N. Role of PPARγ in the nutritional and pharmacological actions of carotenoids. Res. Rep. Biochem. 2016, 6, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Sluijs, I.; Beulens, J.W.; Grobbee, D.E.; der Schouw, Y.T. Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men. J. Nutr. 2009, 139, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yosaee, S.; Erfani, M.R.; Bazrafshan, M.R.; Entezami, N.; Alinavaz, M.; Akbari, M.; Soltani, S.; Djafarian, K. Correlation between diet quality and metabolic syndrome. J. Nutr. Food Secur. 2017, 2, 213–220. [Google Scholar]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. High serum carotenoids associated with lower risk for the metabolic syndrome and its components among Japanese subjects: Mikkabi cohort study. Br. J. Nutr. 2015, 114, 1674–1682. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shi, W.Q.; Cao, Y.; He, L.P.; Guan, K.; Ling, W.H.; Chen, Y.M. Higher serum carotenoid concentrations associated with a lower prevalence of the metabolic syndrome in middle-aged and elderly Chinese adults. Br. J. Nutr. 2014, 112, 2041–2048. [Google Scholar] [CrossRef] [Green Version]
- Blesso, C.N.; Andersen, C.J.; Bolling, B.W.; Fernandez, M.L. Egg intake improves carotenoid status by incrasing plasma HDL cholesterol in adults with metabolic syndrome. Food Funct. 2013, 4, 213. [Google Scholar] [CrossRef]
- Canas, J.C.; Damaso, L.; Altamare, A.; Killen, K.; Hossain, J.; Balagopal, P.B. Insulin resistance and adiposity in relation to serum β-carotene levels. J. Pediatr. 2012, 161, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Amengual, J.; Coronel, J.; Marques, C.; Aradillas-García, C.; Morales, J.M.; Andrade, F.C.; Erdman, J.W.; Teran-Garcia, M. β-carotene oxygenase 1 activity modulates circulating cholesterol concentrations in mice and humans. J. Nutr. 2020, 150, 2023–2030. [Google Scholar] [CrossRef]
- Bacchetti, T.; Tullii, D.; Masciangelo, S.; Brugè, F.; Silvestri, S.; Orlando, P.; Tiano, L.; Ferretti, G. Correlation between plasma levels of carotenoid and oxidized low-density lipoproteins: A short human intervention study. Integr. Food Nutr. Metab. 2016, 3, 283–288. [Google Scholar] [CrossRef]
- Abbasian, M.; Delvarianzadeh, M.; Ebrahimi, H.; Khosravi, F.; Nourozi, P. Relationship between serum levels of oxidative stress and metabolic syndrome components. Diabetes Metab. Syndr Clin. Res. Rev. 2018, 12, 497–500. [Google Scholar] [CrossRef]
- Farook, V.S.; Reddivari, L.; Mummidi, S.; Puppala, S.; Arya, R.; Lopez-Alvarenga, J.C.; Fowler, S.P.; Chitoor, G.; Resendez, R.G.; Kumar, B.M.; et al. Genetics of serum carotenoid concentrations and their correlation with obesity-related traits in Mexican American children. Am. J. Clin. Nutr. 2017, 106, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizzuso, S.; Amatruda, M.; Del Torto, A.; D’Auria, E.; Ippolito, G.; Zuccotti, G.V.; Verduci, E. Is macronutrients intake a challenge for cardiometabolic risk in obese adolescents? Nutrients 2020, 12, 1785. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 September 2020).
- World Health Organization. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Suzuki, K.; Ito, Y.; Inoue, T.; Hamakima, B. Inverse association of serum carotenoids with prevalence of metabolic syndrome among Japanese. Clin. Nutr. 2011, 30, 369–375. [Google Scholar] [CrossRef] [PubMed]
- She, C.; Shang, F.; Zhou, K.; Liu, N. Serum carotenoids and risks of diabetes and diabetic retinopathy in a Chinese population sample. Curr. Mol. Med. 2017, 17, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Sanjeevi, N.; Lipsky, L.M.; Nansel, T.R. Hyperglycemia and carotenoid intake are associated with serum carotenoids in youth with type 1 diabetes. J. Acad. Nutr. Diet. 2019, 119, 1340–1348. [Google Scholar] [CrossRef]
- Lee, W.J.; Kim, J.W.; Lee, J.S.; Ahn, A.L.; Oh, E.J.; Choi, J.K.; Kweon, H.J.; Cho, D.Y. Carotene intake and diabetes mellitus. Korean J. Fam. Pract. 2017, 2, 161–165. [Google Scholar] [CrossRef]
- Li, M.C.; Mínguez-Alarcón, L.; Bellavia, A.; Williams, P.L.; James-Todd, T.; Hauser, R.; Chavarro, J.E.; Chiu, Y.H. Serum beta-carotene modifies the association between phthalate mixtures and insulin resistance: The National Health and Nutrition Examination Survey 2003–2006. Environ. Res. 2019, 178, 108729. [Google Scholar] [CrossRef]
- Matsumoto, M.; Waki, N.; Suganuma, H.; Takahashi, I.; Kurauchi, S.; Sawada, K.; Tokuda, I.; Misawa, M.; Ando, M.; Itoh, K.; et al. Association between biomarkers of cardiovascular diseases and the blood concentration of carotenoids among the general population without apparent illness. Nutrients 2020, 12, 2310. [Google Scholar] [CrossRef]
- Matsumoto, M.; Suganuma, H.; Shimizu, S.; Hayashi, H.; Sawada, K.; Tokuda, I.; Ihara, K.; Nakaji, S. Skin carotenoid level as an alternative marker of serum total carotenoid concentration and vegetable intake correlates with biomarkers of circulatory diseases and metabolic syndrome. Nutrients 2020, 12, 1825. [Google Scholar]
- Roohbakhsh, A.; Karimi, G.; Iranshaki, M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed. Pharmacother 2017, 91, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Yosaee, S.; Fakhrabadi, M.A.; Shidfar, F. Positive evidence for vitamin A role in prevention of type 1 diabetes. World J. Diabetes 2016, 10, 177–188. [Google Scholar] [CrossRef] [PubMed]
Host | Study | Effects on Obesity |
---|---|---|
Obese nondiabetic patients (n = 108) [47] | 24-h recall and Bilnut software | ↑ intake of carotenoids = ↓ body weight, and insulin resistance; ↑ [ ] of carotenoids = ↑ adiponectin plasma |
Humans (n = 374 men) [49] | FFQ | ↑ intake total carotenoids, β- and α-carotene, and lycopene = ↓ visceral and subcutaneous fat mass |
Humans (n = 1073) [51] | FFQ | ↑ intake α and β-carotene and β-cryptoxanthin = ↓ dyslipidemia |
Humans (n = 2148) [52] | FFQ | ↓ [ ] carotenoids (β-carotene) = ↑ [ ] glucose, TC and body weight |
Humans affected by diabetes (n = 51) [16] | (1) β-carotene fortified symbiotic (2) control food for 6 weeks | (1): ↓ triglycerides, VLDL-c levels, and total-/HDL-c ratio |
Humans affected by MetS (n = 37) [53] | (1) low-carb diet + eggs (3 units/day with 40 µg of β-carotene); (2) low-carb diet + egg substitute (697 µg β-carotene) | (1,2): ↓ triglycerides and ↑ HDL-c |
Children (n = 20) [15] | (1) Mixed carotenoids supplement (2) Placebo 2x/day for 6 months | (1): ↑β-carotene = ↓ visceral and subcutaneous adipose tissue; (1): ↑ β-carotene = ↑ total adiponectin and high-molecular-weight adiponectin |
Prepubertal boys (n = 30) [54] | (1) FVJC lean; (2) FVJC obese; (3) Placebo lean; (4) Placebo obese for 3x/day for 6 months | (1 and 2): ↑ [ ] β-carotene (2): improved lipidic parameters and ↓ triglycerides; ↓ adiposity and insulin resistance (4): ↑ triglycerides and↓ HDL-c |
WT and Bcmo1-/- mice (n = 24) [13] | (1) WT control diet; (2) WT β-carotene-enriched diet; (3) Bcmo-/- control diet; (4) Bcmo-/-β-carotene-enriched diet for 14 weeks. | (2): ↓ body adiposity and size of adipocytes; (2,4): ↑ [ ] of β-carotene in serum and white adipose tissue |
Male apoE-/- mice (n = 39) [45] | (1) VAD; (2) VAD + 1500 IU vitamin A/kg; (3) VAD + 6 g β-carotene (algal powder); (4) VAD + 1500 IU vitamin A/kg + 6 g β-carotene. | (2): ↓ plasma cholesterol (4): ↑ [ ] of plasma β-carotene and↓ plasma cholesterol |
Host | Study | Effects in T2DM |
---|---|---|
Humans (n = 951) [35] | FFQ | ↑ β-carotene intake = ↓ insulin resistance |
Humans (n = 4390) [66] | FFQ | No significant association was found between carotene intake and T2DM |
Humans (n = 747) [64] | FFQ (1) Nondiabetes mellitus (2) Diabetes mellitus | ↓ [ ] β-carotene = ↑ fasting glycemia (2): ↓ [ ] carotenoids in serum (β-carotene) = ↑ risk for DM |
Humans (n = 1605) [67] | Nutritional and biochemical analyses | ↑ [ ] β-carotene = ↓ insulin resistance induced by DEHP |
Humans affected by diabetes (n = 51) [16] | (1) β-carotene fortified symbiotic (2) control food for 6 weeks | (1): ↓ insulin resistance ↑ plasma nitric oxide and glutathione |
Humans (n = 37,486) [49] | FFQ (Mean total carotenoid intake of 10 g/day) | ↑ consumption of α and β-carotene = ↓ risk for T2DM |
Humans (n = 951) [68] | Self-administered questionnaire | ↑ [ ] β-carotene in serum = ↓ insulin resistance |
Humans (n = 811) [69] | Self-administered questionnaire | ↑ [ ] carotenoids in skin and serum in women = ↓ body mass index, blood pressure, index of insulin resistance and triglycerides |
Humans (n = 1229) [17] | (1) Health (2) Oxidative stress conditions via Recommended Food Score | (1): ↑ [ ] plasma carotenoids (β-carotene and others) (2): ↑ consumption of carotenoids but ↓ [ ] in plasma. (2): carotenoids were recruited to fight oxidative stress (2): ↑ [ ] fasting triglycerides and glycemia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcelino, G.; Machate, D.J.; Freitas, K.d.C.; Hiane, P.A.; Maldonade, I.R.; Pott, A.; Asato, M.A.; Candido, C.J.; Guimarães, R.d.C.A. β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules 2020, 25, 5803. https://doi.org/10.3390/molecules25245803
Marcelino G, Machate DJ, Freitas KdC, Hiane PA, Maldonade IR, Pott A, Asato MA, Candido CJ, Guimarães RdCA. β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules. 2020; 25(24):5803. https://doi.org/10.3390/molecules25245803
Chicago/Turabian StyleMarcelino, Gabriela, David Johane Machate, Karine de Cássia Freitas, Priscila Aiko Hiane, Iriani Rodrigues Maldonade, Arnildo Pott, Marcel Arakaki Asato, Camila Jordão Candido, and Rita de Cássia Avellaneda Guimarães. 2020. "β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review" Molecules 25, no. 24: 5803. https://doi.org/10.3390/molecules25245803
APA StyleMarcelino, G., Machate, D. J., Freitas, K. d. C., Hiane, P. A., Maldonade, I. R., Pott, A., Asato, M. A., Candido, C. J., & Guimarães, R. d. C. A. (2020). β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules, 25(24), 5803. https://doi.org/10.3390/molecules25245803