Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE
Abstract
1. Introduction
2. Material Preparation and Testing
2.1. Material Preparations
2.2. Material Characterization and Property Test
3. Results and Discussion
3.1. Material Characterization
3.2. Crosslinking Degree of UV-XLPE Nanocomposites
3.3. Morphology Characteristics of XLPE Nanocomposites
3.4. Dielectric Breakdown Strength
3.5. Space Charge Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benhong, O.; Ming, H.; Xianbo, D. A review about development of HV XLPE cable materials and processes. Insul. Mater. 2016, 49, 1–6. [Google Scholar]
- Ye, G.D.; Zhou, H.; Yang, J.W.; Zeng, Z.H.; Chen, Y.L. Photoinitiating behavior of macrophotoinitiator containing aminoalkylphenone group. J. Therm. Analy. Calor. 2006, 85, 771–777. [Google Scholar] [CrossRef]
- Wu, Q.H.; Qu, B.J. Photoinitiating characteristics of benzophenone derivatives as new initiators in the photocrosslinking of polyethylene. Polym. Eng. Sci. 2001, 41, 1220–1226. [Google Scholar] [CrossRef]
- Wu, Q.H.; Qu, B.J. Synthesis of di(4-hydroxyl benzophenone) sebacate and its usage as initiator in the photocrosslinking of polyethylene. J. Appl. Poly. Sci. 2002, 85, 1581–1586. [Google Scholar] [CrossRef]
- Chen, J.Q.; Zhao, H.; Zheng, H.F.; Chen, C.M.; Li, Y.; Sun, K. Research and design of electrodeless UV curing lamp with elliptic concentrator. Electr. Mach. Contr. 2017, 21, 109–113. [Google Scholar]
- Lu, Y.; Tang, J.; Zhao, H.; Hao, G.; Huang, B. Study of ventilation cooling for an irradiation box of low-voltage cable ultraviolet cross-linking. J. Harbin. Univ. Sci. Technol. 2013, 18, 45–50. [Google Scholar]
- Fu, Y.W.; Wang, X.; Wu, Q.H.; Zhao, H. Study of crosslinked and electrical characteristics for cable insulating material of new UV XLPE. Trans. Chin. Electrotech. Soc. 2018, 33, 178–186. [Google Scholar]
- Sun, K.; Chen, J.Q.; Zhao, H.; Sun, W.F.; Chen, Y.S.; Luo, Z.M. Dynamic Thermomechanical analysis on water tree resistance of crosslinked polyethylene. Materials 2019, 12, 746. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Poly. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Wu, S.; Kang, E.T.; Neoh, K.G.; Tan, K.L. Surface modification of poly(tetrafluoroethylene) films by double graft copolymerization for adhesion improvement with evaporated copper. Polymer 1999, 40, 6955–6964. [Google Scholar] [CrossRef]
- Tian, M.; Liang, W.L.; Rao, G.Y.; Zhang, L.Q.; Guo, C.X. Surface modification of fibrillar silicate and its reinforcing mechanism on FS/rubber composites. Compos. Sci. Technol. 2005, 65, 1129–1138. [Google Scholar] [CrossRef]
- Cai, L.F.; Huang, X.B.; Rong, M.Z.; Ruan, W.H.; Zhang, M.Q. Effect of grafted polymeric foaming agent on the structure and properties of nano-silica/polypropylene composites. Polymer 2006, 47, 7043–7050. [Google Scholar] [CrossRef]
- Wang, W.W.; Li, S.T.; Liu, W.F. Dielectric Breakdown of Polymer Nanocomposites. Trans. Chin. Electrotech. Soc. 2017, 32, 25–36. [Google Scholar]
- Hoyos, M.; Garcia, N.; Navarro, R.; Dardano, A.; Ratto, A.; Guastavino, F.; Tiemblo, P. Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous and laminar silicates. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1301–1311. [Google Scholar] [CrossRef]
- Wang, Y.N.; Wang, Y.L.; Wu, J.D.; Yin, Y. Research progress on space charge measurement and space charge characteristics of nanodielectrics. IET Nanodielectr. 2018, 3, 114–121. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.X.; Huang, M.; Sha, Y.C.; Tian, J.H.; Ye, Q. Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 424–433. [Google Scholar] [CrossRef]
- Danikas, M.G.; Tanaka, T. Nanocomposites-a review of electrical treeing and breakdown. IEEE Electr. Insul. Mag. 2009, 25, 19–25. [Google Scholar] [CrossRef]
- Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Ghasemi, F.A.; Ghorbani, A.; Ghasemi, I. Mechanical, thermal and dynamic mechanical properties of PP/GF/xGnP nanocomposites. Mechan. Compos. Mater. 2017, 53, 131–138. [Google Scholar] [CrossRef]
- Decker, C.; Zahouily, K.; Keller, L.; Benfarhi, S.; Bendaikha, T.; Baron, J. Ultrafast synthesis of bentonite- acrylate nanocomposite materials by UV-radiation curing. J. Mater. Sci. 2002, 37, 4831–4838. [Google Scholar] [CrossRef]
- Xu, J.W.; Pang, W.M.; Shi, W.F. Synthesis of UV-curable organic–inorganic hybrid urethane acrylates and properties of cured films. Thin Solid Films 2006, 514, 69–75. [Google Scholar] [CrossRef]
- Sangermano, M.; Malucelli, G.; Amerio, E.; Priola, A.; Billi, E.; Rizza, G. Photopolymerization of epoxy coatings containing silica nanoparticles. Prog. Org. Coat. 2005, 54, 134–138. [Google Scholar] [CrossRef]
- Medda, S.K.; Kundu, D.; De, G. Inorganic–organic hybrid coatings on polycarbonate.: Spectroscopic studies on the simultaneous polymerizations of methacrylate and silica networks. J. Non-Cryst. Solids 2003, 318, 149–156. [Google Scholar] [CrossRef]
- Crucho, C.I.C.; Baleizão, C.; Farinha, J.P.S. Functional group coverage and conversion quantification in nanostructured silica by 1H NMR. Analyt. Chem. 2016, 89, 681–687. [Google Scholar] [CrossRef]
- Sangermano, M.; Colucci, G.; Fragale, M.; Rizza, G. Hybrid organic–inorganic coatings based on thiol-ene systems. React. Funct. Poly. 2009, 69, 719–723. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, X.; Nie, J. Photopolymerization nanocomposite initiated by montmorillonite intercalated initiator. Polym. Bull. 2012, 68, 1–13. [Google Scholar] [CrossRef]
- Killops, K.L.; Campos, L.M.; Hawker, C.J. Robust, Efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J. Am. Chem. Soc. 2008, 130, 5062–5064. [Google Scholar] [CrossRef]
- Wu, J.; Ling, L.; Xie, J.; Ma, G.; Wang, G. Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chem. Phys. Lett. 2014, 591, 227–232. [Google Scholar] [CrossRef]
- Zhao, X.D.; Zhao, H.; Sun, W.F. Significantly improved electrical properties of crosslinked polyethylene modified by UV-initiated grafting MAH. Polymers 2020, 12, 62. [Google Scholar] [CrossRef]
- Qiu, P.; Chen, J.Q.; Sun, W.F.; Zhao, H. Improved DC dielectric performance of photon-initiated crosslinking polyethylene with TMPTMA auxiliary agent. Materials 2019, 12, 3540. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Zhang, Z.Q.; Wong, C.P. Study on mono-dispersed nano-size silica by surface modification for underfill applications. J. Colloid Interface Sci. 2005, 292, 436–444. [Google Scholar] [CrossRef]
- Chauvet, M.; Mazzanti, G.; Montanari, G.C. Weibull statistics in short-term dielectric breakdown of thin polyethylene films. IEEE Trans. Dielectr. Electr. Insul. 1993, 1, 153–159. [Google Scholar] [CrossRef]
- Qian, K.Y.; Su, P.F.; Wu, J.D.; Yin, Y. The effect of thickness on breakdown strength in high voltage direct current cable insulation at different temperatures. Proc. CSEE 2018, 38, 7121–7130. [Google Scholar]
- Zhao, X.D.; Sun, W.F.; Zhao, H. Enhanced insulation performances of crosslinked polyethylene modified by chemically grafting chloroacetic acid allyl ester. Polymers 2019, 11, 592. [Google Scholar] [CrossRef]
- Mazzanti, G.; Montanari, G.C.; Alison, J.M. A space-charge based method for the estimation of apparent mobility and trap depth as markers for insulation degradation-theoretical basis and experimental validation. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 187–197. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Q.; Liao, R.; Xing, L.; Wu, N.; Jiang, Q. The impact of cross-linking effect on the space charge characteristics of cross-linking polyethylene with different degrees of cross-linking under strong direct current electric field. Polymers 2019, 11, 1149. [Google Scholar] [CrossRef]
- Yi, S.H.; Wang, Y.L.; Peng, Q.J.; Wu, J.D.; Yin, Y. Effect of temperature on charge accumulation and migration in cross-linked polyethylene. Proc. CSEE 2017, 39, 5796–5803. [Google Scholar]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S.; Reed, C.W.; Keefe, R. Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 629–643. [Google Scholar] [CrossRef]
- Raetzke, S.; Kindersberger, J. The effect of interphase structures in nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2006, 126, 1044–1049. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds and composite materials are available from the authors. |
Sample | LLDPE/wt% | BPL/wt% | TAIC/wt% | TAIC-s-SiO2/wt% | Irganox1010/wt% |
---|---|---|---|---|---|
XLPE | 96.7 | 2 | 1 | 0 | 0.3 |
0.5 wt%TAIC-s-SiO2/XLPE | 97.2 | 2 | 0 | 0.5 | 0.3 |
1.5 wt%TAIC-s-SiO2/XLPE | 96.7 | 2 | 0 | 1 | 0.3 |
2.0 wt%TAIC-s-SiO2/XLPE | 95.7 | 2 | 0 | 2 | 0.3 |
Materials | 2-Parameter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Eb/(kV/mm) | β | |||||||||
25 °C | 40 °C | 60 °C | 80 °C | 100 °C | 25 °C | 40 °C | 60 °C | 80 °C | 100 °C | |
XLPE | 334.4 | 307.8 | 252.9 | 229.2 | 170.7 | 6.27 | 10.59 | 11.77 | 13.30 | 14.13 |
0.5wt%TAIC-s-SiO2/XLPE | 352.2 | 307.7 | 254.5 | 214.4 | 162.0 | 5.46 | 7.99 | 12.03 | 14.71 | 15.75 |
1.5wt%TAIC-s-SiO2/XLPE | 366.4 | 328.6 | 260.1 | 235.1 | 170.5 | 5.92 | 7.24 | 13.78 | 13.00 | 14.29 |
2.0wt%TAIC-s-SiO2/XLPE | 359.1 | 295.2 | 249.4 | 222.9 | 159.6 | 5.81 | 9.45 | 10.25 | 15.71 | 16.76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.-W.; Zhang, Y.-Q.; Sun, W.-F.; Wang, X. Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE. Molecules 2020, 25, 3794. https://doi.org/10.3390/molecules25173794
Fu Y-W, Zhang Y-Q, Sun W-F, Wang X. Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE. Molecules. 2020; 25(17):3794. https://doi.org/10.3390/molecules25173794
Chicago/Turabian StyleFu, Yu-Wei, Yong-Qi Zhang, Wei-Feng Sun, and Xuan Wang. 2020. "Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE" Molecules 25, no. 17: 3794. https://doi.org/10.3390/molecules25173794
APA StyleFu, Y.-W., Zhang, Y.-Q., Sun, W.-F., & Wang, X. (2020). Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE. Molecules, 25(17), 3794. https://doi.org/10.3390/molecules25173794