Molecular Insights into Human Transmembrane Protease Serine-2 (TMPS2) Inhibitors against SARS-CoV2: Homology Modelling, Molecular Dynamics, and Docking Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Homology Searching and Template Identification
2.2. Homology Modelling
2.3. TMPS2 Structure Evaluation
2.4. Refinement of TMPS2 Homology Model after MDS and Docking Studies
3. Materials and Methods
3.1. Transmembrane Protease Serine 2 (TMPS2_HUMAN) Molecular Modelling
3.2. Refinement and Evaluation of the Model
3.3. Molecular Dynamic Simulation (MDS) and Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drosten, C.; Günther, S.; Preiser, W.; Werf, S.; Brodt, H. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Barile, E.; Baggio, C.; Gambini, L.; Shiryaev, S.A.; Strongin, A.Y.; Pellecchia, M. Potential Therapeutic Targeting of Coronavirus Spike Glycoprotein Priming. Molecules 2020, 25, 2424. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lin, X.; Tian, J.; Chen, L.; Chen, X. Redefining the Invertebrate RNA Virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef]
- Hu, D.; Zhu, C.; Ai, L.; Ting, H.; Wang, Y. Genomic Characterization and Infectivity of a Novel SARS-like Coronavirus in Chinese Bats. Emerg. Microbes Infect. 2018, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tao, Z.; Tian, J.; Pei, Y.; Yuan, M.; Zhang, Y.; Dai, F. A New Coronavirus Associated with Human Respiratory Disease in China. Nature 2020, 579, 265–269. [Google Scholar]
- Zirkel, F.; Kurth, A.; Quan, P.; Briese, T.; Ellerbrok, H. An Insect Nidovirus Emerging from a Primary Tropical Rainforest. mBio 2011, 2, 21–23. [Google Scholar] [CrossRef] [Green Version]
- Gorbalenya, A.E.; Enjuanes, L.; Ziebuhr, J.; Snijder, E.J. Nidovirales: Evolving the Largest RNA Virus Genome. Virus Res. 2006, 117, 17–37. [Google Scholar] [CrossRef]
- Lewicki, D.N.; Gallagher, T.M. Quaternary Structure of Coronavirus Spikes in Complex with Carcinoembryonic Antigen-related Cell Adhesion Molecule Cellular Receptors. J. Biol. Chem. 2002, 277, 19727–19734. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F. Angiotensin-converting Enzyme 2 Protects from Severe Acute Lung Failure. Nature 2005, 436, 112–116. [Google Scholar] [CrossRef]
- Kalra, R.S.; Tomar, D.; Meena, A.S.; Kandimalla, R. SARS-CoV-2, ACE2, and Hydroxychloroquine: Cardiovascular Complications, Therapeutics, and Clinical Readouts in the Current Settings. Pathogens 2020, 9, 546. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J. Angiotensin-converting Enzyme 2 is a Functional Receptor for the SARS Coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, H.; Pyrc, K.; Hoek, L.; Geier, M.; Berkhout, B. Human Coronavirus NL63 Employs the Severe Acute Respiratory Syndrome Coronavirus Receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 7988–7993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yushun, W.; Jian, S.; Rachel, G.; Ralph, S.; Baric, F.L. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of. J. Virol. 2020, 94, 1–9. [Google Scholar]
- Lu, R.; Zhao, X.; Li, J. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Wrapp, D.; Wang, N.; Corbett, K.S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Paola, L.; Hadi-Alijanvand, H.; Song, X.; Hu, G.; Giuliani, A. The Discovery of a Putative Allosteric Site in the SARS-CoV-2 Spike Protein Using an Integrated Structural/Dynamic Approach. J. Proteome. Res. 2020. [Google Scholar] [CrossRef]
- Glowacka, I.; Bertram, S.; Mu¨ller, M.; Allen, P.; Soilleux, E. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. J. Virol. 2011, 85, 4122–4134. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2. J. Virol. 2010, 84, 12658–12664. [Google Scholar] [CrossRef] [Green Version]
- Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A Transmembrane Serine Protease is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. J. Virol. 2011, 85, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Iwata-yoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Shirato, K.; Kawase, M.; Matsuyama, S. Wild-type Human Coronaviruses Prefer Cell-surface TMPRSS2 to Endosomal Cathepsins for Cell Entry. J. Virol. 2020, 517, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriou, P.; Amanatidou, D.; Petrou, A.; Geronikaki, A. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Molecules 2020, 25, 2529. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Zhang, J.; Ma, X. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed. Pharmacother. 2020, 131, 110678. [Google Scholar] [CrossRef]
- Strope, J.D.; Figg, W.D. TMPRSS2: Potential Biomarker for COVID-19 Outcomes. J. Clin. Pharmacol. 2020, 60, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Kawase, M.; Shirato, K.; Van der Hoek, L. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol. 2012, 86, 6537–6545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Vedantham, P.; Lu, K. Protease inhibitors targeting coronavirus and filovirus entry. Antivir. Res. 2015, 116, 76–84. [Google Scholar] [CrossRef]
- Yamamoto, M.; Matsuyama, S.; Li, X. Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrob. Agents Chemother. 2016, 60, 6532–6539. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Lin, L.J.; Wang, S.D. The effect of serine protease inhibitors on airway inflammation in a chronic allergen-induced asthma mouse model. Mediators Inflamm. 2014, 879326. [Google Scholar] [CrossRef]
- Yamaya, M.; Shimotai, Y.; Hatachi, Y. The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells. Pulm. Pharmacol. Ther. 2015, 33, 66–74. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, K.E.; Oh, J.H. Cardiac arrest caused by nafamostat mesylate. Kidney Res. Clin. Pract. 2016, 35, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Lee, S.; Kim, H.; Cho, Y. Nafamostat for Prophylaxis against Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis Compared with Gabexate. Gut Liver 2009, 3, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Han, W.; Song, H. Validation of Nafamostat Mesilate as an Anticoagulant in Extracorporeal Membrane Oxygenation: A Large-Animal Experiment. Korean J. Thorac. Cardiovasc. Surg. 2018, 51, 114–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.; Rhee, J.Y. Three cases of treatment with nafamostat in elderly patients with COVID-19 pneumonia who need oxygen therapy. Int. J. Infect Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Protein knowledgebase (UniProtKB). Available online: https://www.uniprot.org/uniprot/O15393 (accessed on 27 May 2020).
- Swiss Institute of Bioinformatics, University of Basel. Available online: https://swissmodel.expasy.org/ (accessed on 3 June 2020).
- National Center for Biotechnology Information (NCBI). Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins (accessed on 5 June 2020).
- Williams et al. (2018) MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Science 27: 293-315. Available online: http://molprobity.biochem.duke.edu/ (accessed on 7 June 2020).
- Protein Structure Analysis. Available online: https://prosa.services.came.sbg.ac.at/prosa.php (accessed on 7 June 2020).
- Verify 3D Standalone Server. Available online: https://servicesn.mbi.ucla.edu/Verify3d/ (accessed on 8 June 2020).
- Schrödinger Release 2020-1: Desmond Molecular Dynamics System, D. E.; Shaw Research: New York, NY, USA; Maestro-Desmond Interoperability Tools, Schrödinger: New York, NY, USA, 2020.
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. “BLAST+: Architecture and applications.”. BMC Bioinform. 2008, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- EMBL-EBI Search and Sequence Analysis Tools APIs. Available online: https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed on 8 June 2020).
- Schechter, I.; Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27, 157–162. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE); Chemical Computing Group ULC: Montreal, QC, Canada, 2019.
- Hempel, T.; Raich, L.; Olsson, S.; Azouz, N.; Klingler, L.; Rothenberg, M.; Noé, F. Molecular mechanism of SARS-CoV-2 cell entry inhibition via TMPRSS2 by Camostat and Nafamostat mesylate. bioRxiv 2020. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Mod. 2011, 51, 69–82. [Google Scholar] [CrossRef]
- Morris, A.L.; MacArthur, M.W.; Hutchinson, E.G.; Thornton, J.M. Stereochemical quality of protein structure coordinates. Proteins 1992, 12, 345–364. [Google Scholar] [CrossRef] [PubMed]
- Binjubair, F.A.; Parker, J.E.; Warrilow, A.G. Small molecule inhibitors targeting sterol 14α-Demethylase (CYP51): Synthesis, Molecular Modelling and Evaluation against Candida albicans. ChemMedChem 2020, 15, 1294–1309. [Google Scholar] [CrossRef]
PDB Code | Protein | Query Cover | E-Value | Percent Identity |
---|---|---|---|---|
5CE1_A | TMPS1 | 94% | 7e–67 | 33.61 |
1Z8G_A | TMPS1 | 69% | 4e–62 | 33.52 |
6KD5_B | TMPS13 | 47% | 3e–64 | 45.19 |
6O1G_A | Plasma kallikrein | 51% | 2e–61 | 42.21 |
Model | Ramachandran Outliers | ProSA Z-Score | Verify3D |
---|---|---|---|
Model 1 (5CE1_A template) | 3 (Ser208, Ala216, Arg255) | −8.67 | 95.38% |
Model 2 (1Z8G_A template) | 3 (Ser215, Leu248, Val415) | −8.76 | 91.59% |
Model 3 (6KD5_B template) | 2 (Pro301, Asn433) | −6.80 | 97.02% |
Model 4 (6O1G_A template) | 5 (Asn303, Asn304, Phe321, Pro305, Pro369) | −6.57 | 91.56% |
Domains | |||||||
---|---|---|---|---|---|---|---|
Protein | Uniprot ID | Active Site His/Asp/Ser | Cleavage Site | LDL-Receptor Class A | SRCR | Serine Peptidase | X-ray Structure |
TMPS1 | P05981 | 203/257/353 | 162–163 | - | 54–151 | 163–405 | 5CE1, 1Z8G, 1P57 |
TMPS2 | O15393 | 296/345/441 | 255–256 | 112–149 | 150–242 | 256–489 | - |
TMPS3 | P57727 | 257/304/401 | 216–217 | 72–108 | 109–205 | 217–449 | - |
TMPS4 | Q9NRS4 | 245/290/387 | 204–205 | 61–93 | 94–204 | 205–434 | - |
TMPS5 | Q9H353 | 258/308/405 | 217–218 | - | 112–207 | 218–453 | - |
TMPS13 | Q9BYE2 | 366/414/511 | 325–326 | 204–226 | 195–325 | 326–559 | 6KD5 |
RMSD (Å) 0 ns | RMSD (Å) 200 ns | |||
---|---|---|---|---|
Ligand-Complex | Protein | Ligand | Protein | Ligand |
Camostat | 2.18 | 5.32 | 3.90 | 5.05 |
Nafamostat | 1.83 | 4.85 | 3.21 | 5.83 |
Gabexate | 2.20 | 2.98 | 4.35 | 5.87 |
Sivelestat | 2.25 | 2.21 | 5.07 | 29.42 |
Complex | ΔG (kcal/mol) 100–200 ns | ΔG (kcal/mol) 190–200 ns |
---|---|---|
Camostat-TMPS2 | −48.87 ± 5.07 | −46.24 ± 4.42 |
Nafamostat-TMPS2 | −60.99 ± 4.27 | −61.47 ± 4.44 |
Gabexate-TMPS2 | −54.37 ± 4.86 | −51.91 ± 4.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishk, S.M.; Kishk, R.M.; Yassen, A.S.A.; Nafie, M.S.; Nemr, N.A.; ElMasry, G.; Al-Rejaie, S.; Simons, C. Molecular Insights into Human Transmembrane Protease Serine-2 (TMPS2) Inhibitors against SARS-CoV2: Homology Modelling, Molecular Dynamics, and Docking Studies. Molecules 2020, 25, 5007. https://doi.org/10.3390/molecules25215007
Kishk SM, Kishk RM, Yassen ASA, Nafie MS, Nemr NA, ElMasry G, Al-Rejaie S, Simons C. Molecular Insights into Human Transmembrane Protease Serine-2 (TMPS2) Inhibitors against SARS-CoV2: Homology Modelling, Molecular Dynamics, and Docking Studies. Molecules. 2020; 25(21):5007. https://doi.org/10.3390/molecules25215007
Chicago/Turabian StyleKishk, Safaa M., Rania M. Kishk, Asmaa S. A. Yassen, Mohamed S. Nafie, Nader A. Nemr, Gamal ElMasry, Salim Al-Rejaie, and Claire Simons. 2020. "Molecular Insights into Human Transmembrane Protease Serine-2 (TMPS2) Inhibitors against SARS-CoV2: Homology Modelling, Molecular Dynamics, and Docking Studies" Molecules 25, no. 21: 5007. https://doi.org/10.3390/molecules25215007
APA StyleKishk, S. M., Kishk, R. M., Yassen, A. S. A., Nafie, M. S., Nemr, N. A., ElMasry, G., Al-Rejaie, S., & Simons, C. (2020). Molecular Insights into Human Transmembrane Protease Serine-2 (TMPS2) Inhibitors against SARS-CoV2: Homology Modelling, Molecular Dynamics, and Docking Studies. Molecules, 25(21), 5007. https://doi.org/10.3390/molecules25215007