Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry
Abstract
:1. Introduction
2. Synthesis of Chiral Thioureas
2.1. Reaction of Isothiocyanates with Amines
2.2. Reaction of Amines with Dithiocarbamates
2.3. The Use of Carbon Disulfide
2.4. Application of Other Compounds Containing C=S Bond
2.5. Preparation of Chiral Thioureas from Other Thioureas
2.6. C=S Bond Formation
3. Types of Chiral Thioureas and Selected Applications in Asymmetric Synthesis
3.1. Thioureas Containing trans-1,2-diaminocyclohexane (DACH) Skeleton and Other Chiral Diamines
3.2. Thioureas Containing Cinchona Alkaloids
3.3. Thioureas Derived from Amino Acids and Peptides
3.4. Carbohydrate-Based Chiral Thioureas
3.5. Chiral Phosphine-Bearing Thioureas
3.6. Thioureas and Bis-Thioureas with Axial, Planar or Helical Chirality
3.7. Thioureas Containing Other Functional Groups
4. Biological Activity of Chiral Thioureas
4.1. Antiviral Thioureas
4.2. Anticancer Thioureas
4.3. Anti-Allergic Thioureas
4.4. Antimicrobial Thioureas
5. Summary
Funding
Conflicts of Interest
References
- Schroeder, D.C. Thioureas. Chem. Rev. 1955, 55, 181–228. [Google Scholar] [CrossRef]
- Gómez, D.E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Urea vs. thiourea in anion recognition. Org. Biomol. Chem. 2005, 3, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, W. Hydrogen-bond-mediated asymmetric catalysis. Chem. Asian J. 2008, 3, 516–532. [Google Scholar] [CrossRef] [PubMed]
- Ruder, F.J.; Guyer, W.; Benson, J.A.; Kayser, H. The thiourea insecticide/acaricide diafenthiuron has a novel mode of action: Inhibition of mitochondrial respiration by its carbodiimide product. Pestic. Biochem. Physiol. 1991, 41, 207–219. [Google Scholar] [CrossRef]
- Xiao, S.; Wei, L.; Hong, Z.; Rao, L.; Ren, Y.; Wan, J.; Feng, L. Design, synthesis and algicides activities of thiourea derivatives as the novel scaffold aldolase inhibitors. Bioorg. Med. Chem. 2019, 27, 805–812. [Google Scholar] [CrossRef]
- Shakeel, A.; Altaf, A.A.; Qureshi, A.M.; Badshah, A. Thiourea derivatives in drug design and medicinal chemistry: A short review. J. Drug Des. Med. Chem. 2016, 2, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Jee, J.-G. Repositioning of thiourea-containing drugs as tyrosinase inhibitors. Int. J. Mol. Sci. 2015, 16, 28534–28548. [Google Scholar] [CrossRef] [Green Version]
- Subramanyam, N.C.; Sheshadri, B.S.; Mayanna, S.M. Thiourea and substituted thioureas as corrosion inhibitors for aluminium in sodium nitrite solution. Corros. Sci. 1993, 34, 563–571. [Google Scholar] [CrossRef]
- Edrah, S.; Hasan, S. Studies on thiourea derivatives as corrosion inhibitor for aluminum in sodium hydroxide solution. J. Appl. Sci. Res. 2010, 6, 1045–1049. [Google Scholar]
- Loto, R.T.; Loto, C.A.; Popoola, A.P.I. Corrosion inhibition of thiourea and thiadiazole derivatives: A Review. J. Mater. Environ. Sci 2012, 3, 885–894. [Google Scholar]
- Fatima, S.; Sharma, R.; Asghar, F.; Kamal, A.; Badshah, A.; Kraatz, H.-B.B. Study of new amphiphiles based on ferrocene containing thioureas as efficient corrosion inhibitors: Gravimetric, electrochemical, SEM and DFT studies. J. Ind. Eng. Chem. 2019, 76, 374–387. [Google Scholar] [CrossRef]
- Kotke, M.; Schreiner, P.R. Organocatalysts. In Hydrogen Bonding in Organic Synthesis; Pihko, P.M., Ed.; Wiley-VCH: Hoboken, NJ, USA, 2009; pp. 141–251. [Google Scholar]
- Takemoto, Y. Recognition and activation by ureas and thioureas: Stereoselective reactions using ureas and thioureas as hydrogen-bonding donors. Org. Biomol. Chem. 2005, 3, 4299–4306. [Google Scholar] [CrossRef] [PubMed]
- Connon, S.J. Asymmetric catalysis with bifunctional Cinchona alkaloid-based urea and thiourea organocatalysts. Chem. Commun. 2008, 2499–2510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, W.-K.; Liu, Y.F.; Lan, Z.; Wen, L.-R.; Li, M. Nickle catalysis enables access to thiazolidines from thioureas via oxidative double isocyanide insertion reactions. Org. Lett. 2018, 20, 7158–7162. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.; Bhowmik, S.; Batra, S. Synthesis of 4-substituted imino-4H-benzo[d][1,3] thiazin-2-amines via palladium-catalysed isocyanide insertion in 2-bromophenylthioureas. RSC Adv. 2014, 4, 41433–41436. [Google Scholar] [CrossRef]
- Goncalves, I.L.; de Azambuja, G.O.; Kawano, D.F.; Eifler-Lima, V.L. Thioureas as building blocks for the generation of heterocycles and compounds with pharmacological activity: An overview. Mini. Rev. Org. Chem. 2018, 15, 28–35. [Google Scholar] [CrossRef]
- Koch, K.R. New chemistry with old ligands: N-alkyl- and N,N-dialkyl-N′-acyl(aroyl)thioureas in co-ordination, analytical and process chemistry of the platinum group metals. Coord. Chem. Rev. 2001, 216–217, 473–488. [Google Scholar] [CrossRef]
- Mingji, D.; Liang, B.; Wang, C.; You, Z.; Xiang, J.; Dong, G.; Chen, J.; Yang, Z. A novel thiourea ligand applied in the Pd-catalyzed Heck, Suzuki and Suzuki carbonylative reactions. Adv. Synth. Catal. 2004, 346, 1669–1673. [Google Scholar] [CrossRef]
- Li, J.; Shi, L.-L.; Chen, J.; Gong, J.; Yang, Z. Thioureas as ligands in organometallic reactions. Synthesis 2014, 46, 2007–2023. [Google Scholar] [CrossRef]
- Saeed, A.; Flörke, U.; Erben, M.F. A review on the chemistry, coordination, structure and biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas. J. Sulfur Chem. 2014, 35, 318–355. [Google Scholar] [CrossRef]
- Metlushka, K.E.; Sadkova, D.N.; Shaimardanova, L.N.; Nikitina, K.A.; Ivshin, K.A.; Islamov, D.R.; Kataeva, O.N.; Alfonsov, A.V.; Kataev, V.E.; Voloshina, A.D. First coordination polymers on the bases of chiral thiophosphorylated thioureas. Inorg. Chem. Commun. 2016, 66, 11–14. [Google Scholar] [CrossRef]
- Blažek Bregović, V.; Basarić, N.; Mlinarić-Majerski, K. Anion binding with urea and thiourea derivatives. Coord. Chem. Rev. 2015, 295, 80–124. [Google Scholar] [CrossRef]
- Nencki, M. Zur Kenntniss des Sulfoharnstoffs. Ber. Dtsch. Chem. Ges. 1873, 6, 598–600. [Google Scholar] [CrossRef] [Green Version]
- Brückner, A. Vorläufige Mittheilung. Ber. Dtsch. Chem. Ges. 1873, 6, 1103–1104. [Google Scholar] [CrossRef]
- Brown, E.L.; Campbell, N. Studies in qualitative organic analysis. identification of alkyl halides, amines, and acids. J. Chem. Soc. 1937, 1699–1701. [Google Scholar] [CrossRef]
- Luskin, L.S.; Gantert, G.E.; Craig, W.E. t-Carbinamines, RR’R″CNH2 IV. The addition of isothiocyanic acid to olefinic compounds. J. Am. Chem. Soc. 1956, 78, 4965–4967. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Yu, X.; Zu, L.; Wang, W. Chiral binaphthyl-derived amine-thiourea organocatalyst-promoted asymmetric Morita−Baylis−Hillman reaction. Org. Lett. 2005, 7, 4293–4296. [Google Scholar] [CrossRef]
- Fleming, E.M.; McCabe, T.; Connon, S.J. Novel axially chiral bis-arylthiourea-based organocatalysts for asymmetric Friedel–Crafts type reactions. Tetrahedron Lett. 2006, 47, 7037–7042. [Google Scholar] [CrossRef]
- Liu, X.-G.G.; Jiang, J.-J.J.; Shi, M. Development of axially chiral bis(arylthiourea)-based organocatalysts and their application in the enantioselective Henry reaction. Tetrahedron: Asymmetry 2007, 18, 2773–2781. [Google Scholar] [CrossRef]
- Schneider, J.F.; Falk, F.C.; Fröhlich, R.; Paradies, J. Planar-chiral thioureas as hydrogen-bond catalysts. Eur. J. Org. Chem. 2010, 2265–2269. [Google Scholar] [CrossRef]
- Kitagaki, S.; Ueda, T.; Mukai, C. Planar chiral [2.2]paracyclophane-based bis(thiourea) catalyst: Application to asymmetric Henry reaction. Chem. Commun. 2013, 49, 4030–4032. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ma, Y.; Yang, S.; Ma, M.; Chu, H.; Song, C. Synthesis of planar chiral [2.2]paracyclophane-based amino thioureas and their application in asymmetric aldol reactions of ketones with isatins. Tetrahedron: Asymmetry 2013, 24, 1082–1088. [Google Scholar] [CrossRef]
- Didier, D.; Sergeyev, S. Thiourea derivatives of Tröger’s base: Synthesis, enantioseparation and evaluation in organocatalysis of Michael addition to nitroolefins. Arkivoc 2009, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Caille, S.; Boni, J.; Cox, G.B.; Faul, M.M.; Franco, P.; Khattabi, S.; Klingensmith, L.M.; Larrow, J.F.; Lee, J.K.; Martinelli, M.J.; et al. Comparison of large-scale routes to manufacture ciral exo -2-norbornyl thiourea. Org. Process Res. Dev. 2010, 14, 133–141. [Google Scholar] [CrossRef]
- Ozturk, T.; Ertas, E.; Mert, O. Use of Lawesson’s Reagent in Organic Syntheses. Chem. Rev. 2007, 107, 5210–5278. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, T.; Ertas, E.; Mert, O. A Berzelius Reagent, Phosphorus Decasulfide (P4S10), in Organic Syntheses. Chem. Rev. 2010, 110, 3419–3478. [Google Scholar] [CrossRef] [PubMed]
- Hodgekins, J.E.; Ettlinger, M.G.; Hodgkins, J.E.; Ettlinger, M.G. The synthesis of isothiocyanates from amines. J. Org. Chem. 1956, 21, 404–405. [Google Scholar] [CrossRef]
- Sureshbabu, V.V.; Naik, S.A.; Hemantha, H.P.; Narendra, N.; Das, U.; Guru Row, T.N. N-urethane-protected amino alkyl isothiocyanates: Synthesis, isolation, characterization, and application to the synthesis of thioureidopeptides. J. Org. Chem. 2009, 74, 5260–5266. [Google Scholar] [CrossRef]
- Liu, M.; Ji, N.; Wang, L.; Liu, P.; He, W. d-Mannitol-derived novel chiral thioureas: Synthesis and application in asymmetric Henry reactions. Tetrahedron Lett. 2018, 59, 999–1004. [Google Scholar] [CrossRef]
- Frings, M.; Thomé, I.; Bolm, C. Synthesis of chiral sulfoximine-based thioureas and their application in asymmetric organocatalysis. Beilstein J. Org. Chem. 2012, 8, 1443–1451. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Hernández, C.; Martínez-Martínez, E.; Hernández-González, P.E.; Juaristi, E. Synthesis of a new N-diaminophosphoryl-N’-[(2S)-2-pyrrolidinylmethyl]thiourea as a chiral organocatalyst for the stereoselective Michael addition of cyclohexanone to nitrostyrenes and chalcones—Application in cascade processes for the synthesis of Polyc. Eur. J. Org. Chem. 2018, 6890–6900. [Google Scholar] [CrossRef]
- Kaupp, G.; Schmeyers, J.; Boy, J. Quantitative solid-state reactions of amines with carbonyl compounds and isothiocyanates. Tetrahedron 2000, 56, 6899–6911. [Google Scholar] [CrossRef]
- Li, J.-P.P.; Wang, Y.-L.L.; Wang, H.; Luo, Q.-F.F.; Wang, X.-Y.Y. A new and efficient solid state synthesis of diaryl thioureas. Synth. Commun. 2001, 31, 781–785. [Google Scholar] [CrossRef]
- Štrukil, V.; Igrc, M.D.; Fábián, L.; Eckert-Maksić, M.; Childs, S.L.; Reid, D.G.; Duer, M.J.; Halasz, I.; Mottillo, C.; Friščić, T. A model for a solvent-free synthetic organic research laboratory: Click-mechanosynthesis and structural characterization of thioureas without bulk solvents. Green Chem. 2012, 14, 2462–2473. [Google Scholar] [CrossRef]
- Štrukil, V. Mechanochemical synthesis of thioureas, ureas and guanidines. Beilstein J. Org. Chem. 2017, 13, 1828–1849. [Google Scholar] [CrossRef] [Green Version]
- Štrukil, V.; Igrc, M.D.; Eckert-Maksić, M.; Friščić, T. Click mechanochemistry: Quantitative synthesis of “ready to use” chiral organocatalysts by efficient two-fold thiourea coupling to vicinal diamines. Chem. Eur. J. 2012, 18, 8464–8473. [Google Scholar] [CrossRef]
- Bhattacharjee, J.; Das, S.; Kottalanka, R.K.; Panda, T.K. Hydroamination of carbodiimides, isocyanates, and isothiocyanates by a bis(phosphinoselenoic amide) supported titanium(IV) complex. Dalton Trans. 2016, 45, 17824–17832. [Google Scholar] [CrossRef]
- Arafa, W.A.A.; Ibrahim, H.M. A sustainable strategy for the synthesis of bis-2-iminothiazolidin-4-ones utilizing novel series of asymmetrically substituted bis-thioureas as viable precursors. RSC Adv. 2018, 8, 10516–10521. [Google Scholar] [CrossRef] [Green Version]
- Herr, J.R.; Kuhler, J.L.; Meckler, H.; Opalka, C.J. A convenient method for the preparation of primary and symmetrical N,N’-disubstituted thioureas. Synthesis 2000, 1569–1574. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Zhang, G.; Fu, D.; Zhang, F.; Kai, M.; Wang, R. Enantioselective synthesis of cyclic thioureas via mannich reaction and concise synthesis of highly optically active methylthioimidazolines: Discovery of a more potent antipyretic agent. Adv. Synth. Catal. 2011, 353, 1787–1796. [Google Scholar] [CrossRef]
- Azizi, N.; Aryanasab, F.; Saidi, M.R. Straightforward and highly efficient catalyst-free one-pot synthesis of dithiocarbamates under solvent-free conditions. Org. Lett. 2006, 8, 5275–5277. [Google Scholar] [CrossRef] [PubMed]
- Azizi, N.; Aryanasab, F.; Torkiyan, L.; Ziyaei, A.; Saidi, M.R. One-pot synthesis of dithiocarbamates accelerated in water. J. Org. Chem. 2006, 71, 3634–3635. [Google Scholar] [CrossRef] [PubMed]
- Ziyaei-Halimjani, A.; Saidi, M.R. Synthesis of β-hydroxy dithiocarbamate derivatives via regioselective addition of dithiocarbamate anion to epoxide in water. Can. J. Chem. 2006, 84, 1515–1519. [Google Scholar] [CrossRef]
- Ziyaei Halimehjani, A.; Martens, J.; Schlüter, T. A one-pot three-component synthesis of dithiocarbamates starting from vinyl pyridines and vinyl pyrazine under solvent- and catalyst-free conditions. Tetrahedron 2016, 72, 3958–3965. [Google Scholar] [CrossRef]
- Ziyaei Halimehjani, A.; Klepetářová, B.; Beier, P. Synthesis of novel dithiocarbamates and xanthates using dialkyl azodicarboxylates: S–N bond formation. Tetrahedron 2018, 74, 1850–1858. [Google Scholar] [CrossRef]
- Li, T.-T.T.; Song, X.-H.H.; Wang, M.-S.S.; Ma, N. Cerium ammonium nitrate-catalyzed aerobic oxidative coupling of dithiocarbamates: Facile synthesis of thioureas and bis(aminothiocarbonyl)disulfides. RSC Adv. 2014, 4, 40054–40060. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, F.; Wang, M.; Xu, W.; Zeng, M.-T.; Liu, M.; Li, Y.-S.; Dong, Z.-B. Facile synthesis of substituted arylthioureas in the presence of sodium hydride. J. Chem. Res. 2017, 41, 301–303. [Google Scholar] [CrossRef]
- Gan, S.-F.; Wan, J.-P.; Pan, Y.-J.; Sun, C.-R. Highly efficient and catalyst-free synthesis of substituted thioureas in water. Mol. Divers. 2011, 15, 809–815. [Google Scholar] [CrossRef]
- Ziyaei Halimehjani, A.; Pourshojaei, Y.; Saidi, M.R. Highly efficient and catalyst-free synthesis of unsymmetrical thioureas under solvent-free conditions. Tetrahedron Lett. 2009, 50, 32–34. [Google Scholar] [CrossRef]
- Dirksen, A.; Nieuwenhuizen, P.J.; Hoogenraad, M.; Haasnoot, J.G.; Reedijk, J. New mechanism for the reaction of amines with zinc dithiocarbamates. J. Appl. Polym. Sci. 2001, 79, 1074–1083. [Google Scholar] [CrossRef]
- Maddani, M.; Prabhu, K.R. A convenient method for the synthesis of substituted thioureas. Tetrahedron Lett. 2007, 48, 7151–7154. [Google Scholar] [CrossRef]
- Üngören, Ş.H.; Sırça, F. Novel self -condensation of ammonium dithiocarbamates leading to symmetrical substituted thioureas. Phosphorus. Sulfur. Silicon Relat. Elem. 2017, 192, 28–33. [Google Scholar] [CrossRef]
- Liang, F.; Tan, J.; Piao, C.; Liu, Q. Carbon tetrabromide promoted reaction of amines with carbon disulfide: Facile and efficient synthesis of thioureas and thiuram disulfides. Synthesis 2008, 3579–3584. [Google Scholar] [CrossRef]
- Fardpour, M.; Shafie, A.; Bahadorikhalili, S.; Larijani, B.; Mahdavi, M. Utilizing amines and carbon disulfide to obtain nitrogen- and sulfur-containing compounds under green conditions: A review. Curr. Org. Chem. 2018, 22, 2315–2380. [Google Scholar] [CrossRef]
- Maddani, M.R.; Prabhu, K.R. A concise synthesis of substituted thiourea derivatives in aqueous medium. J. Org. Chem. 2010, 75, 2327–2332. [Google Scholar] [CrossRef]
- Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H.; Bolourtchian, M. Toward a practical and waste-free synthesis of thioureas in water. Mol. Divers. 2011, 15, 157–161. [Google Scholar] [CrossRef]
- Azizi, N.; Rahimzadeh-Oskooee, A.; Yadollahy, Z.; Ourimi, A.G. Ultrasound-assisted rapid sustainable synthesis of substituted thiourea. Monatsh. Chem. 2014, 145, 1675–1680. [Google Scholar] [CrossRef]
- Wan, G.-X.; Xu, L.; Ma, X.-S.; Ma, N. Silica gel promoted synthesis of N-sulfonylcyclothioureas in water. Tetrahedron Lett. 2011, 52, 6250–6254. [Google Scholar] [CrossRef]
- Jangale, A.D.; Kumavat, P.P.; Wagh, Y.B.; Tayade, Y.A.; Mahulikar, P.P.; Dalal, D.S. Green process development for the synthesis of aliphatic symmetrical N,N′-disubstituted thiourea derivatives in aqueous medium. Synth. Commun. 2015, 45, 236–244. [Google Scholar] [CrossRef]
- Milosavljević, M.M.; Vukićević, I.M.; Drmanić, S.Ž.; Nikolić, J.B.; Marinković, A.D.; Krstić, S.S.; Petrović, S.D. Simple one-pot synthesis of thioureas from amines, carbon disulfide and oxidants in water. J. Serb. Chem. Soc 2016, 81, 219–231. [Google Scholar] [CrossRef]
- Kumavat, P.P.; Jangale, A.D.; Patil, D.R.; Dalal, K.S.; Meshram, J.S.; Dalal, D.S. Green synthesis of symmetrical N,N’-disubstituted thiourea derivatives in water using solar energy. Environ. Chem. Lett. 2013, 11, 177–182. [Google Scholar] [CrossRef]
- Ranu, B.C.; Dey, S.S.; Bag, S. A simple and green procedure for the synthesis of symmetrical N,N’-disubstituted thioureas on the surface of alumina under microwave irradiation. Arkivoc 2003, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Chau, C.-M.M.; Chuan, T.-J.J.; Liu, K.-M.M. A highly efficient one-pot method for the synthesis of thioureas and 2-imino-4-thiazolidinones under microwave conditions. RSC Adv. 2014, 4, 1276–1282. [Google Scholar] [CrossRef]
- Ziyaei Halimehjani, A.; Farahbakhsh, F. Synthesis of thioureas in ionic liquid medium. J. Sulfur Chem. 2013, 34, 284–288. [Google Scholar] [CrossRef]
- Azizi, N.; Farhadi, E. Rapid and highly efficient synthesis of thioureas in biocompatible basic choline hydroxide. J. Sulfur Chem. 2017, 38, 548–554. [Google Scholar] [CrossRef]
- Vázquez, J.; Bernès, S.; Reyes, Y.; Moya, M.; Sharma, P.; Alvarez, C.; Gutiérrez, R. Solvent-free synthesis of chiral N,N′-disubstituted thioureas by ‘just mixing’ the reagents. Synthesis 2004, 1955–1958. [Google Scholar] [CrossRef]
- Dutta, S.; Mondal, M.; Ghosh, T.; Saha, A. Unprecedented thiocarbamidation of nitroarenes a facile one-pot route to unsymmetrical thioureas. Org. Chem. Front. 2019, 6, 70–74. [Google Scholar] [CrossRef]
- Kumar, L.R.; Panduranga, V.; Vishwanatha, T.M.; Shekharappa; Sureshbabu, V.V. Synthesis of thioureido peptidomimetics employing alkyl azides and dithiocarbamates. Org. Biomol. Chem. 2018, 16, 2258–2263. [Google Scholar] [CrossRef]
- Sharma, S. Thiophosgene in organic synthesis. Synthesis 1978, 803–820. [Google Scholar] [CrossRef]
- Dai, M.; Liang, B.; Wang, C.; Chen, J.; Yang, Z. Synthesis of a novel C2-symmetric thiourea and its application in the Pd-catalyzed cross-coupling reactions with arenediazonium salts under aerobic conditions. Org. Lett. 2004, 6, 221–224. [Google Scholar] [CrossRef]
- Gao, Y.; Chang, L.; Shi, H.; Liang, B.; Wongkhan, K.; Chaiyaveij, D.; Batsanov, A.S.; Marder, T.B.; Li, C.; Yang, Z.; et al. A thiourea-oxazoline library with axial chirality: Ligand synthesis and studies of the palladium-catalyzed enantioselective bis(methoxycarbonylation) of terminal olefins. Adv. Synth. Catal. 2010, 352, 1955–1966. [Google Scholar] [CrossRef]
- Mohanta, P.K.; Dhar, S.; Samal, S.K.; Ila, H.; Junjappa, H. 1-(Methyldithiocarbonyl)imidazole: A useful thiocarbonyl transfer reagent for synthesis of substituted thioureas. Tetrahedron 2000, 56, 629–637. [Google Scholar] [CrossRef]
- Ramadas, K.; Srinivasan, N. A convenient route to substituted thiocarbamides. Synth. Commun. 1995, 25, 3381–3387. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Chen, Y.; Yin, Y.; Wang, Z.; Sun, X. Practical synthesis of symmetrical thioureas and heterocyclic thiones in water. J. Chem. Res. 2016, 40, 515–518. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Yin, Y.; Wang, Z.; Sun, X. Convenient synthesis of unsymmetrical N,N′-disubstituted thioureas in water. J. Chem. Res. 2016, 40, 670–673. [Google Scholar] [CrossRef]
- da Silva, T.L.; Miolo, L.M.F.; Sousa, F.S.S.; Brod, L.M.P.; Savegnago, L.; Schneider, P.H. New thioureas based on thiazolidines with antioxidant potential. Tetrahedron Lett. 2015, 56, 6674–6680. [Google Scholar] [CrossRef]
- Liang, B.; Liu, J.; Gao, Y.X.; Wongkhan, K.; Shu, D.X.; Lan, Y.; Li, A.; Batsanov, A.S.; Howard, J.A.H.; Marder, T.B.; et al. Synthesis of thiourea-oxazolines, a new class of chiral S,N-heterobidentate ligands: Application in Pd-catalyzed asymmetric bis(methoxycarbonylation) of terminal olefins. Organometallics 2007, 26, 4756–4762. [Google Scholar] [CrossRef]
- Yin, B.-L.; Liu, Z.-G.; Zhang, J.-C.; Li, Z.-R. N,N-Di-Boc-substituted thiourea as a novel and mild thioacylating agent applicable for the synthesis of thiocarbonyl compounds. Synthesis 2010, 991–999. [Google Scholar] [CrossRef]
- Cohrt, A.E.; Nielsen, T.E. Solid-phase synthesis of peptide thioureas and thiazole-containing macrocycles through Ru-catalyzed ring-closing metathesis. ACS Comb. Sci. 2014, 16, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Katritzky, A.R.; Ledoux, S.; Witek, R.M.; Nair, S.K. 1-(Alkyl/arylthiocarbamoyl)benzotriazoles as stable isothiocyanate equivalents: Synthesis of di- and trisubstituted thioureas. J. Org. Chem. 2004, 69, 2976–2982. [Google Scholar] [CrossRef]
- Kang, I.-J.; Wang, L.-W.; Yeh, T.-K.; Lee, C.-C.; Lee, Y.-C.; Hsu, S.-J.; Wu, Y.-S.; Wang, J.-C.; Chao, Y.-S.; Yueh, A.; et al. Synthesis, activity, and pharmacokinetic properties of a series of conformationally-restricted thiourea analogs as novel hepatitis C virus inhibitors. Bioorg. Med. Chem. 2010, 18, 6414–6421. [Google Scholar] [CrossRef] [PubMed]
- Katritzky, A.; Kirichenko, N.; Rogovoy, B.; Kister, J.; Tao, H. Synthesis of mono- and N,N-disubstituted thioureas and N-acylthioureas. Synthesis 2004, 1799–1805. [Google Scholar] [CrossRef]
- Koketsu, M.; Fukuta, Y.; Ishihara, H. Preparation of N,N-unsubstituted selenoureas and thioureas from cyanamides. Tetrahedron Lett. 2001, 42, 6333–6335. [Google Scholar] [CrossRef]
- Tan, W.; Wei, J.; Jiang, X. Thiocarbonyl surrogate via combination of sulfur and chloroform for thiocarbamide and oxazolidinethione construction. Org. Lett. 2017, 19, 2166–2169. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.-C.C.; Gao, Y.-C.C.; Zhu, Z.; Xu, L.; Li, Z.-D.D.; Tang, R.-Y.Y. Sulfite-promoted synthesis of N-difluoromethylthioureas via the reaction of azoles with bromodifluoroacetate and elemental sulfur. Org. Lett. 2019, 21, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.-H.H.; Xu, X.-P.P.; Cao, J.-J.J.; Wei, T.-Q.Q.; Wang, S.-Y.Y.; Ji, S.-J.J. Cobalt(II)-catalyzed isocyanide insertion reaction with amines under ultrasonic conditions: A divergent synthesis of ureas, thioureas and azaheterocycles. Adv. Synth. Catal. 2014, 356, 509–518. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Ermolenko, L.; Al-Mourabit, A. Three-component reaction between isocyanides, aliphatic amines and elemental sulfur: Preparation of thioureas under mild conditions with complete atom economy. Synthesis 2014, 46, 3172–3179. [Google Scholar] [CrossRef]
- Angyal, A.; Demjén, A.; Wölfling, J.; Puskás, L.G.; Kanizsai, I. A green, isocyanide-based three-component reaction approach for the synthesis of multisubstituted ureas and thioureas. Tetrahedron Lett. 2018, 59, 54–57. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, S. An isocyanide based multi-component reaction under catalyst- and solvent-free conditions for the synthesis of unsymmetrical thioureas. Tetrahedron Lett. 2017, 58, 197–201. [Google Scholar] [CrossRef]
- Cui, H.-L.; Chouthaiwale, P.V.; Yin, F.; Tanaka, F. Reaction-based mechanistic investigations of asymmetric hetero-Diels-Alder reactions of enones with isatins catalyzed by amine-based three-component catalyst systems. Asian J. Org. Chem. 2016, 5, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Serdyuk, O.V.; Heckel, C.M.; Tsogoeva, S.B. Bifunctional primary amine-thioureas in asymmetric organocatalysis. Org. Biomol. Chem. 2013, 11, 7051–7071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellissier, H. Asymmetric organocatalysis. Tetrahedron 2007, 63, 9267–9331. [Google Scholar] [CrossRef]
- Gruttadauria, M.; Giacalone, F. (Eds.) Catalytic Methods in Asymmetric Synthesis: Advanced Materials, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9781118087992. [Google Scholar]
- Alemán, J.; Cabrera, S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem. Soc. Rev. 2013, 42, 774–793. [Google Scholar] [CrossRef] [PubMed]
- Volla, C.M.R.R.; Atodiresei, I.; Rueping, M. Catalytic C–C bond-forming multi-component cascade or domino reactions: Pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev. 2014, 114, 2390–2431. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Sun, W.; Yang, D.; Li, G.; Wang, R. Additive effects on asymmetric catalysis. Chem. Rev. 2016, 116, 4006–4123. [Google Scholar] [CrossRef]
- Tsogoeva, S.B. Recent advances in asymmetric organocatalytic 1,4-conjugate additions. Eur. J. Org. Chem. 2007, 1701–1716. [Google Scholar] [CrossRef]
- Doyle, A.G.; Jacobsen, E.N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 2007, 107, 5713–5743. [Google Scholar] [CrossRef]
- Takemoto, Y.; Miyabe, H. The amino thiourea-catalyzed asymmetric nucleophilic reactions. Chimia 2007, 61, 269–275. [Google Scholar] [CrossRef]
- Miyabe, H.; Takemoto, Y. Discovery and application of asymmetric reaction by multi-functional thioureas. Bull. Chem. Soc. Jpn. 2008, 81, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Takemoto, Y. Development of Chiral Thiourea Catalysts and Its Application to Asymmetric Catalytic Reactions. Chem. Pharm. Bull. 2010, 58, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.L.; Wei, Y.; Shi, M. Applications of chiral thiourea-amine/phosphine organocatalysts in catalytic asymmetric reactions. Chem. Cat. Chem. 2017, 9, 718–727. [Google Scholar] [CrossRef]
- Ricci, P.; Khotavivattana, T.; Pfeifer, L.; Médebielle, M.; Morphy, J.R.; Gouverneur, V. The dual role of thiourea in the thiotrifluoromethylation of alkenes. Chem. Sci. 2017, 8, 1195–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, G.P. (Ed.) Chromenes, Chromanones, and Chromones. In Chemistry of Heterocyclic Compounds; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar] [CrossRef]
- Koufaki, M.; Kiziridi, C.; Alexi, X.; Alexis, M.N. Design and synthesis of novel neuroprotective 1,2-dithiolane/chroman hybrids. Bioorg. Med. Chem. 2009, 17, 6432–6441. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.C. Asymmetric synthesis of chiral chromans. Tetrahedron 2009, 65, 3931–3952. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Aspects Med. 2010, 31, 446–467. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, H.; Xu, P.-F. Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules. Acounts Chem. Res. 2015, 48, 1832–1844. [Google Scholar] [CrossRef]
- Sonsona, I.; Marqués-López, E.; Herrera, R.P. Enantioselective organocatalyzed synthesis of 2-amino-3-cyano-4H-chromene derivatives. Symmetry 2015, 7, 1519–1535. [Google Scholar] [CrossRef] [Green Version]
- Núnez, M.G.; García, P.; Moro, R.F.; Díez, D. Asymmetric organocatalytic synthesis of six-membered oxygenated heterocycles. Tetrahedron 2010, 66, 2089–2109. [Google Scholar] [CrossRef]
- Sigman, M.S.; Jacobsen, E.N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc. 1998, 120, 4901–4902. [Google Scholar] [CrossRef]
- Sigman, M.S.; Vachal, P.; Jacobsen, E.N. A general catalyst for the asymmetric Strecker reaction. Angew. Chem. Int. Ed. 2000, 39, 1279–1281. [Google Scholar] [CrossRef]
- Vachal, P.; Jacobsen, E.N. Structure-based analysis and optimization of a highly enantioselective catalyst for the Strecker reaction. J. Am. Chem. Soc. 2002, 124, 10012–10014. [Google Scholar] [CrossRef] [PubMed]
- Joly, G.D.; Jacobsen, E.N. Thiourea-catalyzed enantioselective hydrophosphonylation of imines: Practical access to enantiomerically enriched α-amino phosphonic acids. J. Am. Chem. Soc. 2004, 126, 4102–4103. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.A.; Jacobsen, E.N. Enantioselective, thiourea-catalyzed intermolecular addition of indoles to cyclic N-acyl iminium ions. Angew. Chem. Int. Ed. 2009, 48, 6328–6331. [Google Scholar] [CrossRef]
- Zuend, S.J.; Coughlin, M.P.; Lalonde, M.P.; Jacobsen, E.N. Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature 2009, 461, 968–970. [Google Scholar] [CrossRef]
- Zuend, S.J.; Jacobsen, E.N. Mechanism of amido-thiourea catalyzed enantioselective imine hydrocyanation: Transition state stabilization via multiple non-covalent interactions. J. Am. Chem. Soc. 2009, 131, 15358–15374. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.C.; List, B. The catalytic acylcyanation of imines. Chem. Asian J. 2008, 3, 430–437. [Google Scholar] [CrossRef]
- Tsogoeva, S.B.; Yalalov, D.A.; Hateley, M.J.; Weckbecker, C.; Huthmacher, K. Asymmetric organocatalysis with novel chiral thiourea derivatives: Bifunctional catalysts for the Strecker and nitro-Michael reactions. Eur. J. Org. Chem. 2005, 19, 4995–5000. [Google Scholar] [CrossRef]
- Lalonde, M.P.; Chen, Y.; Jacobsen, E.N. A chiral primary amine thiourea catalyst for the highly enantioselective direct conjugate addition of α,α-disubstituted aldehydes to nitroalkenes. Angew. Chem. Int. Ed. 2006, 45, 6366–6370. [Google Scholar] [CrossRef]
- Taylor, M.S.; Jacobsen, E.N. Highly enantioselective catalytic acyl-Pictet-Spengler reactions. J. Am. Chem. Soc. 2004, 126, 10558–10559. [Google Scholar] [CrossRef]
- Brown, A.R.; Uyeda, C.; Brotherton, C.A.; Jacobsen, E.N. Enantioselective thiourea-catalyzed intramolecular Cope-type hydroamination. J. Am. Chem. Soc. 2013, 135, 6747–6749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui, T.; Syed, S.; Barbas III, C.F. Thiourea-catalyzed highly enantio- and diastereoselective additions of oxindoles to nitroolefins: Application to the formal synthesis of (+)-physostigmine. J. Am. Chem. Soc. 2009, 131, 8758–8759. [Google Scholar] [CrossRef] [PubMed]
- Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J. Am. Chem. Soc. 2003, 125, 12672–12673. [Google Scholar] [CrossRef] [PubMed]
- Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. Enantio- and diastereoselective Michael reaction of 1,3-dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea. J. Am. Chem. Soc. 2005, 127, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Hoashi, Y.; Okino, T.; Takemoto, Y. Enantioselective Michael addition to α,β-unsaturated imides catalyzed by a bifunctional organocatalyst. Angew. Chem. Int. Ed. 2005, 44, 4032–4035. [Google Scholar] [CrossRef] [PubMed]
- Inokuma, T.; Hoashi, Y.; Takemoto, Y. Thiourea-catalyzed asymmetric Michael addition of activated methylene compounds to α,β-unsaturated imides: Dual activation of imide by intra- and intermolecular hydrogen bonding. J. Am. Chem. Soc. 2006, 128, 9413–9419. [Google Scholar] [CrossRef] [PubMed]
- Okino, T.; Nakamura, S.; Furukawa, T.; Takemoto, Y. Enantioselective aza-Henry reaction catalyzed by a bifunctional organocatalyst. Org. Lett. 2004, 6, 625–627. [Google Scholar] [CrossRef]
- Sakamoto, S.; Inokuma, T.; Takemoto, Y. Organocatalytic asymmetric Neber reaction for the synthesis of 2H-azirine carboxylic esters. Org. Lett. 2011, 13, 6374–6377. [Google Scholar] [CrossRef]
- Sakamoto, S.; Kazumi, N.; Kobayashi, Y.; Tsukano, C.; Takemoto, Y. Asymmetric synthesis of trisubstituted oxazolidinones by the thiourea-catalyzed aldol reaction of 2-isocyanatomalonate diester. Org. Lett. 2014, 16, 4758–4761. [Google Scholar] [CrossRef]
- Wang, J.-J.; Lao, J.-H.; Hu, Z.-P.; Lu, R.-J.; Nie, S.-Z.; Du, Q.-S.; Yan, M. Organocatalytic asymmetric conjugate addition of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-ketoesters. Arkivoc 2010, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Zea, A.; Valero, G.; Alba, A.N.R.; Moyano, A.; Rios, R. Bifunctional thiourea-catalyzed asymmetric addition of anthrones to maleimides. Adv. Synth. Catal. 2010, 352, 1102–1106. [Google Scholar] [CrossRef]
- Enders, D.; Göddertz, D.P.; Beceño, C.; Raabe, G. Asymmetric synthesis of polyfunctionalized pyrrolidines via a thiourea catalyzed domino Mannich/aza-Michael reaction. Adv. Synth. Catal. 2010, 352, 2863–2868. [Google Scholar] [CrossRef]
- Liao, Y.H.; Liu, X.L.; Wu, Z.J.; Du, X.L.; Zhang, X.M.; Yuan, W.C. Thiourea-catalyzed highly diastereo- and enantioselective conjugate additions of α-substituted cyanoacetates to maleimides: Efficient construction of vicinal quaternary-tertiary stereocenters. Adv. Synth. Catal. 2011, 353, 1720–1728. [Google Scholar] [CrossRef]
- Ma, C.H.; Kang, T.R.; He, L.; Liu, Q.Z. Highly enantioselective Michael addition of malonates to β-CF3-β-(3-indolyl)nitroalkenes: Construction of trifluoromethylated all-carbon quaternary stereogenic centres. Eur. J. Org. Chem. 2014, 3981–3985. [Google Scholar] [CrossRef]
- Monari, M.; Montroni, E.; Nitti, A.; Lombardo, M.; Trombini, C.; Quintavalla, A. Highly Stereoselective [4+2] and [3+2] Spiroannulations of 2-(2-Oxoindolin-3-ylidene)acetic Esters Catalyzed by Bifunctional Thioureas. Chem. Eur. J. 2015, 21, 11038–11049. [Google Scholar] [CrossRef]
- Lutete, L.M.; Miyamoto, T.; Ikemoto, T. Tertiary amino thiourea-catalyzed asymmetric cross aldol reaction of aryl methyl ketones with aryl trifluoromethyl ketones. Tetrahedron Lett. 2016, 57, 1220–1223. [Google Scholar] [CrossRef]
- Yang, J.; Sun, W.; He, Z.; Yu, C.; Bao, G.; Li, Y.; Liu, Y.; Hong, L.; Wang, R. Access to α, γ-diamino diacid derivatives via organocatalytic asymmetric 1,4-addition of azlactones and dehydroalanines. Org. Lett. 2018, 20, 7080–7084. [Google Scholar] [CrossRef]
- Orhan, B.; Tschan, M.J.-L.; Wirotius, A.-L.; Dove, A.P.; Coulembier, O.; Taton, D. Isoselective ring-opening polymerization of rac-lactide from chiral Takemoto’s organocatalysts: Elucidation of stereocontrol. ACS Macro Lett. 2018, 7, 1413–1419. [Google Scholar] [CrossRef] [Green Version]
- Miyabe, H.; Tuchida, S.; Yamauchi, M.; Takemoto, Y. Reaction of nitroorganic compounds using thiourea catalysts anchored to polymer support. Synthesis 2006, 3295–3300. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Miyabe, H.; Takemoto, Y. Catalytic enantioselective Petasis-type reaction of quinolines catalyzed by a newly designed thiourea catalyst. J. Am. Chem. Soc. 2007, 129, 6686–6687. [Google Scholar] [CrossRef]
- Azuma, T.; Murata, A.; Kobayashi, Y.; Inokuma, T.; Takemoto, Y. A dual arylboronic acid-aminothiourea catalytic system for the asymmetric intramolecular hetero-Michael reaction of α,β-unsaturated carboxylic acids. Org. Lett. 2014, 16, 4256–4259. [Google Scholar] [CrossRef] [PubMed]
- Hayama, N.; Kuramoto, R.; Földes, T.; Nishibayashi, K.; Kobayashi, Y.; Pápai, I.; Takemoto, Y. Mechanistic insight into asymmetric hetero-Michael addition of α,β-unsaturated carboxylic acids catalyzed by multifunctional thioureas. J. Am. Chem. Soc. 2018, 140, 12216–12225. [Google Scholar] [CrossRef] [PubMed]
- Li, D.R.; He, A.; Falck, J.R. Enantioselective, organocatalytic reduction of ketones using bifunctional thiourea-amine catalysts. Org. Lett. 2010, 12, 1756–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Z.; Lin, A.; Shi, Y.; Mao, H.; Li, W.; Cheng, Y.; Zhu, C. Chiral tertiary amine thiourea-catalyzed asymmetric inverse-electron-demand Diels-Alder reaction of chromone heterodienes using 3-vinylindoles as dienophiles. J. Org. Chem. 2013, 78, 10233–10239. [Google Scholar] [CrossRef] [PubMed]
- Ravi Kumar, G.; Ramesh, B.; Yarlagadda, S.; Sridhar, B.; Reddy, B.V.S. Organocatalytic enantioselective Mannich reaction: Direct access to chiral β-amino esters. ACS Omega 2019, 4, 2168–2177. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.J.; Wei, W.T.; Wang, J.J.; Nie, S.Z.; Zhang, X.J.; Yan, M. Organocatalytic conjugate addition of α-nitroacetates to β,γ-unsaturated α-keto esters and subsequent decarboxylation: Synthesis of optically active δ-nitro-α-keto esters. Tetrahedron 2012, 68, 9397–9404. [Google Scholar] [CrossRef]
- Zhou, M.-Q.; Zuo, J.; Cui, B.-D.; Zhao, J.-Q.; You, Y.; Bai, M.; Chen, Y.-Z.; Zhang, X.-M.; Yuan, W.-C. Organocatalytic asymmetric double Michael reaction of Nazarov reagents with alkylidene azlactones for the construction of spiro-fused cyclohexanone/5-oxazolone system. Tetrahedron 2014, 70, 5787–5793. [Google Scholar] [CrossRef]
- Zhang, Z.; Lippert, K.M.; Hausmann, H.; Kotke, M.; Schreiner, P.R. Cooperative thiourea-Brønsted acid organocatalysis: Enantioselective cyanosilylation of aldehydes with TMSCN. J. Org. Chem. 2011, 76, 9764–9776. [Google Scholar] [CrossRef]
- Peng, F.-Z.; Shao, Z.-H.; Fan, B.-M.; Song, H.; Li, G.-P.; Zhang, H.-B. Addition of 2,4-pentandione to nitroalkenes promoted by bifunctional thioureas with central and axial chiral elements. J. Org. Chem. 2008, 73, 5202–5205. [Google Scholar] [CrossRef]
- Guo, H.-M.; Li, J.-G.; Qu, G.-R.; Zhang, X.-M.; Yuan, W.-C. Organocatalytic enantioselective Michael addition of malononitrile to nitroolefins catalyzed by bifunctional thiourea. Chirality 2011, 23, 514–518. [Google Scholar] [CrossRef]
- Mei, K.; Jin, M.; Zhang, S.; Li, P.; Liu, W.; Chen, X.; Xue, F.; Duan, W.; Wang, W. Simple cyclohexanediamine-derived primary amine thiourea catalyzed highly enantioselective conjugate addition of nitroalkanes to enones. Org. Lett. 2009, 11, 2864–2867. [Google Scholar] [CrossRef] [PubMed]
- Dudziński, K.; Pakulska, A.M.; Kwiatkowski, P. An efficient organocatalytic method for highly enantioselective Michael addition of malonates to enones catalyzed by readily accessible primary amine-thiourea. Org. Lett. 2012, 14, 4222–4225. [Google Scholar] [CrossRef] [PubMed]
- Moritaka, M.; Miyamae, N.; Nakano, K.; Ichikawa, Y.; Kotsuki, H. Highly efficient asymmetric Michael addition reaction of malonates to α,β-unsaturated ketones promoted by a chiral thiourea/PPY dual-catalyst system. Synlett 2012, 23, 2554–2558. [Google Scholar] [CrossRef]
- Miyamae, N.; Watanabe, N.; Moritaka, M.; Nakano, K.; Ichikawa, Y.; Kotsuki, H. Asymmetric organocatalytic desymmetrization of 4,4-disubstituted cyclohexadienones at high pressure: A new powerful strategy for the synthesis of highly congested chiral cyclohexenones. Org. Biomol. Chem 2014, 12, 5847–5855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, S.; Lao, J.; Du, G.; Yan, M.; Chan, A.S.C.C. Asymmetric conjugate addition of carbonyl compounds to nitroalkenes catalyzed by chiral bifunctional thioureas. Tetrahedron: Asymmetry 2009, 20, 1451–1458. [Google Scholar] [CrossRef]
- Li, B.-L.L.; Wang, Y.-F.F.; Luo, S.-P.P.; Zhong, A.-G.G.; Li, Z.-B.B.; Du, X.-H.H.; Xu, D.-Q.Q. Enantioselective Michael addition of aromatic ketones to nitroolefins catalyzed by bifunctional thioureas and mechanistic insight. Eur. J. Org. Chem. 2010, 656–662. [Google Scholar] [CrossRef]
- Retini, M.; Bergonzini, G.; Melchiorre, P. Dioxindole in asymmetric catalytic synthesis: Direct access to 3-substituted 3-hydroxy-2-oxindoles via 1,4-additions to nitroalkenes. Chem. Commun. 2012, 48, 3336–3338. [Google Scholar] [CrossRef]
- Guo, X.-T.; Sha, F.; Wu, X.-Y. Highly enantioselective Michael addition of aromatic ketones to nitrodienes and the application to the synthesis of chiral γ-aminobutyric acid. Synthesis 2017, 49, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, E.I.; Vallejo Narváez, W.E.; Román-Chavarría, C.A.; Vazquez-Chavez, J.; Rocha-Rinza, T.; Hernández-Rodríguez, M. Bifunctional thioureas with α-trifluoromethyl or methyl groups: Comparison of catalytic performance in Michael additions. J. Org. Chem. 2016, 81, 7419–7431. [Google Scholar] [CrossRef]
- Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Development of bis-thiourea-type organocatalyst for asymmetric Baylis-Hillman reaction. Tetrahedron Lett. 2004, 45, 5589–5592. [Google Scholar] [CrossRef]
- Sohtome, Y.; Takemura, N.; Takagi, R.; Hashimoto, Y.; Nagasawa, K. Thiourea-catalyzed Morita-Baylis-Hillman reaction. Tetrahedron 2008, 64, 9423–9429. [Google Scholar] [CrossRef]
- Mayr, F.; Brimioulle, R.; Bach, T. A chiral thiourea as a template for enantioselective intramolecular [2 + 2] photocycloaddition reactions. J. Org. Chem. 2016, 81, 6965–6971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-J.; Zhang, Z.-H.; Dong, X.-Q.; Wu, X.-J. Chiral amine-thioureas bearing multiple hydrogen bonding donors: Highly efficient organocatalysts for asymmetric Michael addition of acetylacetone to nitroolefins. Chem. Commun. 2008, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-J.; Dong, X.-Q.; Zhang, Z.-H.; Xue, Z.-Y.; Teng, H.-L. Highly anti-selective asymmetric nitro-mannich reactions catalyzed by bifunctional amine-thiourea-bearing multiple hydrogen-bonding donors. J. Am. Chem. Soc. 2008, 130, 8606–8607. [Google Scholar] [CrossRef]
- Liao, Y.-H.; Liu, X.-L.; Wu, Z.-J.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Highly diastereo- and enantioselective Michael additions of 3-substituted oxindoles to maleimides catalyzed by chiral bifunctional thiourea-tertiary amine. Org. Lett. 2010, 12, 2896–2899. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Long, J.; Li, B.-J.; Jiang, L.; Li, R.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Enantioselective construction of quaternary carbon centre catalysed by bifunctional organocatalyst. Org. Biomol. Chem. 2006, 4, 2097–2099. [Google Scholar] [CrossRef]
- Dong, L.-T.; Du, Q.-S.; Lou, C.-L.; Zhang, J.-M.; Lu, R.-J.; Yan, M. Asymmetric synthesis of nitrocyclopropanes catalyzed by chiral primary amines. Synlett 2010, 266–270. [Google Scholar] [CrossRef]
- Mei, R.-Q.; Xu, X.-Y.; Li, Y.-C.; Fu, J.-Y.; Huang, Q.-C.; Wang, L.-X. Highly effective and enantioselective Michael addition of 4-hydroxycoumarin to α,β-unsaturated ketones promoted by simple chiral primary amine thiourea bifunctional catalysts. Tetrahedron Lett. 2011, 52, 1566–1568. [Google Scholar] [CrossRef]
- Kang, J.Y.; Johnston, R.C.; Snyder, K.M.; Cheong, P.H.-Y.; Carter, R.G. Construction of stereogenic α,α-disubstituted cycloalkanones via 1° amine thiourea dual catalysis: Experimental scope and computational analyses. J. Org. Chem. 2016, 81, 3629–3637. [Google Scholar] [CrossRef]
- Mei, R.-Q.Q.; Xu, X.-Y.Y.; Peng, L.; Wang, F.; Tian, F.; Wang, L.-X.X. Asymmetric Michael/cyclization tandem reaction of 4-hydroxycoumarin with β-nitroalkenes catalyzed by chiral bifunctional thioureas. Org. Biomol. Chem. 2013, 11, 1286–1289. [Google Scholar] [CrossRef]
- Basak, A.K.; Shimada, N.; Bow, W.F.; Vicic, D.A.; Tius, M.A. An asymmetric organocatalytic Nazarov cyclization. J. Am. Chem. Soc. 2010, 132, 8266–8267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asari, A.H.; Lam, Y.-H.; Tius, M.A.; Houk, K.N. Origins of the stereoselectivity in a thiourea-primary amine-catalyzed Nazarov cyclization. J. Am. Chem. Soc. 2015, 137, 13191–13199. [Google Scholar] [CrossRef] [PubMed]
- Berkessel, A.; Roland, K.; Neudörfl, J.M. Asymmetric Morita-Baylis-Hillman reaction catalyzed by isophoronediamine-derived bis(thio)urea organocatalysts. Org. Lett. 2006, 8, 4195–4198. [Google Scholar] [CrossRef] [PubMed]
- Flock, A.M.; Krebs, A.; Bolm, C. Ephedrine- and pseudoephedrine-derived thioureas in asymmetric Michael additions of keto esters and diketones to nitroalkenes. Synlett 2010, 1219–1222. [Google Scholar] [CrossRef]
- Ren, Q.; Gao, Y.; Wang, J. Enantioselective synthesis of densely functionalized pyranochromenes via an unpredictable cascade Michael-oxa-Michael-tautomerization sequence. Chem. Eur. J. 2010, 16, 13594–13598. [Google Scholar] [CrossRef]
- Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Pyrrolidine—Thiourea as a bifunctional organocatalyst: Highly enantioselective Michael addition of cyclohexanone to nitroolefins. Org. Lett. 2006, 8, 2901–2904. [Google Scholar] [CrossRef]
- Zhi, Y.; Zhao, K.; von Essen, C.; Rissanen, K.; Enders, D. Thiourea-catalyzed domino Michael-Mannich [3+2] cycloadditions: A strategy for the asymmetric synthesis of 3,3′-pyrrolidinyl-dispirooxindoles. Synlett 2017, 28, 2876–2880. [Google Scholar] [CrossRef]
- Yan, L.; Wang, H.; Xiong, F.; Tao, Y.; Wu, Y.; Chen, F. Chloramphenicol base chemistry. Part 11: Chloramphenicol base-derived thiourea-catalyzed enantioselective Michael addition of malononitrile to α,β-unsaturated ketones. Tetrahedron: Asymmetry 2017, 28, 921–929. [Google Scholar] [CrossRef]
- Wang, S.-X.; Chen, F.-E. A novel cost-effective thiourea bifunctional organocatalyst for highly enantioselective alcoholysis of meso-cyclic anhydrides: Enhanced enantioselectivity by configuration inversion. Adv. Synth. Catal. 2009, 351, 547–552. [Google Scholar] [CrossRef]
- Yan, L.-J.; Wang, H.-F.; Chen, W.-X.; Tao, Y.; Jin, K.-J.; Chen, F.-E. Development of bifunctional thiourea organocatalysts derived from a chloramphenicol base scaffold and their use in the enantioselective alcoholysis of meso cyclic anhydrides. Chem. Cat. Chem. 2016, 8, 2249–2253. [Google Scholar] [CrossRef]
- Li, X.-J.; Liu, K.; Ma, H.; Nie, J.; Ma, J.-A. Highly enantioselective Michael addition of malonates to nitroolefins catalyzed by chiral bifunctional tertiary amine-thioureas based on saccharides. Synlett 2008, 3242–3246. [Google Scholar] [CrossRef]
- Chen, F.-X.; Shao, C.; Liu, Q.; Gong, P.; Liu, C.-L.; Wang, R. Asymmetric Michael addition of trisubstituted carbanion to nitroalkenes catalyzed by sodium demethylquinine salt in water. Chirality 2009, 21, 600–603. [Google Scholar] [CrossRef] [PubMed]
- McGarraugh, P.G.; Brenner, S.E. Novel bifunctional sulfonamides catalyze an enantioselective conjugate addition. Tetrahedron 2009, 65, 449–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, S.-Z.; Hu, Z.-P.; Xuan, Y.-N.; Wang, J.-J.; Li, X.-M.; Yan, M. Organocatalytic asymmetric conjugate addition of malonates to 3-nitro-2H-chromenes. Tetrahedron: Asymmetry 2010, 21, 2055–2059. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, R. Recent developments in catalytic asymmetric inverse-electron-demand Diels−Alder reaction. Chem. Rev. 2013, 113, 5515–5546. [Google Scholar] [CrossRef]
- Johansson, H.; Jørgensen, T.B.; Gloriam, D.E.; Bräuner-Osborne, H.; Pedersen, D.S. 3-Substituted 2-phenyl-indoles: Privileged structures for medicinal chemistry. RSC Adv. 2013, 3, 945–960. [Google Scholar] [CrossRef]
- Guo, H.-C.; Ma, J.-A. Catalytic asymmetric tandem transformations triggered by conjugate additions. Angew. Chem. Int. Ed. 2006, 45, 354–366. [Google Scholar] [CrossRef]
- Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron 2006, 62, 2143–2173. [Google Scholar] [CrossRef]
- Alba, A.-N.; Companyo, X.; Viciano, M.; Rios, R. Organocatalytic domino reactions. Curr. Org. Chem. 2009, 13, 1432–1474. [Google Scholar] [CrossRef]
- Zu, L.; Zhang, S.; Xie, H.; Wang, W. Catalytic asymmetric oxa-Michael-Michael cascade for facile construction of chiral chromans via an aminal intermediate. Org. Lett. 2009, 11, 1627–1630. [Google Scholar] [CrossRef]
- Moyano, A.; Rios, R. Asymmetric organocatalytic cyclization and cycloaddition reactions. Chem. Rev. 2011, 111, 4703–4832. [Google Scholar] [CrossRef] [PubMed]
- Chanda, T.; Zhao, J.C.-G. Recent progress in organocatalytic asymmetric domino transformations. Adv. Synth. Catal. 2018, 360, 2–79. [Google Scholar] [CrossRef]
- Bella, M.; Gasperi, T. Organocatalytic formation of quaternary stereocenters. Synthesis 2009, 1583–1614. [Google Scholar] [CrossRef]
- Kumar, K.; Waldmann, H. Synthesis of natural product inspired compound collections. Angew. Chem. Int. Ed. 2009, 48, 3224–3242. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Chin, Y.-W.; Chai, H.; Keller, W.J.; Kinghorn, A.D. Anthraquinones with quinone reductase-inducing activity and benzophenones from morinda citrifolia (noni) roots. J. Nat. Prod. 2007, 70, 2049–2052. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev. 2012, 112, 6104–6155. [Google Scholar] [CrossRef] [PubMed]
- Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Recent advances in organocatalytic methods for the synthesis of disubstituted 2- and 3-indolinones. Chem. Soc. Rev. 2012, 41, 7247–7290. [Google Scholar] [CrossRef]
- Mao, H.; Lin, A.; Tang, Y.; Shi, Y.; Hu, H.; Cheng, Y.; Zhu, C. Organocatalytic oxa/aza-Michael–Michael cascade strategy for the construction of spiro [chroman/tetrahydroquinoline-3,3′-oxindole] scaffolds. Org. Lett. 2013, 15, 4062–4065. [Google Scholar] [CrossRef]
- Hong, B.-C.; Kotame, P.; Lee, G.-H. Asymmetric synthesis of 3,4-dihydrocoumarin motif with an all-carbon quaternary stereocenter via a Michael–acetalization sequence with bifunctional amine-thiourea organocatalysts. Org. Lett. 2011, 13, 5758–5761. [Google Scholar] [CrossRef]
- Wang, H.; Luo, J.; Han, X.; Lu, Y. Enantioselective synthesis of chromanones via a tryptophan-derived bifunctional thiourea-catalyzed oxa-Michael-Michael cascade reaction. Adv. Synth. Catal. 2011, 353, 2971–2975. [Google Scholar] [CrossRef]
- Yoon, T.P.; Jacobsen, E.N. Privileged chiral catalysts. Science 2003, 299, 1691–1693. [Google Scholar] [CrossRef] [PubMed]
- Kacprzak, K.; Gawroński, J. Cinchona alkaloids and their derivatives: Versatile catalysts and ligands in asymmetric synthesis. Synthesis 2001, 961–998. [Google Scholar] [CrossRef]
- McCooey, S.H.; Connon, S.J. Urea- and thiourea-substituted Cinchona alkaloid derivatives as highly efficient bifunctional organocatalysts for the asymmetric addition of malonate to nitroalkenes: Inversion of configuration at C9 dramatically improves catalyst performance. Angew. Chem. Int. Ed. 2005, 44, 6367–6370. [Google Scholar] [CrossRef] [PubMed]
- Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional Cinchona organocatalysts. Org. Lett. 2005, 7, 1967–1969. [Google Scholar] [CrossRef] [PubMed]
- Vakulya, B.; Varga, S.; Soós, T. Epi -Cinchona based thiourea organocatalyst family as an efficient assymmetric Michael addition promoter: Enantioselective conjugate addition of nitroalkanes to chalcones and α,β-unsaturated N-acylpyrroles. J. Org. Chem. 2008, 73, 3475–3480. [Google Scholar] [CrossRef]
- Varga, S.; Jakab, G.; Drahos, L.; Holczbauer, T.; Czugler, M.; Soós, T. Double diastereocontrol in bifunctional thiourea organocatalysis: Iterative Michael-Michael-Henry sequence regulated by the configuration of chiral catalysts. Org. Lett. 2011, 13, 5416–5419. [Google Scholar] [CrossRef]
- Li, P.; Wen, S.; Yu, F.; Liu, Q.; Li, W.; Wang, Y.; Liang, X.; Ye, J. Enantioselective organocatalytic Michael addition of malonates to α, β-unsaturated ketones. Org. Lett. 2009, 11, 753–756. [Google Scholar] [CrossRef]
- Li, H.; Zhang, S.; Yu, C.; Song, X.; Wang, W. Organocatalytic asymmetric synthesis of chiral fluorinated quaternary carbon containing β-ketoesters. Chem. Commun. 2009, 2136–2138. [Google Scholar] [CrossRef]
- Han, X.; Luo, J.; Liu, C.; Lu, Y. Asymmetric generation of fluorine-containing quaternary carbons adjacent to tertiary stereocenters: Uses of fluorinated methines as nucleophiles. Chem. Commun. 2009, 2044–2046. [Google Scholar] [CrossRef]
- Fan, L.-P.; Li, P.; Li, X.-S.; Xu, D.-C.; Ge, M.-M.; Zhu, W.-D.; Xie, J.-W.W. Facile domino access to chiral mono-, bi-, and tricyclic 2,3-dihydrofurans. J. Org. Chem. 2010, 75, 8716–8719. [Google Scholar] [CrossRef]
- Pham, T.S.; Balázs, L.; Petneházy, I.; Jászay, Z. Enantioselective Michael addition of diethyl cyanomethylphosphonate to chalcones using bifunctional Cinchona-derived organocatalysts: Synthesis of chiral precursors of α-substituted β-aminophosphonates. Tetrahedron: Asymmetry 2010, 21, 346–351. [Google Scholar] [CrossRef]
- Mancheño, O.G.; Tangen, P.; Rohlmann, R.; Fröhlich, R.; Alemán, J. Synthesis of chiral cyclic nitrones by asymmetric addition of β-ketosulfones to nitroalkenes followed by reductive cyclization. Chem. Eur. J. 2011, 17, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Z.Z.; Cheng, R.-L.L.; Xu, P.-F.F. Asymmetric michael addition of 1-acetylindolin-3-ones to β-nitrostyrenes catalyzed by bifunctional thioureas: A simple access to 2-functionalized indoles. J. Org. Chem. 2011, 76, 2884–2887. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-J.; Hu, Z.-P.; Lou, C.-L.; Liu, J.-L.; Li, X.-M.; Yan, M. Asymmetric synthesis of trifluoromethyl substituted dihydropyrans via organocatalytic cascade Michael-hemiketalization reaction. Tetrahedron 2011, 67, 4578–4583. [Google Scholar] [CrossRef]
- Chiarucci, M.; Lombardo, M.; Trombini, C.; Quintavalla, A. Enantioselective conjugate addition of nitroalkanes to alkylidenemalonates promoted by thiourea-based bifunctional organocatalysts. Adv. Synth. Catal. 2012, 354, 364–370. [Google Scholar] [CrossRef]
- Curti, C.; Rassu, G.; Zambrano, V.; Pinna, L.; Pelosi, G.; Sartori, A.; Battistini, L.; Zanardi, F.; Casiraghi, G. Bifunctional Cinchona alkaloid/thiourea catalyzes direct and enantioselective vinylogous Michael addition of 3-alkylidene oxindoles to nitroolefins. Angew. Chem. Int. Ed. 2012, 51, 6200–6204. [Google Scholar] [CrossRef]
- Guo, Z.-W.; Li, X.-S.; Zhu, W.-D.; Xie, J.-W. Construction of chiral multi-functionalized polyheterocyclic benzopyran derivatives by using an asymmetric organocatalytic domino reaction. Eur. J. Org. Chem. 2012, 6924–6932. [Google Scholar] [CrossRef]
- Molleti, N.; Allu, S.; Ray, S.K.; Singh, V.K. Bifunctional chiral urea catalyzed highly enantioselective Michael addition of cyclic 1,3-dicarbonyl compounds to 2-enoylpyridines. Tetrahedron Lett. 2013, 54, 3241–3244. [Google Scholar] [CrossRef]
- Kwiatkowski, J.; Lu, Y. Highly enantioselective preparation of fluorinated phosphonates by Michael addition of α-fluoro-β-ketophosphonates to nitroalkenes. Asian J. Org. Chem. 2014, 3, 458–461. [Google Scholar] [CrossRef]
- Kwiatkowski, P.; Cholewiak, A.; Kasztelan, A. Efficient and highly enantioselective construction of trifluoromethylated quaternary stereogenic centers via high-pressure mediated organocatalytic conjugate addition of nitromethane to β,β-disubstituted enones. Org. Lett. 2014, 16, 5930–5933. [Google Scholar] [CrossRef]
- Konda, S.; Zhao, J.C.-G. High enantioselective Michael addition of malonates to β,γ-unsaturated α-ketoesters catalyzed by bifunctional thioureas. Tetrahedron Lett. 2014, 55, 5216–5218. [Google Scholar] [CrossRef]
- Chang, H.-H.; Chu, K.-T.; Chiang, M.-H.; Han, J.-L. Organocatalytic enantioselective Michael reaction of 1,3-dicarbonyls with α-substituted β-nitroacrylates. Tetrahedron 2017, 73, 727–734. [Google Scholar] [CrossRef]
- Bhagat, U.K.; Peddinti, R.K. Asymmetric organocatalytic approach to 2,4-disubstituted 1,2,3-triazoles by N2-selective aza-Michael addition. J. Org. Chem. 2018, 83, 793–804. [Google Scholar] [CrossRef]
- Reddy, S.N.; Reddy, V.R.; Dinda, S.; Nanubolu, J.B.; Chandra, R. Asymmetric reaction of p-quinone diimide: Organocatalyzed Michael addition of α-cyanoacetates. Org. Lett. 2018, 20, 2572–2575. [Google Scholar] [CrossRef]
- Yuan, J.-N.; Liu, H.-X.; Tian, Q.-Q.; Ji, N.; Shen, K.; He, W. Highly enantioselective Michael addition of dithiomalonates to nitroolefins catalyzed by new bifunctional chiral thioureas. Synthesis 2018, 50, 2577–2586. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-F.; Wu, S.; Karmaker, P.G.; Sohail, M.; Wang, Q.; Chen, F.-X. Enantioselective synthesis of trifluoromethylated tertiary thioethers through organocatalytic sulfa-Michael addition of thiols to β-trifluoromethyl β,β-disubstituted enones. Synthesis 2015, 47, 1147–1153. [Google Scholar] [CrossRef]
- Bacsó, A.; Szigeti, M.; Varga, S.; Soós, T. Bifunctional thiourea-catalyzed stereoablative retro-sulfa-Michael reaction: Concise and diastereoselective access to chiral 2,4-diarylthietanes. Synthesis 2017, 49, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Konda, S.; Guo, Q.-S.; Abe, M.; Huang, H.; Arman, H.; Zhao, J.C.-G. Organocatalyzed asymmetric aldol reactions of ketones and β,γ-unsaturated α-ketoesters and phenylglyoxal hydrates. J. Org. Chem. 2015, 80, 806–815. [Google Scholar] [CrossRef]
- Ji, S.; Alkhalil, A.E.; Su, Y.; Xia, X.; Chong, S.; Wang, K.-H.; Huang, D.; Fu, Y.; Hu, Y. Bifunctional thiourea catalyzed asymmetric Mannich reaction using trifluoromethyl aldimine as trifluoromethyl building blocks. Synlett 2015, 26, 1725–1731. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Shi, T.-D.; Zhou, F.; Zhao, X.-L.; Wang, X.; Zhou, J. Organocatalytic asymmetric Strecker reaction of di- and trifluoromethyl ketoimines. Remarkable fluorine effect. Org. Lett. 2011, 13, 3826–3829. [Google Scholar] [CrossRef]
- Xie, H.; Song, A.; Song, X.; Zhang, X.; Wang, W. Organocatalytic enantioselective Strecker reaction of cyclic trifluoromethyl-ketoimines. Tetrahedron Lett. 2013, 54, 1409–1411. [Google Scholar] [CrossRef]
- Xie, H.; Song, A.; Zhang, X.; Chen, X.; Li, H.; Sheng, C.; Wang, W. Quinine-thiourea catalyzed enantioselective hydrophosphonylation of trifluoromethyl 2(1H)-quinazolinones. Chem. Commun. 2013, 49, 928–930. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Zhou, J.; Peng, Y. Asymmetric reaction of α-diazomethylphosphonates with α-ketoesters to access optically active α-diazo-β-hydroxyphosphonate derivatives. Org. Lett. 2017, 19, 1310–1313. [Google Scholar] [CrossRef] [PubMed]
- Amere, M.; Lasne, M.-C.; Rouden, J. Highly enantioselective decarboxylative protonation of α-aminomalonates mediated by thiourea Cinchona alkaloid derivatives: Access to both enantiomers of cyclic and acyclic α-aminoacids. Tetrahedron: Asymmetry 2007, 9, 2621–2624. [Google Scholar] [CrossRef]
- Xu, J.; Hu, Y.; Huang, D.; Wang, K.-H.; Xu, C.; Niu, T. Thiourea-catalyzed enantioselective fluorination of β-keto esters. Adv. Synth. Catal. 2012, 354, 515–526. [Google Scholar] [CrossRef]
- Hu, X.-Y.; Hu, F.-Z.; Chen, H.; Xu, X.-Y.; Yuan, W.-C.; Zhang, X.-M. Enantioselective α-arylation of cyclic β-ketoamides with a quinone monoimine. ChemistrySelect 2018, 3, 3975–3977. [Google Scholar] [CrossRef]
- Marcelli, T.; van Der Haas, R.N.S.; van Maarseveen, J.H.; Hiemstra, H. Asymmetric organocatalytic Henry reaction. Angew. Chem. Int. Ed. 2006, 45, 929–931. [Google Scholar] [CrossRef]
- Oh, J.-S.; Lee, J.-W.; Ryu, T.H.; Lee, J.H.; Song, C.E. Self-association free bifunctional thiourea organocatalysts: Synthesis of chiral α-amino acids via dynamic kinetic resolution of racemic azlactones. Org. Biomol. Chem. 2012, 10, 1052–1055. [Google Scholar] [CrossRef]
- Dondoni, A.; Massi, A. Asymmetric organocatalysis: From infancy to adolescence. Angew. Chem. Int. Ed. 2008, 47, 4638–4660. [Google Scholar] [CrossRef]
- Tárkányi, G.; Király, P.; Varga, S.; Vakulya, B.; Soós, T. Edge-to-face CH/π aromatic interaction and molecular self-recognition in epi-Cinchona-based bifunctional thiourea organocatalysis. Chem. Eur. J. 2008, 14, 6078–6086. [Google Scholar] [CrossRef]
- Oh, S.H.; Rho, H.S.; Lee, J.W.; Lee, J.E.; Youk, S.H.; Chin, J.; Song, C.E. A highly reactive and enantioselective bifunctional organocatalyst for the methanolytic desymmetrization of cyclic anhydrides: Prevention of catalyst aggregation. Angew. Chem. Int. Ed. 2008, 47, 7872–7875. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.-X.; Luo, Y.-C.; Cheng, X.-N.; Xu, P.-F.; Gu, Y.-C. Organocatalyzed Michael–Michael cascade reaction: Asymmetric synthesis of polysubstituted chromans. J. Org. Chem. 2013, 78, 6488–6494. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Biswas, A.; Molleti, N.; Singh, V.K. Enantioselective synthesis of highly substituted chromans via the oxa-Michael–Michael cascade reaction with a bifunctional organocatalyst. J. Org. Chem. 2015, 80, 11115–11122. [Google Scholar] [CrossRef] [PubMed]
- Andrés, J.M.; Manzano, R.; Pedrosa, R. Novel bifunctional chiral urea and thiourea derivatives as organocatalysts: Enantioselective nitro-Michael reaction of malonates and diketones. Chem. Eur. J. 2008, 14, 5116–5119. [Google Scholar] [CrossRef]
- Chen, X.-K.; Zheng, C.-W.; Zhao, S.-L.; Chai, Z.; Yang, Y.-Q.; Zhao, G.; Cao, W.-G. Highly enantioselective Michael addition of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-keto esters. Adv. Synth. Catal. 2010, 352, 1648–1652. [Google Scholar] [CrossRef]
- Cui, H.-F.; Li, P.; Wang, X.-W.; Zhu, S.-Z.; Zhao, G. Asymmetric Michael addition of α-fluoro-α-phenylsulfonyl ketones to nitroolefins catalyzed by phenylalanine-based bifunctional thioureas. J. Fluor. Chem. 2012, 133, 120–126. [Google Scholar] [CrossRef]
- Massolo, E.; Benaglia, M.; Orlandi, M.; Rossi, S.; Celentano, G. Enantioselective organocatalytic reduction of β-trifluoromethyl nitroalkenes: An efficient strategy for the synthesis of chiral β-trifluoromethyl amines. Chem. Eur. J. 2015, 21, 3589–3595. [Google Scholar] [CrossRef]
- Klausen, R.S.; Jacobsen, E.N. Weak Brønsted acid-thiourea co-catalysis: Enantioselective, catalytic protio-Pictet-Spengler reactions. Org. Lett. 2009, 11, 887–890. [Google Scholar] [CrossRef] [Green Version]
- Klausen, R.S.; Kennedy, C.R.; Hyde, A.M.; Jacobsen, E.N. Chiral thioureas promote enantioselective Pictet-Spengler cyclization by stabilizing every intermediate and transition state in the carboxylic acid-catalyzed reaction. J. Am. Chem. Soc. 2017, 139, 12299–12309. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Klausen, R.S.; Jacobsen, E.N. Thiourea-catalyzed enantioselective iso-pictet-spengler reactions. Org. Lett. 2011, 13, 5564–5567. [Google Scholar] [CrossRef] [Green Version]
- Yeung, C.S.; Ziegler, R.E.; Porco, J.A.; Jacobsen, E.N. Thiourea-catalyzed enantioselective addition of indoles to pyrones: Alkaloid cores with quaternary carbons. J. Am. Chem. Soc. 2014, 136, 13614–13617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, A.R.; Mukherjee, S. Enantioselective dearomatization of isoquinolines by anion-binding catalysis en route to cyclic a-aminophosphonates. Chem. Sci. 2016, 7, 6940–6945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.-J.; Du, W.; Chen, Y.-C. Construction of furan derivatives with a trifluoromethyl stereogenic center: Enantioselective Friedel−Crafts alkylations via formal trienamine catalysis. J. Org. Chem. 2016, 81, 10056–10061. [Google Scholar] [CrossRef] [PubMed]
- Manzano, R.; Andrés, J.M.; Muruzábal, M.D.; Pedrosa, R. Stereocontrolled construction of quaternary stereocenters by inter- and intramolecular nitro-michael additions catalyzed by bifunctional thioureas. Adv. Synth. Catal. 2010, 352, 3364–3372. [Google Scholar] [CrossRef]
- Manzano, R.; Andrés, J.M.; Álvarez, R.; Muruzábal, M.D.; de Lera, Á.R.; Pedrosa, R. Enantioselective conjugate addition of nitro compounds to α,β-unsaturated ketones: An experimental and computational study. Chem. Eur. J. 2011, 17, 5931–5938. [Google Scholar] [CrossRef] [PubMed]
- Andrés, J.M.; Ceballos, M.; Maestro, A.; Sanz, I.; Pedrosa, R. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions. Beilstein J. Org. Chem. 2016, 12, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrés, J.M.; González, M.; Maestro, A.; Naharro, D.; Pedrosa, R. Recyclable chiral bifunctional thioureas derived from [60]fullerene and their use as highly efficient organocatalysts for the asymmetric Nitro-Michael reaction. Eur. J. Org. Chem. 2017, 2683–2691. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Q.; Xu, X.-Y.; Zhou, Y.; Bai, J.; Wang, F.; Wang, L. A highly asymmetric direct aldol reaction catalyzed by chiral proline amide – thiourea bifunctional catalysts. Can. J. Chem. 2011, 89, 1312–1318. [Google Scholar] [CrossRef]
- Vargas-Caporali, J.; Cruz-Hernández, C.; Juaristi, E. Synthesis of versatile bifunctional derivatives of chiral diamines obtained through anchimerically assisted nucleophilic substitution reactions on diastereomeric phenylprolinols. Heterocylces 2012, 86, 1275–1300. [Google Scholar] [CrossRef]
- Vinayagam, P.; Vishwanath, M.; Kesavan, V. New class of bifunctional thioureas from l-proline: Highly enantioselective Michael addition of 1,3-dicarbonyls to nitroolefins. Tetrahedron: Asymmetry 2014, 25, 568–577. [Google Scholar] [CrossRef]
- Hielkema, J.U.; Ticheler, J.; Jörres, M.; Schiffers, I.; Atodiresei, I.; Bolm, C. Asymmetric Michael additions of α-nitrocyclohexanone to aryl nitroalkenes catalyzed by natural amino acid-derived bifunctional thioureas. Org. Lett. 2012, 14, 4518–4521. [Google Scholar] [CrossRef]
- Lattanzi, A. Asymmetric Morita-Baylis-Hillman reaction catalyzed by simple amino alcohol derived thioureas. Synlett 2007, 2106–2110. [Google Scholar] [CrossRef]
- Wanka, L.; Cabrele, C.; Vanejews, M.; Schreiner, P.R. γ-aminoadamantanecarboxylic acids through direct C-H bond amidations. Eur. J. Org. Chem. 2007, 1474–1490. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, C.; Chai, Z.; Zhao, G. Synthesis of spiro[chroman/tetrahydrothiophene-3,3′-oxindole] scaffolds via heteroatom-Michael-Michael reactions: Easily controlled enantioselectivity via bifunctional catalysts. Adv. Synth. Catal. 2014, 356, 579–583. [Google Scholar] [CrossRef]
- Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Organocatalytic domino oxa-Michael/1,6-addition reactions: Asymmetric synthesis of chromans bearing oxindole scaffolds. Angew. Chem. Int. Ed. 2016, 55, 12104–12108. [Google Scholar] [CrossRef]
- Wang, L.; Jia, Y.-X.; Zhang, J.-M.; Qian, C.; Chen, X.-Z. Improved synthesis of 4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-dienone and its derivatives. Monatsh. Chem. 2014, 145, 1941–1945. [Google Scholar] [CrossRef]
- Hughes, B.; Howat, D.; Lisle, H.; Holbrook, M.; James, T.; Gozzard, N.; Blease, K.; Hughes, P.; Kingaby, R.; Warrellow, G.; et al. The inhibition of antigen-induced eosinophilia and bronchoconstriction by CDP840, a novel stereo-selective inhibitor of phosphodiesterase type 4. Br. J. Pharmacol. 1996, 118, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Rovner, E.S.; Wein, A.J. Once-daily, extended-release formulations of antimuscarinic agents in the treatment of overactive bladder: A review. Eur. Urol. 2002, 41, 6–14. [Google Scholar] [CrossRef]
- Davidson, S.J.; Barker, D. Synthesis of various lignans via the rearrangements of 1,4-diarylbutane-1,4-diols. Tetrahedron Lett. 2015, 56, 4549–4553. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, S.; Wang, J.; Mei, G.; Shi, F. Catalytic Asymmetric [4+2] Cyclization of para-quinone methide derivatives with 3-alkyl-2-vinylindoles. Adv. Synth. Catal. 2018, 360, 4225–4235. [Google Scholar] [CrossRef]
- Li, W.; Yuan, H.; Liu, Z.; Zhang, Z.; Cheng, Y.; Li, P. NHC-Catalyzed enantioselective [4 + 3] cycloaddition of ortho-hydroxyphenyl substituted para -quinone methides with isatin-derived enals. Adv. Synth. Catal. 2018, 360, 2460–2464. [Google Scholar] [CrossRef]
- Sun, M.; Ma, C.; Zhou, S.-J.; Lou, S.-F.; Xiao, J.; Jiao, Y.; Shi, F. Catalytic asymmetric (4 + 3) cyclizations of in situ generated ortho-quinone methides with 2-indolylmethanols. Angew. Chem. Int. Ed. 2019, 58, 8703–8708. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-H.; Zhang, X.-Y.; You, Y.; Zhao, J.-Q.; Zhou, M.-Q.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. Efficient construction of polycyclic chromans through 4-methylbenzenesulfonic acid mediated domino 1,6-addition/oxa-Mannich reaction of ortho-hydroxyphenyl substituted para-quinone methides and cyclic enamides. Tetrahedron 2019, 75, 3456–3462. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Wang, C.-S.; Li, T.-Z.; Gao, F.; Jiao, Y.; Shi, F. Organocatalytic [4 + 2] cyclizations of para -quinone methide derivatives with isocyanates. Org. Biomol. Chem. 2019, 17, 6662–6670. [Google Scholar] [CrossRef]
- Liu, K.; Cui, H.-F.; Nie, J.; Dong, K.-Y.; Li, X.-J.; Ma, J.-A. Highly enantioselective Michael addition of aromatic ketones to nitroolefins promoted by chiral bifunctional primary amine-thiourea catalysts based on saccharides. Org. Lett. 2007, 9, 923–925. [Google Scholar] [CrossRef]
- Ma, H.; Liu, K.; Zhang, F.-G.; Zhu, C.-L.; Nie, J.; Ma, J.-A. Chiral bifunctional thiourea-catalyzed enantioselective Michael addition of ketones to nitrodienes. J. Org. Chem. 2010, 75, 1402–1409. [Google Scholar] [CrossRef]
- Qiao, B.; Huang, Y.-J.; Nie, J.; Ma, J.-A. Highly regio-, diastereo-, and enantioselective Mannich reaction of allylic ketones and cyclic ketimines: Access to chiral benzosultam. Org. Lett. 2015, 17, 4608–4611. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Li, J.-S.; Nie, J.; Ma, J.-A. Organocatalytic asymmetric decarboxylative Mannich reaction of β-keto acids with cyclic α-ketiminophosphonates: Access to quaternary α-aminophosphonates. Org. Lett. 2018, 20, 3643–3646. [Google Scholar] [CrossRef]
- Li, F.; Sun, L.; Teng, Y.; Yu, P.; Zhao, J.C.-G.; Ma, J.-A. Highly diastereo- and enantioselective organocatalytic one-pot sequential 1,4-addition/dearomative-fluorination transformation. Chem. Eur. J. 2012, 18, 14255–14260. [Google Scholar] [CrossRef]
- Meng, W.-T.; Zheng, Y.; Nie, J.; Xiong, H.-Y.; Ma, J.-A. Organocatalytic asymmetric one-pot sequential conjugate addition/dearomative fluorination: Synthesis of chiral fluorinated isoxazol-5(4H)-ones. J. Org. Chem. 2013, 78, 559–567. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, Z.; Tang, C. Novel bifunctional chiral thiourea catalyzed higly enantioselective aza-Henry reaction. Org. Lett. 2008, 10, 1707–1710. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, J.; Liu, S.; Yu, C.; Miao, Z. Asymmetric synthesis of spiro[chroman-3,3′-pyrazol] scaffolds with an all-carbon quaternary stereocenter via a oxa-Michael–Michael cascade strategy with bifunctional amine-thiourea organocatalysts. RSC Adv. 2015, 5, 91108–91113. [Google Scholar] [CrossRef]
- V. Kouznetsov, V.; R. Merchan Arenas, D.; Arvelo, F.; S. Bello Forero, J.; Sojo, F.; Munoz, A. 4-Hydroxy-3-methoxyphenyl substituted 3-methyl-tetrahydroquinoline derivatives obtained through imino Diels-Alder reactions as potential antitumoral agents. Lett. Drug Des. Discov. 2010, 7, 632–639. [Google Scholar] [CrossRef]
- Breschi, M.C.; Calderone, V.; Martelli, A.; Minutolo, F.; Rapposelli, S.; Testai, L.; Tonelli, F.; Balsamo, A. New benzopyran-based openers of the mitochondrial ATP-sensitive potassium channel with potent anti-ischemic properties. J. Med. Chem. 2006, 49, 7600–7602. [Google Scholar] [CrossRef] [PubMed]
- Rapposelli, S.; Da Settimo, F.; Digiacomo, M.; La Motta, C.; Lapucci, A.; Sartini, S.; Vanni, M. Synthesis and biological evaluation of 2′-oxo-2,3-dihydro-3′H- spiro[chromene-4,5′-[1,3]oxazolidin]-3′yl]acetic acid derivatives as aldose reductase inhibitors. Arch. Pharm. 2011, 344, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Ramachary, D.B.; Madhavachary, R.; Prasad, M.S. Observation of neighboring ortho-hydroxyl group participation in organocatalytic asymmetric sequential Michael-lactonization reactions: Synthesis of highly substituted chiral spirodihydrocoumarins. Org. Biomol. Chem. 2012, 10, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-L.; Shi, M. Chiral thiourea-phosphine organocatalysts in the asymmetric aza-Morita-Baylis-Hillman reaction. Adv. Synth. Catal. 2007, 349, 2129–2135. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Pei, C.-K.; Shi, M. Multifunctional chiral phosphines-catalyzed highly diastereoselective and enantioselective substitution of Morita-Baylis-Hillman adducts with oxazolones. Org. Biomol. Chem. 2011, 9, 3349–3358. [Google Scholar] [CrossRef]
- Yuan, K.; Zhang, L.; Song, H.-L.; Hu, Y.; Wu, X.-Y. Chiral phosphinothiourea organocatalyst in the enantioselective Morita-Baylis-Hillman reactions of aromatic aldehydes with methyl vinyl ketone. Tetrahedron Lett. 2008, 49, 6262–6264. [Google Scholar] [CrossRef]
- Yuan, K.; Song, H.-L.; Hu, Y.; Wu, X.-Y. Chiral phosphinothiourea-catalyzed asymmetric Morita-Baylis-Hillman reactions of acrylates with aromatic aldehydes. Tetrahedron 2009, 65, 8185–8190. [Google Scholar] [CrossRef]
- Gong, J.-J.; Yuan, K.; Wu, X.-Y. Valine-derived phosphinothiourea as organocatalyst in enantioselective Morita-Baylis-Hillman reactions of acrylates with aromatic aldehydes. Tetrahedron: Asymmetry 2009, 20, 2117–2120. [Google Scholar] [CrossRef]
- Mita, T.; Jacobsen, E. Bifunctional asymmetric catalysis with hydrogen chloride: Enantioselective ring opening of aziridines catalyzed by a phosphinothiourea. Synlett 2009, 1680–1684. [Google Scholar] [CrossRef]
- Li, X.; Xu, X.; Wei, W.; Lin, A.; Yao, H. Organocatalyzed asymmetric 1,6-conjugate addition of para-quinone methides with dicyanoolefins. Org. Lett. 2016, 18, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Su, H.Y.; Taylor, M.S. P-Stereogenic β-aminophosphines: Preparation and applications in enantioselective organocatalysis. J. Org. Chem. 2017, 82, 3173–3182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, G. Enantioselective Mannich reaction of γ-malonate-substituted α,β-unsaturated esters with N-Boc imines catalyzed by chiral bifunctional thiourea-phosphonium salts. Tetrahedron 2019, 75, 1697–1705. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, S.; Huang, K.; Wang, R.; Zhang, X. A novel chiral bisphosphine-thiourea ligand for asymmetric hydrogenation of β,β-disubstituted nitroalkenes. Org. Lett. 2013, 15, 4014–4017. [Google Scholar] [CrossRef]
- Zhao, Q.; Wen, J.; Tan, R.; Huang, K.; Metola, P.; Wang, R.; Anslyn, E.V.; Zhang, X. Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea. Angew. Chem. Int. Ed. 2014, 53, 8467–8470. [Google Scholar] [CrossRef]
- Han, Z.; Li, P.; Zhang, Z.; Chen, C.; Wang, Q.; Dong, X.Q.; Zhang, X. Highly enantioselective synthesis of chiral succinimides via Rh/bisphosphine-thiourea-catalyzed asymmetric hydrogenation. ACS Catal. 2016, 6, 6214–6218. [Google Scholar] [CrossRef]
- Li, P.; Hu, X.; Dong, X.Q.; Zhang, X. Rhodium/bisphosphine-thiourea-catalyzed enantioselective hydrogenation of α,β-unsaturated N-acylpyrazoles. Chem. Commun. 2016, 52, 11677–11680. [Google Scholar] [CrossRef]
- Li, P.; Huang, Y.; Hu, X.; Dong, X.-Q.; Zhang, X. Access to chiral seven-member cyclic amines via Rh-catalyzed asymmetric hydrogenation. Org. Lett. 2017, 19, 3855–3858. [Google Scholar] [CrossRef]
- Han, Z.; Wang, R.; Gu, G.; Dong, X.-Q.; Zhang, X. Asymmetric hydrogenation of maleic anhydrides catalyzed by Rh/bisphosphine-thiourea: Efficient construction of chiral succinic anhydrides. Chem. Commun. 2017, 53, 4226–4229. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, P.; Dong, X.-Q.; Zhang, X. Synthesis of chiral seven-membered β-substituted lactams via Rh-catalyzed asymmetric hydrogenation. Org. Biomol. Chem. 2018, 16, 8819–8823. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Han, Z.; Dong, X.-Q.; Zhang, X. Rh-catalyzed asymmetric hydrogenation of β-substituted-β-thio-α,β-unsaturated esters: Expeditious access to chiral organic sulfides. Org. Lett. 2018, 20, 5636–5639. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Y.; Yi, Z.; Liu, G.; Dong, X.-Q.; Zhang, X. Enantioselective access to chiral cyclic sulfamidates through iridium-catalyzed asymmetric hydrogenation. Adv. Synth. Catal. 2019, 361, 1582–1586. [Google Scholar] [CrossRef]
- Han, Z.; Liu, G.; Wang, R.; Dong, X.-Q.; Zhang, X. Highly efficient Ir-catalyzed asymmetric hydrogenation of benzoxazinones and derivatives with a Brønsted acid cocatalyst. Chem. Sci. 2019, 10, 4328–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.-Q.; Zhao, Q.; Li, P.; Chen, C.; Zhang, X. Metalorganocatalysis: Cooperating transition metal catalysis and organocatalysis through a covalent bond. Org. Chem. Front. 2015, 2, 1425–1431. [Google Scholar] [CrossRef]
- Chen, M.-H.; Chen, Z.; Song, B.-A.; Bhadury, P.S.; Yang, S.; Cai, X.-J.; Hu, D.-Y.; Xue, W.; Zeng, S. Synthesis and antiviral activities of chiral thiourea derivatives containing an α-aminophosphonate moiety. J. Agric. Food Chem. 2009, 57, 1383–1388. [Google Scholar] [CrossRef]
- Shi, M.; Liu, X.-G. Asymmetric Morita-Baylis-Hillman reaction of arylaldehydes with 2-cyclohexen-1-one catalyzed by chiral bis(thio)urea and DABCO. Org. Lett. 2008, 10, 1043–1046. [Google Scholar] [CrossRef]
- Tan, B.; Candeias, N.R.; Barbas, C.F. Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst. Nat. Chem. 2011, 3, 473–477. [Google Scholar] [CrossRef]
- Rampalakos, C.; Wulff, W.D.D. A novel bis-thiourea organocatalyst for the asymmetric aza-Henry reaction. Adv. Synth. Catal. 2008, 350, 1785–1790. [Google Scholar] [CrossRef]
- Kang, Y.K.; Yoon, S.J.; Kim, D.Y. Asymmetric Mannich-type reactions of fluorinated ketoesters with binaphthyl-modified thiourea catalysts. Bull. Korean Chem. Soc. 2011, 32, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, Y.; Hidaka, Y.; Ito, K. Asymmetric Henry reactions of aldehydes using chiral biaryl-based bis(thiourea) organocatalysts. Synlett 2013, 24, 883–885. [Google Scholar] [CrossRef]
- Otevrel, J.; Bobal, P. Biphenyl-based bis(thiourea) organocatalyst for asymmetric and syn-selective Henry reaction. Synthesis 2017, 49, 593–603. [Google Scholar] [CrossRef] [Green Version]
- Otevrel, J.; Bobal, P. Diamine-tethered bis(thiourea) organocatalyst for asymmetric Henry reaction. J. Org. Chem. 2017, 82, 8342–8358. [Google Scholar] [CrossRef]
- Otevrel, J.; Svestka, D.; Bobal, P. Bianthryl-based organocatalysts for the asymmetric Henry reaction of fluoroketones. Org. Biomol. Chem. 2019, 17, 5244–5248. [Google Scholar] [CrossRef]
- Roussel, C.; Roman, M.; Andreoli, F.; del Rio, A.; Faure, R.; Vanthuyne, N. Non-racemic atropisomeric (thio)ureas as neutral enantioselective anion receptors for amino-acid derivatives: Origin of smaller Kass with thiourea than urea derivatives. Chirality 2006, 18, 762–771. [Google Scholar] [CrossRef]
- Vlatković, M.; Bernardi, L.; Otten, E.; Feringa, B.L. Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chem. Commun. 2014, 50, 7773–7775. [Google Scholar] [CrossRef]
- Pizzolato, S.F.; Collins, B.S.L.; van Leeuwen, T.; Feringa, B.L. Bifunctional molecular photoswitches based on overcrowded alkenes for dynamic control of catalytic activity in Michael addition reactions. Chem. Eur. J. 2017, 23, 6174–6184. [Google Scholar] [CrossRef]
- Song, C.; Li, L.; Wang, F.; Deng, J.; Yang, W. Novel optically active helical poly(N-propargylthiourea)s: Synthesis, characterization and complexing ability toward Fe(III) ions. Polym. Chem. 2011, 2, 2825–2829. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, W.; Deng, J. Optically active helical polymers with pendent thiourea groups: Chiral organocatalyst for asymmetric Michael addition reaction. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 1816–1823. [Google Scholar] [CrossRef]
- Mayr, F.; Mohr, L.-M.; Rodriguez, E.; Bach, T. Synthesis of chiral thiourea-thioxanthone hybrids. Synthesis 2017, 49, 5238–5250. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhang, Y.; Chan, A.S.C.; Wang, R. Highly enantioselective synthesis of γ-nitro heteroaromatic ketones in a doubly stereocontrolled manner catalyzed by bifunctional thiourea catalysts based on dehydroabietic amine: A doubly stereocontrolled approach to pyrrolidine carboxylic acids. Org. Lett. 2009, 11, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, Y.; Liu, X.; Zhang, G.; Lai, L.; Wu, L.; Zhang, J.; Wang, R. Enantio- and diastereoselective asymmetric addition of 1,3-dicarbonyl compounds to nitroalkenes in a doubly stereocontrolled manner catalyzed by bifunctional rosin-derived amine thiourea catalysts. J. Org. Chem. 2009, 74, 5562–5567. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, Y.; Wu, L.; Zhang, G.; Liu, X.; Zhang, H.; Fu, D.; Wang, R. Doubly stereocontrolled asymmetric aza-Henry reaction with in situ generation of N-Boc-imines catalyzed by novel rosin-derived amine thiourea catalysts. Adv. Synth. Catal. 2009, 351, 2096–2100. [Google Scholar] [CrossRef]
- Jiang, X.; Fu, D.; Zhang, G.; Cao, Y.; Liu, L.; Song, J.; Wang, R. Highly diastereo- and enantioselective Mannich reaction of lactones with N-Boc-aldimines catalyzed by bifunctional rosin-derived amine thiourea catalysts. Chem. Commun. 2010, 46, 4294–4296. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, G.; Fu, D.; Cao, Y.; Shen, F.; Wang, R. Direct organocatalytic asymmetric aldol reaction of α-isothiocyanato imides to α-ketoesters under low ligand loading: A doubly stereocontrolled approach to cyclic thiocarbamates bearing chiral quaternary stereocenters. Org. Lett. 2010, 12, 1544–1547. [Google Scholar] [CrossRef]
- Liu, L.; Zhong, Y.; Zhang, P.; Jiang, X.; Wang, R. Core scaffold-inspired stereoselective synthesis of spiropyrazolones via an organocatalytic Michael/cyclization sequence. J. Org. Chem. 2012, 77, 10228–10234. [Google Scholar] [CrossRef]
- Shi, X.M.; Dong, W.P.; Zhu, L.P.; Jiang, X.X.; Wang, R. Asymmetric vinylogous Michael addition/cyclization cascade reaction for the construction of diversely structured spiro-oxindole skeletons. Adv. Synth. Catal. 2013, 355, 3119–3123. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Jiang, X.; Yan, W.; Wang, R. Highly enantioslective synthesis of multisubstituted polyfunctional dihydropyrrole via an organocatalytic tandem Michael/cyclization sequence. Org. Lett. 2011, 13, 3806–3809. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Yan, J.; Chen, R.; Wang, S.; Ma, Y.; Wang, R. One-pot enantioselective synthesis of functionalized pyranocoumarins and 2-amino-4H-chromenes: Discovery of a type of potent antibacterial agent. J. Org. Chem. 2012, 77, 878–888. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, L.; Kai, M.; Zhu, L.; Yao, X.; Wang, R. Asymmetric inverse-electron-demand hetero-Diels-Alder reaction for the construction of bicyclic skeletons with multiple stereocenters by using a bifunctional organocatalytic strategy: An efficient approach to chiral macrolides. Chem. Eur. J. 2012, 18, 11465–11473. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.V.S.; Swain, M.; Reddy, S.M.; Yadav, J.S.; Sridhar, B. Asymmetric Michael/hemiketalization of 5-hydroxy-2-methyl-4H-pyran-4-one to β,γ-unsaturated α-ketoesters catalyzed by a bifunctional rosin-indane amine thiourea catalyst. RSC Adv. 2014, 4, 42299–42307. [Google Scholar] [CrossRef]
- Sohtome, Y.; Hashimoto, Y.; Nagasawa, K. Guanidine-thiourea bifunctional organocatalyst for the asymmetric Henry (nitroaldol) reaction. Adv. Synth. Catal. 2005, 347, 1643–1648. [Google Scholar] [CrossRef]
- Herrera, R.P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Catalytic enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes by using a simple thiourea organocatalyst. Angew. Chem. Int. Ed. 2005, 44, 6576–6579. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.E.; Wojaczyńska, E.; Skarewski, J. Enantiopure trans-1-amino-2-(arylsulfanyl)cyclohexanes: Novel chiral motifs for ligands and organocatalysts. Tetrahedron: Asymmetry 2011, 22, 1687–1691. [Google Scholar] [CrossRef]
- Krasnovskaya, O.O.; Malinnikov, V.M.; Dashkova, N.S.; Gerasimov, V.M.; Grishina, I.V.; Kireev, I.I.; Lavrushkina, S.V.; Panchenko, P.A.; Zakharko, M.A.; Ignatov, P.A. Thiourea modified doxorubicin: A perspective pH-sensitive prodrug. Bioconjug. Chem. 2019, 30, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-W.; Liu, Y.-X.; Zhang, W.; Tao, Y.; Zhu, Y.; Tao, J.-C.; Tang, M.-S. Highly enantioselective Michael additions of isobutyraldehyde to nitroalkenes promoted by amphiphilic bifunctional primary amine-thioureas in organic or aqueous medium. Eur. J. Org. Chem. 2011, 6747–6754. [Google Scholar] [CrossRef]
- Ma, Z.-W.; Liu, Y.-X.; Huo, L.-J.; Gao, X.; Tao, J.-C. Doubly stereocontrolled asymmetric Michael addition of acetylacetone to nitroolefins promoted by an isosteviol-derived bifunctional thiourea. Tetrahedron: Asymmetry 2012, 23, 443–448. [Google Scholar] [CrossRef]
- Song, Z.-T.; Zhang, T.; Du, H.-L.; Ma, Z.-W.; Zhang, C.-H.; Tao, J.-C. Highly enantioselective Michael addition promoted by a new diterpene-derived bifunctional thiourea catalyst: A doubly stereocontrolled approach to chiral succinimide derivatives. Chirality 2014, 26, 121–127. [Google Scholar] [CrossRef]
- Grošelj, U.; Golobič, A.; Stare, K.; Svete, J.; Stanovnik, B. Synthesis and structural elucidation of novel camphor-derived thioureas. Chirality 2012, 24, 307–317. [Google Scholar] [CrossRef]
- Khan, S.A.; Singh, N.; Saleem, K. Synthesis, characterization and in vitro antibacterial activity of thiourea and urea derivatives of steroids. Eur. J. Med. Chem. 2008, 43, 2272–2277. [Google Scholar] [CrossRef] [PubMed]
- Ramadas, K.; Suresh, G.; Janarthanan, N.; Masilamani, S. Antifungal activity of 1,3-disubstituted symmetrical and unsymmetrical thioureas. Pestic. Sci. 1998, 52, 145–151. [Google Scholar] [CrossRef]
- Cunha, S.; Macedo, F.C.; Costa, G.A.N.; Rodrigues, M.T.; Verde, R.B.V.; de Souza Neta, L.C.; Vencato, I.; Lariucci, C.; Sá, F.P. Antimicrobial activity and structural study of disubstituted thiourea derivatives. Monatsh. Chem. 2007, 138, 511–516. [Google Scholar] [CrossRef]
- Omar, A.-M.M.E.; Farghaly, A.M.; Hazzai, A.A.B.; Eshba, N.H.; Sharabi, F.M.; Daabees, T.T. Thiourea and thiosemicarbazide derivatives structurally related to hexestrol: Synthesis and anticancer and other pharmacological properties. J. Pharm. Sci. 1981, 70, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Kafarski, P.; Lejczak, B. Biological activity of aminophosphonic acids. Phosphorus. Sulfur. Silicon Relat. Elem. 1991, 63, 193–215. [Google Scholar] [CrossRef]
- Yang, X.; Song, B.; Jin, L.; Wei, X.; Bhadury, S.P.; Li, X.; Yang, S.; Hu, D. Synthesis and antiviral bioactivities of novel chiral bis-thiourea-type derivatives containing α-aminophosphonate moiety. Sci. China Chem. 2011, 54, 103–109. [Google Scholar] [CrossRef]
- Liu, J.; Yang, S.; Li, X.; Fan, H.; Bhadury, P.; Xu, W.; Wu, J.; Wang, Z. Synthesis and antiviral bioactivity of chiral thioureas containing leucine and phosphonate moieties. Molecules 2010, 15, 5112–5123. [Google Scholar] [CrossRef]
- Yan, Z.; Cai, X.; Yang, X.; Song, B.; Chen, Z.; Bhadury, S.P.; Hu, D.; Jin, L.; Xue, W.; Lu, P. Synthesis and antiviral activities of chiral thiourea derivatives. Chin. J. Chem. 2009, 27, 593–601. [Google Scholar] [CrossRef]
- Lewi, P.; Heeres, J.; Ariën, K.; Venkatraj, M.; Joossens, J.; Van der Veken, P.; Augustyns, K.; Vanham, G. Reverse transcriptase inhibitors as microbicides. Curr. HIV Res. 2012, 10, 27–35. [Google Scholar] [CrossRef]
- Jones, T.R.; Lee, S.-W.; Johann, S.V.; Razinkov, V.; Visalli, R.J.; Feld, B.; Bloom, J.D.; O’Connell, J. Specific inhibition of human cytomegalovirus glycoprotein B-mediated fusion by a novel thiourea small molecule. J. Virol. 2004, 78, 1289–1300. [Google Scholar] [CrossRef] [Green Version]
- Struga, M.; Kossakowski, J.; Koziol, A.E.; Kedzierska, E.; Fidecka, S.; La Colla, P.; Ibba, C.; Collu, G.; Sanna, G.; Secci, B.; et al. Synthesis, pharmacological and antiviral activity of 1,3-thiazepine derivatives. Eur. J. Med. Chem. 2009, 44, 4960–4969. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Farmaco 1999, 54, 26–45. [Google Scholar] [CrossRef]
- Robl, J.A.; Sun, C.-Q.; Stevenson, J.; Ryono, D.E.; Simpkins, L.M.; Cimarusti, M.P.; Dejneka, T.; Slusarchyk, W.A.; Chao, S.; Stratton, L.; et al. Dual metalloprotease inhibitors: Mercaptoacetyl-based fused heterocyclic dipeptide mimetics as inhibitors of angiotensin-converting enzyme and neutral endopeptidase. J. Med. Chem. 1997, 40, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Jain, G.; Sharma, A. Benzothiazepines: Chemistry of a privileged scaffold. RSC Adv. 2015, 5, 70619–70639. [Google Scholar] [CrossRef]
- Venkatachalam, T.K.; Sudbeck, E.A.; Mao, C.; Uckun, F.M. Stereochemistry of halopyridyl and thiazolyl thiourea compounds is a major determinant of their potency as nonnucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2000, 10, 2071–2074. [Google Scholar] [CrossRef]
- Venkatachalam, T.K.; Mao, C.; Uckun, F.M. Stereochemistry as a major determinant of the anti-HIV activity of chiral naphthyl thiourea compounds. Antivir. Chem. Chemother. 2001, 12, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, F.W.; Cantrell, A.S.; Hoegberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem. 1995, 38, 4929–4936. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, A.S.; Engelhardt, P.; Högberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kangasmetsä, J.; Kinnick, M.D.; Lind, P.; Morin, J.M.; et al. Phenethylthiazolylthiourea (PETT) compounds as a new class of HIV-1 reverse transcriptase inhibitors. 2. Synthesis and further structure−activity relationship studies of PETT analogs. J. Med. Chem. 1996, 39, 4261–4274. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, T.K.; Mao, C.; Uckun, F.M. Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorg. Med. Chem. 2004, 12, 4275–4284. [Google Scholar] [CrossRef] [PubMed]
- Pingaew, R.; Sinthupoom, N.; Mandi, P.; Prachayasittikul, V.V.; Cherdtrakulkiat, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V.V. Synthesis, biological evaluation and in silico study of bis-thiourea derivatives as anticancer, antimalarial and antimicrobial agents. Med. Chem. Res. 2017, 26, 3136–3148. [Google Scholar] [CrossRef]
- Rohde, J.M.; Brimacombe, K.R.; Liu, L.; Pacold, M.E.; Yasgar, A.; Cheff, D.M.; Lee, T.D.; Rai, G.; Baljinnyam, B.; Li, Z.; et al. Discovery and optimization of piperazine-1-thiourea-based human phosphoglycerate dehydrogenase inhibitors. Bioorg. Med. Chem. 2018, 26, 1727–1739. [Google Scholar] [CrossRef] [PubMed]
- Manjula, S.N.; Noolvi, N.M.; Vipan Parihar, K.; Reddy, S.A.M.; Ramani, V.; Gadad, A.K.; Singh, G.; Kutty, N.G.; Rao, C.M. Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents. Eur. J. Med. Chem. 2009, 44, 2923–2929. [Google Scholar] [CrossRef] [PubMed]
- Dinakaran, V.S.; Jacob, D.; Mathew, J.E.; Seekarajapuram, V.; Divya, D.; Jessy, J.; Mathew, E. Synthesis and biological evaluation of novel pyrimidine-2(1H)-ones/thiones as potent anti-inflammatory and anticancer agents. Med. Chem. Res. 2012, 21, 3598–3606. [Google Scholar] [CrossRef]
- Liu, J.-Z.; Song, B.-A.; Fan, H.-T.; Bhadury, P.S.; Wan, W.-T.; Yang, S.; Xu, W.; Wu, J.; Jin, L.-H.; Wei, X.; et al. Synthesis and in vitro study of pseudo-peptide thioureas containing α-aminophosphonate moiety as potential antitumor agents. Eur. J. Med. Chem. 2010, 45, 5108–5112. [Google Scholar] [CrossRef]
- Liu, J.; Liao, P.; Hu, J.; Zhu, H.; Wang, Y.; Li, Y.; Li, Y.; He, B. Synthesis and Antitumor Activities of Chiral Dipeptide Thioureas Containing an Alpha-Aminophosphonate Moiety. Molecules 2017, 22, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.-C.; Wang, M.; Pan, Y.-M.; Yao, G.-Y.; Wang, H.-S.; Tian, X.-Y.; Qin, J.-K.; Zhang, Y. Synthesis and antitumor activities of novel thiourea α-aminophosphonates from dehydroabietic acid. Eur. J. Med. Chem. 2013, 69, 508–520. [Google Scholar] [CrossRef]
- Rao, X.; Song, Z.; He, L.; Jia, W. Synthesis, structure analysis and cytotoxicity studies of novel unsymmetrically N,N′-substituted ureas from dehydroabietic acid. Chem. Pharm. Bull. 2008, 56, 1575–1578. [Google Scholar] [CrossRef] [Green Version]
- Venkatachalam, T.K.; Vassilev, A.O.; Benyunov, A.; Grigoriants, O.O.; Tibbles, H.E.; Uckun, F.M. Stereochemistry as a determinant of the anti-leukemic potency of halopyridyl and thiazolyl thiourea compounds. Lett. Drug Des. Discov. 2007, 4, 318–326. [Google Scholar] [CrossRef]
- Venkatachalam, T.K.; Qazi, S.; Samuel, P.; Uckun, F.M. Substituted heterocyclic thiourea compounds as a new class of anti-allergic agents inhibiting IgE/FcεRI receptor mediated mast cell leukotriene release. Bioorg. Med. Chem. 2003, 11, 1095–1105. [Google Scholar] [CrossRef]
- Wasserman, S.I. Mast cell biology. J. Allergy Clin. Immunol. 1990, 86, 590–593. [Google Scholar] [CrossRef]
- Bildirici, I.; Cetin, A.; Menges, N.; Alan, Y. Synthesis and SAR studies of pyrazole-3-carboxamides and -3-carbonyl thioureides including chiral moiety: Novel candidates as antibacterial agents. J. Serb. Chem. Soc. 2018, 83, 795–807. [Google Scholar] [CrossRef]
- O’Dwyer, P.J.; King, S.A.; Plowman, J.; Grieshaber, C.K.; Hoth, D.F.; Leyland-Jones, B. Pyrazole: Preclinical reassessment. Invest. New Drugs 1988, 6, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem. 2010, 45, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.P.; Tiwari, O.P. Brijog Synthesis and antimicrobial activity of some methyl 4-(1H-benzo[d] imidazol-2-yl) phenyl carbamodithioate amine derivatives. Int. J. Pharm. Sci. Res. 2018, 9, 1194–1200. [Google Scholar] [CrossRef]
- Madabhushi, S.; Mallu, K.K.R.; Vangipuram, V.S.; Kurva, S.; Poornachandra, Y.; Kumar, C.G. Synthesis of novel benzimidazole functionalized chiral thioureas and evaluation of their antibacterial and anticancer activities. Bioorg. Med. Chem. Lett. 2014, 24, 4822–4825. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steppeler, F.; Iwan, D.; Wojaczyńska, E.; Wojaczyński, J. Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules 2020, 25, 401. https://doi.org/10.3390/molecules25020401
Steppeler F, Iwan D, Wojaczyńska E, Wojaczyński J. Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules. 2020; 25(2):401. https://doi.org/10.3390/molecules25020401
Chicago/Turabian StyleSteppeler, Franz, Dominika Iwan, Elżbieta Wojaczyńska, and Jacek Wojaczyński. 2020. "Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry" Molecules 25, no. 2: 401. https://doi.org/10.3390/molecules25020401
APA StyleSteppeler, F., Iwan, D., Wojaczyńska, E., & Wojaczyński, J. (2020). Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules, 25(2), 401. https://doi.org/10.3390/molecules25020401