Synthesis and Antimalarial Activity of 1,4-Disubstituted Piperidine Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. The Antimalarial Activity of Derivatives 6 and Target Compounds A
3. Materials and Methods
3.1. Apparatus, Materials, and Analytical Reagents
3.2. Chemistry
3.2.1. General procedure for the Synthesis of tert-Butyl 4-(phenylamino) Piperidine-1-carboxylates 3a–b
3.2.2. General Procedure for the Coupling with Phenoxyacetyl chloride: Synthesis of Compounds 5a–b
3.2.3. General Procedure for the Coupling with Chloroacetyl chloride: Synthesis of Compounds 7a–b
3.2.4. General Procedure for Synthesis of Compounds 9a–b
3.2.5. General Procedure for Deprotection: Synthesis of 6a–b
3.2.6. General Procedure for Synthesis of Target Compounds A
3.3. Biological Assays
3.3.1. Antiplasmodial Assay
3.3.2. Cytotoxicity on HUVEC
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Noedl, H. The need for new antimalarial drugs less prone to resistance. Curr. Pharm. Des. 2013, 19, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Njuguna, N.; Ongarora, D.S.B.; Chibale, K. Artemisin derivatives: A patent review (2006-present). Expert. Opin. Ther. Pat. 2012, 22, 1179–1203. [Google Scholar] [CrossRef] [PubMed]
- Ongarora, D.S.B.; Strydom, N.; Wicht, K.; Njoroge, M.; Wiesner, L.; Egan, T.J.; Wittlin, S.; Jurva, U.; Masimirembwa, C.M.; Chibale, K. Antimalarial benzoheterocyclic 4-aminoquinolines: Structure-activity relationship, in vivo evaluation, mechanistic and bioactivation studies. Bioorg. Med. Chem. 2015, 23, 5419–5432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toshio, H.; Fumihiro, I. Shin-Ichi, Y. Direct Arylation of 2-Pyridones; Photostimulated SRN1 Reaction between Cesium Phenoxides and Chloro-2-pyridones. Heterocycles 2000, 52, 253–260. [Google Scholar]
- Kohnen-Johannsen, K.L.; Kayser, O. Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules 2019, 24, 796. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.P.; Fang, C.; Ma, X.; Wang, L.; Yang, J.; Luo, J.; Yan, Y.; Zhang, Y.; Huang, S.X. Tropane alkaloids biosynthesis involves an unusual type III polyketide synthase and non-enzymatic condensation. Nat. Commun. 2019, 10, 4036. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.S.; Lukens, K.A.; Coelho, L.; Noguero, F.; Wirth, D.F.; Mazitschek, R.; Moreira, R.; Paulo, A. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype. Eur. J. Med. Chem. 2015, 102, 320–333. [Google Scholar] [CrossRef]
- Ishiguro, Y.; Kubota, T.; Ishiuchi, K.; Fromont, J.; Kobayashi, J. A novel piperidine alkaloid from an Okinawan marine sponge Plakortis sp. Tetrahedron Lett. 2009, 50, 3202–3204. [Google Scholar] [CrossRef]
- Kubizna, P.; Spanik, I.; Kozisek, J.; Szolcsanyi, P. Synthesis of 2,6-disubstituted piperidine alkaloids from ladybird beetles Calvia 10-guttata and Calvia 14-guttata. Tetrahedron 2010, 66, 2351–2355. [Google Scholar] [CrossRef]
- Gassama, A.; Ernenwein, C.; Hoffmann, N. Photochemical Key Steps in the Synthesis of Surfactants; from Furfural-Derived Intermediates. ChemSusChem 2009, 2, 1130–1137. [Google Scholar] [CrossRef]
- Weis, R.; Schweiger, K.; Faist, J.; Rajkovic, E.; Kungl, A.J.; Fabian, W.M.F.; Schunack, W.; Seebacher, W. Antimycobacterial and H1-antihistaminic activity of 2-substituted piperidine derivatives. Bioorg. Med. Chem. 2008, 16, 10326–10331. [Google Scholar] [CrossRef] [PubMed]
- Dambuza, N.S.; Smith, P.; Evans, A.; Norman, J.; Taylor, D.; Andayi, A.; Egan, T.; Chibale, K.; Wiesner, L. Antiplasmodial activity, in vivo pharmacokinetics and anti-malarial efficacy evaluation of hydroxypyridinone hybrids in a mouse model. Malar. J. 2015, 14, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Scott, O.D. Metabolism of 4-Aminopiperidine Drugs by Cytochrome P450s: Molecular and Quantum Mechanical Insights into Drug Design. Med. Chem. Lett. 2011, 2, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Heringa, M. Review on raloxifene: Profile of a selective estrogen receptor modulator. Int. J. Clin. Pharmacol. Ther. 2003, 41, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Vogel, V.; Constantino, J.P.; Wickerman, L. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene. JAMA 2006, 295, 2727–2741. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Nieves, K.; Rodríguez, A.D. Neopetrosiamine A, biologically active bis-piperidine alkaloid from the Caribbean Sea sponge Neopetrosia proxima. Bioorg. Med. Chem. Lett. 2010, 20, 5905–5908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varty, G.B.; Cohen-Williams, M.E.; Hunter, J.C. The antidepressant-like effects of neurokinin NK1 receptor antagonists in a gerbil tail suspension test. Behav. Pharmacol. 2003, 14, 87–95. [Google Scholar] [CrossRef]
- Varty, G.B.; Cohen-Williams, M.E.; Morgan, C.A. The gerbil elevated plus-maze II: Anxiolytic-like effects of selective neurokinin NK1 receptor antagonists. Neuropsychopharmacology 2002, 27, 371–379. [Google Scholar] [CrossRef]
- Watanabe, Y.; Asai, H.; Ishii, T.; Kiuchi, S.; Okamoto, M.; Taniguchi, H.; Nagasaki, M.; Saito, A. Pharmacological characterization of T-2328, 2-fluoro-4′-methoxy-3′-[[[(2S,3S)-2-phenylpiperidinyl]-amino]methyl]-[1,1′-biphenyl]-4-carbonitrile dihydrochloride, as a brain-penetrating antagonist of tachykinin NK1 receptor. J. Pharm. Sci. 2008, 106, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Watson, P.S.; Jiang, B.; Scott, B. A Diastereoselective Synthesis of 2.4-Disubstituted Piperidines: Scaffolds for Drug Discovery. Org. Lett. 2000, 2, 3679–3681. [Google Scholar] [CrossRef]
- Padmanilayam, M.; Scorneaux, B.; Dong, Y.; Chollet, J.; Matile, H.; Charman, S.A.; Creek, D.J.; Charman, W.N.; Tomas, S.T.; Scheurer, C.; et al. Antimalarial activity of N-alkyl amine, carboxamide, sulfonamide and urea derivatives of a dispiro-1,2,4-trioxolane piperidine. Bioorg. Med. Chem. Lett. 2006, 16, 5542–5545. [Google Scholar] [CrossRef] [PubMed]
- Meyers, M.J.; Anderson, E.J.; McNitt, S.A.; Krenning, T.M.; Singh, M.; Xu, J.; Zeng, W.; Qin, L.; Xu, W.; Zhao, S.; et al. Evaluation of spiropipéridine hydantoins as a novel class of antimalarial agent. Bioorg. Med. Chem. 2015, 23, 5144–5150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, M.; Pandey, S.K.; Pandey, V.P.; Pandey, J.; Tripathi, R.; Tripathi, R.P. Organocatalyzed highly atom economic one pot synthesis of tetrehydropyridines as antimalarials. Bioorg. Med. Chem. 2009, 17, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Sabbani, S.; Stocks, P.A.; Ellis, G.L.; Davies, J.; Hedenstrom, E.; Ward, S.A. O’Neill, P.M. Piperidine dispiro-1,2,4-trioxane analogues. Bioorg. Med. Chem. Lett. 2008, 18, 5804–5808. [Google Scholar] [CrossRef]
- Kikuchi, H.; Tasaka, H.; Hirai, S.; Takaya, Y.; Iwabuchi, Y.; Ooi, H.; Hatakeyama, S.; Kim, H.S.; Wataya, Y.; Oshima, Y. Potent Antimalarial Febrifugine Analogues Against the Plasmodium Malaria Parasite. J. Med. Chem. 2002, 45, 2563–2570. [Google Scholar] [CrossRef]
- Gassama, A.; Diatta, A. Synthesis of N-Substituted piperidines from piperidone. J. Soc. Ouest-Afr. Chim. 2015, 39, 31–40. [Google Scholar]
- Amed, F.; Magid, A.; Cynthia, A.; Kenneth, M.; Carson, G. Reductive amination of aldehydes and ketones by using sodium triacetoxyborohydride. Tetrahedron Lett. 1990, 31, 5595–5598. [Google Scholar] [CrossRef]
- Borch, R.F.; Bernstein, M.D.; Durst, H.D. Cyanohydridoboration anion as a selective reducing agent. J. Am. Chem. Soc. 1971, 93, 2897–2904. [Google Scholar] [CrossRef]
- Morandi, G.; Kebir, N.; Campistron, I.; Gohier, F.; Laguerre, A.; Pilard, J.F. Direct selective reductive amination of carbonyl telechelic oligoisoprenes: Elaboration of promising tri and tetrafunctionalized oligoisooprene intermediates. Tetrahedron Lett. 2007, 48, 7726–7730. [Google Scholar] [CrossRef]
- Khan, S.N.; Bae, S.Y.; Kim, H.S. A highly stereoselective reductive amination of 3-ketosteroid with amines: Improved synthesis of 3α-aminosteroids. Tetrahedron Lett. 2005, 46, 7675–7678. [Google Scholar] [CrossRef]
- Adachi, K.; Tsuru, E.; Banjyo, S.E.K.; Yamashita, T. Selective BH 3-Reduction of Amide Carbonyl Groups of Lithium Salts of N-t-Butoxycarbonyl (S)-O-Benzyl Tyrosyl (S)-Proline and N,N’-Ethylene-Bridged Dipeptides. Synthesis 1998, 11, 1623–1626. [Google Scholar] [CrossRef]
- Beamson, G.; Papworth, A.J.; Philipps, C.; Smith, A.M.; Whyman, R. Selective hydrogenation of amides using Rh/Mo catalysts. J. Cat. 2010, 93, 269. [Google Scholar] [CrossRef]
- Komlaga, G.; Genta-Jouve, G.; Cojean, S.; Dickson, R.T.; Mensah, M.L.K.; Loiseau, P.M.; Champy, P.; Beniddir, M.A. Antiplasmodial Securinega alkaloids from Phyllanthus fraternus: Discovery of natural (+)− allonorsecurinine. Tetrahedron Lett. 2017, 58, 3754–3756. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compounds | R1 | R2 | Overall Yields % |
---|---|---|---|
6a | H | H | 35 |
6b | F | H | 34 |
6c | H | Cl | 64 |
6d | F | Cl | 33 |
Compounds | R1 | R2 | R3 | Time (h) | Overall Yields % |
---|---|---|---|---|---|
12a | H | H | H | 24 | 18 |
12b | F | H | H | 24 | 18 |
12c | H | Cl | H | 24 | 32 |
12d | F | Cl | H | 24 | 18 |
13a | H | H | Br (o) | 24 | 21 |
13b | F | H | Br (o) | 24 | 19 |
13c | H | Cl | Br (o) | 24 | 35 |
13d | F | Cl | Br (o) | 24 | 20 |
14a | H | H | Cl (o) | 24 | 18 |
14c | H | Cl | Cl (o) | 24 | 41 |
14d | F | Cl | Cl (o) | 24 | 18 |
15a | H | H | OH (o), OH (p) | 24 | 24 |
16a | H | H | OH (o), OMe (o) | 24 | 18 |
17a | H | H | 5xF (o,m,p) | 24 | 17 |
17b | F | H | 5xF (o,m,p) | 24 | 18 |
17c | H | Cl | 5xF (o,m,p) | 24 | 39 |
17d | F | Cl | 5xF (o,m,p) | 24 | 20 |
Plasmodium falciparum 3D7 Strain | Plasmodium falciparum W2 Strain | HUVEC Cells | Selectivity Index (3D7) | Selectivity Index (W2) | |
---|---|---|---|---|---|
Compounds | IC50 ± SD (nM) | IC50 ± SD (nM) | CC50 nM ± SD | =CC50/IC50 | =CC50/IC50 |
6a | 34.46 ± 9.25 | 61.37 ± 11.12 | nd | nd | nd |
6b | 17.42 ± 7.7 | 30.35 ± 6.09 | >100 | >17.5 | >10.8 |
6c | >100 | >100 | / | / | / |
6d | >100 | >100 | / | / | / |
CQ | 22.38 ± 3.24 | 134.12 ± 32.29 | 37.56 ± 1.24 | 1.7 | 0.3 |
Plasmodium falciparum 3D7 Strain | Plasmodium falciparum W2 Strain | HUVEC Cells | Selectivity Index (3D7) | Selectivity Index (W2) | |
---|---|---|---|---|---|
Compounds | IC50 ± SD (nM) | IC50 ± SD (nM) | CC50 nM ± SD | =CC50/IC50 | =CC50/IC50 |
10 | 25.37 ± 2.88 | 42.14 ± 6.73 | >100 | >8.9 | >5.3 |
12a | 36.9 ± 6.59 | 11.06 ± 4.82 | 100 ± 0.008 | 2.85 | 5.7 |
12b | 34.45 ± 7.36 | 38.95 ± 3.66 | >100 | >6.9 | >6.1 |
12c | >100 | >100 | / | / | / |
12d | 13.64 ± 2.47 | 166.87 ± 9.64 | nd | nd | nd |
13a | >100 | >100 | / | / | / |
13b | 4.19 ± 1.12 | 13.30 ± 2.01 | 112 ± 0.008 | 26.7 | 8.4 |
13c | 44.17 ± 3.9 | 28.57 ± 1.91 | >100 | >4.4 | >6.8 |
13d | >100 | >100 | / | / | / |
14a | 20.72 ± 7.69 | 32.33 ± 9.97 | 52 ± 0.004 | 2.5 | 1.6 |
14c | 50.33 ± 3.8 | 18.97 ± 7.30 | >100 | >4.2 | >11.3 |
14d | 14.85 ± 4.48 | 23.45 ± 4.66 | 100 ± 0.005 | 6.83 | 4.3 |
15a | ˃100 | ˃100 | / | / | / |
16a | ˃100 | ˃100 | / | / | / |
17a | 37.63 ± 7.85 | 47.84 ± 5.83 | nd | nd | nd |
17b | ˃100 | ˃100 | / | / | / |
17c | 14.65 ±2.55 | 36.88 ± 2.99561 | nd | nd | nd |
17d | ˃100 | ˃100 | / | / | / |
CQ | 22.38 ± 3.24 | 134.12 ± 32.29 | 37.56 ± 1.24 | 1.7 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seck, R.; Gassama, A.; Cojean, S.; Cavé, C. Synthesis and Antimalarial Activity of 1,4-Disubstituted Piperidine Derivatives. Molecules 2020, 25, 299. https://doi.org/10.3390/molecules25020299
Seck R, Gassama A, Cojean S, Cavé C. Synthesis and Antimalarial Activity of 1,4-Disubstituted Piperidine Derivatives. Molecules. 2020; 25(2):299. https://doi.org/10.3390/molecules25020299
Chicago/Turabian StyleSeck, Rokhyatou, Abdoulaye Gassama, Sandrine Cojean, and Christian Cavé. 2020. "Synthesis and Antimalarial Activity of 1,4-Disubstituted Piperidine Derivatives" Molecules 25, no. 2: 299. https://doi.org/10.3390/molecules25020299
APA StyleSeck, R., Gassama, A., Cojean, S., & Cavé, C. (2020). Synthesis and Antimalarial Activity of 1,4-Disubstituted Piperidine Derivatives. Molecules, 25(2), 299. https://doi.org/10.3390/molecules25020299