Improved Magnetization Transfers among Quadrupolar Nuclei in Two-Dimensional Homonuclear Correlation NMR Experiments Applied to Inorganic Network Structures
Abstract
:1. Introduction
2. Rf Pulse Sequences
2.1. 1Q–1Q Correlation Protocol
2.2. R Supercycles for Magnetization Exchange
3. Materials and Methods
3.1. Samples
3.2. Solid-State NMR Experiments
3.2.1. B MAS NMR on the NCBS Glass
3.2.2. Al NMR on AlPO-CJ19
3.3. Numerical Simulations
4. Results and Discussion
4.1. Numerically Simulated Magnetization-Transfer Efficiencies
4.1.1. Resonance Offsets
4.1.2. RF-Amplitude Errors
4.2. 2D Correlation B NMR Experiments on the NCBS Glass
4.2.1. Introduction to the NCBS Glass Structure
4.2.2. 1Q–1Q Correlation B NMR Results
4.2.3. Relative Merits of the (SR Recoupling Schemes
4.3. Al Correlation Experiments on AlPO-CJ19
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eckert, H.; Elbers, S.; Epping, J.D.; Janssen, M.; Kalwei, M.; Strojek, W.; Voigt, U. Dipolar Solid State NMR Approaches Towards Medium-Range Structure in Oxide Glasses. Top. Curr. Chem. 2005, 246, 195–233. [Google Scholar] [CrossRef]
- Edén, M. NMR Studies of Oxide-Based Glasses. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2012, 108, 177–221. [Google Scholar] [CrossRef]
- Schnell, I.; Spiess, H.W. High-Resolution 1H NMR Spectroscopy in the Solid State: Very Fast Sample Rotation and Multiple-Quantum Coherences. J. Magn. Reson. 2001, 151, 153–227. [Google Scholar] [CrossRef] [PubMed]
- Baldus, M. Correlation Experiments for Assignment and Structure Elucidation of Immobilized Polypeptides under Magic Angle Spinning. Prog. Nucl. Magn. Reson. Spectrosc. 2002, 41, 1–47. [Google Scholar] [CrossRef]
- De Paëpe, G. Dipolar Recoupling in Magic Angle Spinning Solid-State Nuclear Magnetic Resonance. Annu. Rev. Phys. Chem. 2012, 63, 661–684. [Google Scholar] [CrossRef]
- Levitt, M.H. Symmetry-Based Pulse Sequences in Magic-Angle spinning Solid State NMR. In Encyclopedia of Magnetic Resonance; Grant, D.M., Harris, R.K., Eds.; John Wiley & Sons: Chichester, UK, 2002; Volume 9, pp. 165–196. [Google Scholar]
- Edén, M. Advances in Symmetry-Based Pulse Sequences in Magic-Angle Spinning Solid-State NMR. eMagRes 2013, 2, 351–364. [Google Scholar] [CrossRef]
- Edén, M. Homonuclear Dipolar Recoupling of Half-Integer Spin Quadrupolar Nuclei: Techniques and Applications. Solid State Nucl. Magn. Reson. 2009, 36, 1–10. [Google Scholar] [CrossRef]
- Edén, M. Recent Progress in Homonuclear Correlation Spectroscopy of Quadrupolar Nuclei. In Modern Magnetic Resonance, 2nd ed.; Springer: Cham, Switzerland, 2018; pp. 1093–1124. [Google Scholar] [CrossRef]
- Edén, M. 27Al NMR Studies of Aluminosilicate Glasses. Annu. Rep. NMR Spectrosc. 2015, 86, 237–331. [Google Scholar] [CrossRef]
- Nijman, M.; Ernst, M.; Kentgens, A.P.M.; Meier, B.H. Rotational-Resonance NMR Experiments in Half-Integer Quadrupolar Spin Systems. Mol. Phys. 2000, 98, 161–178. [Google Scholar] [CrossRef]
- Hartmann, P.; Jäger, C.; Zwanziger, J. Off-Angle Correlation Spectroscopy Applied to Spin-1/2 and Quadrupolar Nuclei. Solid State Nucl. Magn. Reson. 1999, 13, 245–254. [Google Scholar] [CrossRef]
- Ajithkumar, T.G.; Kentgens, A.P.M. Homonuclear Correlation Experiments of Quadrupolar Nuclei using Multiple-Quantum Techniques Spinning at a P4 Magic Angle. J. Am. Chem. Soc. 2003, 125, 2398–2399. [Google Scholar] [CrossRef] [PubMed]
- Ajithkumar, T.G.; van Eck, E.R.H.; Kentgens, A.P.M. Homonuclear Correlation Experiments for Quadrupolar Nuclei, Spinning Away from the Magic Angle. Solid State Nucl. Magn. Reson. 2004, 26, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Levitt, M.H.; Raleigh, D.P.; Creuzet, F.; Griffin, R.G. Theory and Simulations of Homonuclear Spin Pair Systems in Rotating Solids. J. Chem. Phys. 1990, 90, 6347–6364. [Google Scholar] [CrossRef]
- Edén, M.; Grinshtein, J.; Frydman, L. High Resolution 3D Exchange NMR Spectroscopy and the Mapping of Connectivities between Half-Integer Quadrupolar Nuclei. J. Am. Chem. Soc. 2002, 124, 9708–9709. [Google Scholar] [CrossRef] [PubMed]
- Edén, M.; Frydman, L. Homonuclear NMR Correlations between Half-Integer Quadrupolar Nuclei Undergoing Magic-Angle Spinning. J. Phys. Chem. B 2003, 107, 14598–14611. [Google Scholar] [CrossRef]
- Hung, I.; Howes, A.P.; Anupold, T.; Samoson, A.; Massiot, D.; Smith, M.E.; Brown, S.P.; Dupree, R. 27Al Double Rotation Two-Dimensional Spin Diffusion NMR: Complete Unambiguous Assignment of Aluminium Sites in 9Al2O3·2B2O3. Chem. Phys. Lett. 2006, 432, 152–156. [Google Scholar] [CrossRef]
- Kentgens, A.P.M.; van Eck, R.H.; Ajithkumar, T.G.; Anupold, T.; Past, J.; Reinhold, A.; Samoson, A. New Opportunities for Double Rotation NMR of Half-Integer Quadrupolar Nuclei. J. Magn. Reson. 2006, 178, 212–219. [Google Scholar] [CrossRef]
- Gan, Z.; Robyr, P. Deuterium Polarization Transfer in Rotating Solids and its Application in Structural Investigation. Mol. Phys. 1998, 95, 1143–1152. [Google Scholar] [CrossRef]
- Facey, G.; Gusev, D.; Morris, R.H.; Macholl, S.; Buntkowsky, G. 2H MAS NMR of Strongly Dipolar Coupled Deuterium Pairs in Transition Metal Dihydrides: Extracting Dipolar Coupling and Quadrupolar Tensor Orientations from the Lineshape of Spinning Sidebands. Phys. Chem. Chem. Phys. 2000, 2, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Edén, M.; Frydman, L. Quadrupolar-Driven Recoupling of Homonuclear Dipolar Interactions in the Nuclear Magnetic Resonance of Rotating Solids. J. Chem. Phys. 2001, 114, 4116–4123. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; McDowell, C.A. Spectral Spin Diffusion of a Spin-3/2 System in Rotating Solids. Mol. Phys. 1995, 85, 283–298. [Google Scholar] [CrossRef]
- Dowell, N.G.; Ashbrook, S.E.; McManus, J.; Wimperis, S. Relative Orientation of Quadrupole Tensors from Two-Dimensional Multiple-Quantum MAS NMR. J. Am. Chem. Soc. 2001, 123, 8135–8136. [Google Scholar] [CrossRef] [PubMed]
- Dowell, N.G.; Ashbrook, S.E.; Wimperis, S. Relative Orientation of Quadrupole Tensors from High-Resolution NMR of Powdered Solids. J. Phys. Chem. A 2002, 106, 9470–9478. [Google Scholar] [CrossRef]
- Baldus, M.; Rovnyak, D.; Griffin, R.G. Radio-Frequency-Mediated Dipolar Recoupling Among Half-Integer Quadrupolar Spins. J. Chem. Phys. 2000, 112, 5902–5909. [Google Scholar] [CrossRef]
- Wi, S.; Logan, J.W.; Sakellariou, D.; Walls, J.D.; Pines, A. Rotary Resonance Recoupling for Half-Integer Quadrupolar Nuclei in Solid-State Nuclear Magnetic Resonance. J. Chem. Phys. 2002, 117, 7024–7033. [Google Scholar] [CrossRef]
- Mali, G.; Fink, G.; Taulelle, F. Double-Quantum Homonuclear Correlation Magic Angle Sample Spinning Nuclear Magnetic Resonance Spectroscopy of Dipolar-Coupled Quadrupolar Nuclei. J. Chem. Phys. 2004, 120, 2835–2845. [Google Scholar] [CrossRef]
- Nielsen, N.C.; Bildsøe, H.; Jakobsen, H.J.; Levitt, M.H. Double-Quantum Homonuclear Rotary Resonance: Efficient Dipolar Recovery in Magic-Angle-Spinning Nuclear Magnetic Resonance. J. Chem. Phys. 1994, 101, 1805–1812. [Google Scholar] [CrossRef]
- Edén, M.; Annersten, H.; Zazzi, Å. Pulse-Assisted Homonuclear Dipolar Recoupling of Half-Integer Quadrupolar Spins in Magic-Angle Spinning NMR. Chem. Phys. Lett. 2005, 410, 24–30. [Google Scholar] [CrossRef]
- Warren, W.S.; Weitekamp, D.P.; Pines, A. Theory of Selective Excitation of Multiple-Quantum Transitions. J. Chem. Phys. 1980, 73, 2084–2099. [Google Scholar] [CrossRef] [Green Version]
- Edén, M. Order-Selective Multiple-Quantum Excitation in Magic-Angle Spinning NMR: Creating Triple-Quantum Coherences with a Trilinear Hamiltonian. Chem. Phys. Lett. 2002, 366, 469–476. [Google Scholar] [CrossRef]
- Brinkmann, A.; Schmedt auf der Günne, J.; Levitt, M.H. Homonuclear Zero-Quantum Recoupling in Fast Magic-Angle-Spinning Nuclear MAgnetic Resonance. J. Magn. Reson. 2002, 156, 79–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinkmann, A.; Edén, M. Second Order Average Hamiltonian Theory of Symmetry-Based Pulse Schemes in the Nuclear Magnetic Resonance of Rotating Solids: Application to Triple-Quantum Dipolar Recoupling. J. Chem. Phys. 2004, 120, 11726–11745. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.R.; Jakobsen, H.J.; Skibsted, J. Structural Environments for Boron and Aluminium in Alumina-Boria Catalysts and Their Precursors from 11B and 27Al Single- and Double-Resonance MAS NMR Experiments. J. Phys. Chem. C 2008, 112, 7210–7222. [Google Scholar] [CrossRef]
- Jeener, J.; Meier, B.H.; Bachmann, P.; Ernst, R.R. Investigation of Exchange Processes by Two-Dimensional NMR Spectroscopy. J. Chem. Phys. 1979, 71, 4546–4553. [Google Scholar] [CrossRef]
- Painter, A.J.; Duer, M.J. Double-Quantum-Filtered Nuclear Magnetic Resonance Spectroscopy Applied to Quadrupolar Nuclei in Solids. J. Chem. Phys. 2002, 116, 710–722. [Google Scholar] [CrossRef]
- Edén, M.; Zhou, D.; Yu, J. Improved Double-Quantum NMR Correlation Spectroscopy of Dipolar-Coupled Quadrupolar Spins. Chem. Phys. Lett. 2006, 431, 397–403. [Google Scholar] [CrossRef]
- Frydman, L.; Harwood, J.S. Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle-Spinning NMR. J. Am. Chem. Soc. 1995, 117, 5367–5368. [Google Scholar] [CrossRef]
- Mali, G.; Kaucic, V. Enhancing Sensitivity or Resolution of Homonuclear Correlation Experiment for Half-Integer Quadrupolar Nuclei. J. Magn. Reson. 2004, 171, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Edén, M. Two-Dimensional MAS NMR Correlation Protocols Involving Double-Quantum Filtering of Quadrupolar Spin-Pairs. J. Magn. Reson. 2010, 204, 99–110. [Google Scholar] [CrossRef]
- Duer, M.J.; Painter, A.J. Correlating Quadrupolar Nuclear Spins: A Multiple-Quantum NMR approach. Chem. Phys. Lett. 1999, 313, 763–770. [Google Scholar] [CrossRef]
- Brinkmann, A.; Kentgens, A.P.M.; Anupõld, T.; Samoson, A. Symmetry-Based Recoupling in Double-Rotation NMR Spectroscopy. J. Chem. Phys. 2008, 129, 174507. [Google Scholar] [CrossRef] [Green Version]
- Perras, F.A.; Bryce, D.L. Measuring Dipolar and J Coupling Quadrupolar Nucl. Using Double-Rotat. NMR. J. Chem. Phys. 2013, 138, 174202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llor, A.; Virlet, J. Towards High-Resolution NMR of More Nuclei in Solids: Sample Spinning with Time-Dependent Spinner Axis Angle. Chem. Phys. Lett. 1988, 152, 248–253. [Google Scholar] [CrossRef]
- Samoson, A.; Lippmaa, E.; Pines, A. High Resolution Solid-State N.M.R. Averaging of Second-Order Effects by Means of a Double Rotor. Mol. Phys. 1988, 65, 1013–1018. [Google Scholar] [CrossRef]
- Wi, S.; Heise, H.; Pines, A. Reintroducing Anisotropic Interactions in Magic-Angle Spinning NMR of Half-Integer Quadrupolar Nuclei: 3D MQMAS. J. Am. Chem. Soc. 2002, 124, 10652–10653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iuga, D.; Holland, D.; Dupree, R. A 3D Experiment that Provides Isotropic Homonuclear Correlations of Half-Integer Quadrupolar Nuclei. J. Magn. Reson. 2014, 246, 122–129. [Google Scholar] [CrossRef]
- Lo, A.Y.H.; Edén, M. Efficient Symmetry-Based Homonuclear Dipolar Recoupling of Quadrupolar Spins: Double-Quantum NMR Correlations in Amorphous Solids. Phys. Chem. Chem. Phys. 2008, 10, 6635–6644. [Google Scholar] [CrossRef]
- Mali, G.; Kaucic, V.; Taulelle, F. Measuring Distances between Half-Integer Quadrupolar Nuclei and Detecting Relative Orientations of Quadrupolar and Dipolar Tensors by Double-Quantum Homonuclear Recoupling Nuclear Magnetic Resonance Experiments. J. Chem. Phys. 2008, 128, 204503. [Google Scholar] [CrossRef]
- Edén, M. Determination of Absolute Quadrupolar Tensor Orientations by Double-Quantum NMR on Powders. Chem. Phys. Lett. 2009, 470, 318–324. [Google Scholar] [CrossRef]
- Brinkmann, A.; Edén, M. Estimating Internuclear Distances between Half-Integer Quadrupolar Nuclei by Central-Transition Double-Quantum Sideband NMR Spectropscopy. Can. J. Chem. 2011, 89, 892–899. [Google Scholar] [CrossRef]
- Brinkmann, A.; Edén, M. Central-Transition Double-Quantum Sideband NMR Spectroscopy of Half-Integer Quadrupolar Nuclei: Estimating Internuclear Distances and Probing Clusters within Multi-Spin Networks. Phys. Chem. Chem. Phys. 2014, 16, 7037–7050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworski, A.; Stevensson, B.; Pahari, B.; Okhotnikov, K.; Edén, M. Local Structures and Al/Si Ordering in Lanthanum Aluminosilicate Glasses Explored by Advanced 27Al NMR Experiments and Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2012, 14, 15866–15878. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Stevensson, B.; Edén, M. Medium-Range Structural Organization of Phosphorus-Bearing Borosilicate Glasses Revealed by Advanced Solid-State NMR Experiments and MD Simulations: Consequences of B/Si Substitutions. J. Phys. Chem. B 2017, 121, 9737–9752. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Stevensson, B.; Edén, M. Direct Experimental Evidence for Abundant BO4–BO4 Motifs in Borosilicate Glasses from Double-Quantum 11B NMR Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 6372–6376. [Google Scholar] [CrossRef] [Green Version]
- Teymoori, G.; Pahari, B.; Stevensson, B.; Edén, M. Low-Power Broadband Homonuclear Dipolar Recoupling Without Decoupling: Double-Quantum 13C NMR Correlations at Very Fast Magic-Angle Spinning. Chem. Phys. Lett. 2012, 547, 103–109. [Google Scholar] [CrossRef]
- Teymoori, G.; Pahari, B.; Edén, M. Low-Power Broadband Homonuclear Dipolar Recoupling in MAS NMR by Two-Fold Symmetry Pulse Schemes for Magnetization Transfers and Double-Quantum Excitation. J. Magn. Reson. 2015, 261, 205–220. [Google Scholar] [CrossRef]
- Märker, K.; Paul, S.; Fernández-de-Alba, C.; Lee, D.; Mouesca, J.M.; Hediger, S.; De Paëpe, G. Welcoming Natural Isotopic Abundance in Solid-State NMR: Probing π-Stacking and Supramolecular Structure of Organic Nanoassemblies Using DNP. Chem. Sci. 2017, 8, 974–987. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.N.; Märker, K.; Piretra, T.; Boatz, J.C.; Matlahov, I.; Kodali, R.; Hediger, S.; van der Wel, P.C.A.; De Paëpe, G. Structural Fingerprinting of Protein Aggregates by Dynamic Nuclear Polarization-Enhanced Solid-State NMR at Natural Isotopic Abundance. J. Am. Chem. Soc. 2018, 140, 14576–14580. [Google Scholar] [CrossRef]
- Mathew, R.; Turdean-Ionescu, C.; Yu, Y.; Stevensson, B.; Izquierdo-Barba, I.; García, A.; Arcos, D.; Vallet-Regí, M.; Edén, M. Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO–SiO2–P2O5 Glasses In Vitro: Insights from Solid-State NMR. J. Phys. Chem. C 2017, 121, 13223–13238. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Stevensson, B.; Pujari-Palmer, M.; Guo, H.; Engqvist, H.; Edén, M. The Monetite Structure Probed by Advanced Solid-State NMR Experimentation at Fast Magic-Angle Spinning. Int. J. Mol. Sci. 2019, 20, 6356. [Google Scholar] [CrossRef] [Green Version]
- Teymoori, G.; Pahari, B.; Viswanathan, E.; Edén, M. Multiple-Quantum Spin Counting in Magic-Angle-Spinning NMR via Low-Power Symmetry-Based Dipolar Recoupling. J. Magn. Reson. 2013, 236, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Guo, H.; Pujari-Palmer, M.; Stevensson, B.; Grins, J.; Engqvist, H.; Edén, M. Advanced Solid-State 1H/31P NMR Characterization of Pyrophosphate-Doped Calcium Phosphate Cements for Biomedical Applications: The Structural Role of Pyrophosphate. Ceram. Int. 2019, 45, 20642–20655. [Google Scholar] [CrossRef]
- Lee, D.; Wolska-Pietkiewicz, M.; Badoni, S.; Grala, A.; Lewiński, J.; De Paëpe, G. Disclosing Interfaces of ZnO Nanocrystals Using Dynamic Nuclear Polarization: Sol-Gel versus Organometallic Approach. Angew. Chem. Int. Ed. 2019, 58, 17163–17168. [Google Scholar] [CrossRef] [PubMed]
- van Wüllen, L.; Sabarinathan, V. Structure and High Temperature Behaviour of Sodium Aluminophosphate Glasses. Phys. Chem. Glas. Eur. J. Glass Sci. Technol. Part B 2016, 57, 173–182. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, L.; Eckert, H. Medium-Range Order in Sol–Gel Prepared Al2O3–SiO2 Glasses: New Results from Solid-State NMR. J. Phys. Chem. C 2014, 118, 4906–4917. [Google Scholar] [CrossRef]
- Lee, S.K.; Deschamps, M.; Hiet, J.; Massiot, D.; Park, S.Y. Connectivity and Proximity between Quadrupolar Nuclides in Oxide Glasses: Insights from Through-Bond and Through-Space Solid-State NMR. J. Phys. Chem. B 2009, 113, 5162–5167. [Google Scholar] [CrossRef]
- Murakami, M.; Shimizu, T.; Tansho, M.; Akai, T.; Yazawa, T. 11B–11B Two-Dimensional Correlation Nuclear Magnetic Resonance on Sodium Borosilicate Glass. Chem. Lett. 2010, 39, 32–33. [Google Scholar] [CrossRef]
- Howes, A.P.; Vedishcheva, N.M.; Samoson, A.; Hanna, J.V.; Smith, M.E.; Holland, D.; Dupree, R. Boron Environments in Pyrex® Glass—a High Resolution, Double-Rotation NMR and Thermodynamic Modelling Study. Phys. Chem. Chem. Phys. 2011, 13, 11919–11928. [Google Scholar] [CrossRef]
- Tricot, G. The Structure of Pyrex® Glass Investigated by Correlation NMR Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 26764–26770. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, L.; Yu, J.; Li, Y.; Yan, W.; Deng, F.; Xu, R. Synthesis, Crystal Structure, and Solid-State NMR Spectroscopy of a New Open-Framework Aluminophosphate (NH4)2Al4(PO4)4(HPO4)·H2O. Inorg. Chem. 2005, 44, 4391–4397. [Google Scholar] [CrossRef]
- Edén, M.; Brinkmann, A. Triple-Quantum Dynamics in Multiple-Spin Systems Undergoing Magic-Angle Spinning: Application to 13C Homonuclear Correlation Spectroscopy. J. Magn. Reson. 2005, 173, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y. 13C–13C Dipolar Recoupling under Very Fast Magic Angle Spinning in Solid-State Nuclear Magnetic Resonance: Applications to Distance Measurements, Spectral Assignments and High Throughput Secondary-Structure Determination. J. Chem. Phys. 2001, 114, 8473–8483. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.E.; Rienstra, C.M.; Griffiths, J.M.; Zen, W.; Lansbury, P.T., Jr.; Griffin, R.G. Homonuclear Radio Frequency-Driven Recoupling in Rotating Solids. J. Chem. Phys. 1998, 108, 9463–9479. [Google Scholar] [CrossRef]
- Edén, M.; Lo, A.Y.H. Supercycled Symmetry-Based Double-Quantum Dipolar Recoupling of Quadrupolar Spins: I. Theory. J. Magn. Reson. 2009, 200, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Marion, D.; Ikura, M.; Tschudin, R.; Bax, A. Rapid Recording of 2D NMR Spectra without phase cycling. Application to the Study of Hydrogen Exchange in Proteins. J. Magn. Reson. 1989, 85, 393–399. [Google Scholar] [CrossRef]
- Massiot, D.; Bessada, C.; Coutures, J.P.; Taulelle, F. A Quantitative Study of 27Al MAS NMR in Crystalline YAG. J. Magn. Reson. 1990, 90, 231–242. [Google Scholar] [CrossRef]
- van Wüllen, L.; Müller-Warmuth, W. 11B MAS NMR Spectroscopy for Characterizing the Structure of Glasses. Solid State Nucl. Magn. Reson. 1993, 2, 279–284. [Google Scholar] [CrossRef]
- Kupce, E.; Freeman, R. Adiabatic Pulses for Wideband Inversion and Broadband Decoupling. J. Magn. Reson. Ser. A 1995, 115, 273–276. [Google Scholar] [CrossRef]
- Dey, K.K.; Prasad, S.; Ash, J.T.; Deschamps, M.; Grandinetti, P. Spectral Editing in Solid-State MAS NMR of Quadrupolar Nuclei using Selective Satellite Inversion. J. Magn. Reson. 2007, 185, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Bak, M.; Rasmussen, J.T.; Nielsen, N.C. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy. J. Magn. Reson. 2000, 147, 296–330. [Google Scholar] [CrossRef] [Green Version]
- Tošner, Z.; Andersen, R.; Stevensson, B.; Edén, M.; Nielsen, N.C.; Vosegaard, T. Computer-Intensive Simulation of Solid-State NMR Experiments Using SIMPSON. J. Magn. Reson. 2014, 246, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Edén, M. Computer Simulations in Solid State NMR: II. Implementations for Static and Rotating Samples. Concepts Magn. Reson. A 2003, 18, 1–23. [Google Scholar] [CrossRef]
- Edén, M. Computer Simulations in Solid State NMR: III. Powder Averaging. Concepts Magn. Reson. A 2003, 18, 24–55. [Google Scholar] [CrossRef]
- Conroy, H. Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of Multidimensional Integrals. J. Chem. Phys. 1967, 47, 5307–5318. [Google Scholar] [CrossRef]
- Cheng, V.B.; Suzukawa, H.H.; Wolfsberg, M. Investigations of a Nonrandom Numerical Method for Multidimensional Integration. J. Chem. Phys. 1973, 59, 3992–3999. [Google Scholar] [CrossRef]
- Edén, M.; Lee, Y.K.; Levitt, M.H. Efficient Simulation of Periodic Problems in NMR. Application to Decoupling and Rotational Resonance. J. Magn. Reson. Ser. A 1996, 120, 56–71. [Google Scholar] [CrossRef]
- Levitt, M.H.; Edén, M. Numerical Simulation of Periodic NMR Problems: Fast Calculation of Carousel Averages. Mol. Phys. 1998, 95, 879–890. [Google Scholar] [CrossRef]
- Stevensson, B.; Edén, M. Interpolation by Fast Wigner Transform for Rapid Calculations of Magnetic Resonance Spectra from Powders. J. Chem. Phys. 2011, 134, 124104. [Google Scholar] [CrossRef]
- Stevensson, B.; Edén, M. Efficient Orientational Averaging by the Extension of Lebedev Grids via Regularized Octahedral Symmetry Expansion. J. Magn. Reson. 2006, 181, 162–176. [Google Scholar] [CrossRef]
- Duer, M.J. Determination of Structural Data from Multiple-Quantum Magic-Angle-Spinning NMR Experiments. Chem. Phys. Lett. 1997, 277, 167–174. [Google Scholar] [CrossRef]
- Wright, A.C. Borate Structures: Crystalline and Vitreous. Phys. Chem. Glas. Eur. J. Glass Sci. Technol. Part B 2010, 51, 1–39. [Google Scholar]
- Loewenstein, W. The Distribution of Aluminium in the Tetrahedra of Silicates and Aluminates. Am. Mineral. 1954, 39, 92–96. [Google Scholar]
- Engelhardt, G.; Michel, D. High-Resolution Solid-State NMR Spectroscopy of Silicates and Zeolites; Wiley: Chichester, UK, 1987. [Google Scholar]
- Abe, T. Borosilicate Glasses. J. Am. Ceram. Soc. 1952, 35, 284–299. [Google Scholar] [CrossRef]
- Smedskjaer, M.M.; Mauro, J.C.; Youngman, R.E.; Hogue, C.L.; Potuzak, M.; Yue, Y. Topological Principles of Borosilicate Glass Chemistry. J. Phys. Chem. B 2011, 115, 12930–12946. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Keil, P.; Hansen, M.R.; Edén, M. Improved Magnetization Transfers among Quadrupolar Nuclei in Two-Dimensional Homonuclear Correlation NMR Experiments Applied to Inorganic Network Structures. Molecules 2020, 25, 337. https://doi.org/10.3390/molecules25020337
Yu Y, Keil P, Hansen MR, Edén M. Improved Magnetization Transfers among Quadrupolar Nuclei in Two-Dimensional Homonuclear Correlation NMR Experiments Applied to Inorganic Network Structures. Molecules. 2020; 25(2):337. https://doi.org/10.3390/molecules25020337
Chicago/Turabian StyleYu, Yang, Philipp Keil, Michael Ryan Hansen, and Mattias Edén. 2020. "Improved Magnetization Transfers among Quadrupolar Nuclei in Two-Dimensional Homonuclear Correlation NMR Experiments Applied to Inorganic Network Structures" Molecules 25, no. 2: 337. https://doi.org/10.3390/molecules25020337
APA StyleYu, Y., Keil, P., Hansen, M. R., & Edén, M. (2020). Improved Magnetization Transfers among Quadrupolar Nuclei in Two-Dimensional Homonuclear Correlation NMR Experiments Applied to Inorganic Network Structures. Molecules, 25(2), 337. https://doi.org/10.3390/molecules25020337