Optimization of a Simplified and Effective Analytical Method of Pesticide Residues in Mealworms (Tenebrio molitor Larvae) Combined with GC–MS/MS and LC–MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Sample-Extraction Solvent
2.2. Optimization of Clean-Up Procedures
2.3. Matrix Effect, Method Validation and Real Sample Analysis
3. Materials and Methods
3.1. Chemicals and Consumables
3.2. Sample Treatment
3.3. Instrumental Analysis
3.4. Analytical Method Validation and Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, P.K.; Kim, K.; Powell, M.A. Managing Groundwater Nitrate Contamination from Livestock Farms: Implication for Nitrate Management Guidelines. Curr. Pollut. Rep. 2016, 2, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-K.; Yong, H.I.; Kim, Y.-B.; Kim, H.-W.; Choi, Y.-S. Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Yang, D.; Liao, H.; Sun, H.; Liu, C.; Wei, L.; Li, F. Edible insects as a food source: A review. Food Prod. Process. Nutr. 2019, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Mlcek, J.; Rop, O.; Borkovcova, M.; Bednarova, M. A comprehensive look at the possibilities of edible insects as food in Europe—A review. Pol. J. Food Nutr. Sci. 2014, 64, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Poma, G.; Cuykx, M.; Amato, E.; Calaprice, C.; Focant, J.F.; Covaci, A. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxical. 2017, 100, 70–79. [Google Scholar] [CrossRef]
- Han, R.; Shin, J.T.; Kim, J.; Choi, Y.S.; Kim, Y.W. An overview of the South Korean edible insect food industry: Challenges and future pricing/promotion strategies. Entomol. Res. 2017, 47, 141–151. [Google Scholar] [CrossRef]
- Bajracharya, N.S.; Opit, G.P.; Talley, J.; Jones, C.L. Efficacies of spinosad and a combination of chlorpyrifos-methyl and deltamethrin against phosphine-resistant rhyzopertha dominica (Coleoptera: Bostrichidae) and Tribolium castaneum (Coleoptera: Tenebrionidae) on wheat. J. Econ. Entomol. 2013, 106, 2208–2215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Implementing Regulation (EU) 2020/17 of 10 January 2020 Concerning the Non-Renewal of the Approval of the Active Substance Chlorpyrifos-Methyl, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ 2020, L7, 11. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1578929546116&uri=CELEX:32020R0017 (accessed on 29 July 2020).
- Lee, J.; Kim, L.; Shin, Y.; Lee, J.; Lee, J.; Kim, E.; Moon, J.-K.; Kim, J.-H. Rapid and simultaneous analysis of 360 pesticides in brown rice, spinach, orange, and potato using microbore GC-MS/MS. J. Agric. Food Chem. 2017, 65, 3387–3395. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.; Stajnbaher, D.; Schenck, F. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehotay, S.O.; Neil, M.; Tully, J.; Valverde, A.; Contreras, M.; Mol, H.; Heinke, V.; Anspach, T.; Lach, G.; Fussell, R.; et al. Determination of Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate: Collaborative Study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rejczak, T.; Tuzimski, T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem. 2015, 13, 980–1010. [Google Scholar] [CrossRef]
- Chamkasem, N.; Ollis, L.W.; Harmon, T.; Lee, S.; Mercer, G. Analysis of 136 pesticides in avocado using a modified QuEChERS method with LC-MS/MS and GC-MS/MS. J. Agric. Food Chem. 2013, 61, 2315–2329. [Google Scholar] [CrossRef] [PubMed]
- Fernández Moreno, J.L.; Arrebola Liébanas, F.J.; Garrido Frenich, A.; Martínez Vidal, J.L. Evaluation of different sample treatments for determining pesticide residues in fat vegetable matrices like avocado by low-pressure gas chromatography–tandem mass spectrometry. J. Chromatogr. A 2006, 1111, 97–105. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wang, L.; Peng, Y.; Luo, M.; Wang, W.; Liu, X. Multiresidue analysis of over 200 pesticides in cereals using a QuEChERS and gas chromatography–tandem mass spectrometry-based method. Food Chem. 2015, 169, 372. [Google Scholar] [CrossRef]
- Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Efficiency of QuEChERS approach for determining 52 pesticide residues in honey and honey bees. MethodsX 2016, 3, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Xu, X.; Wang, X.; Li, D.; Li, X.; Zhang, H.; Yu, A. Determination of organophosphorus pesticides in peanut oil by dispersive solid phase extraction gas chromatography–mass spectrometry. J. Chromatogr. B 2011, 879, 3423–3428. [Google Scholar] [CrossRef]
- May, M.M.; Ferronato, G.; Bandeira, N.M.G.; Prestes, O.D.; Zanella, R.; Adaime, M.B. Determination of pesticide residues in soy-based beverages using a QuEChERS method (with clean-Up optimized by central composite design) and ultra-high-performance liquid chromatography-tandem mass spectrometry. Food Anal. Methods 2017, 10, 369–378. [Google Scholar] [CrossRef]
- He, Z.; Wang, Y.; Wang, L.; Peng, Y.; Wang, W.; Liu, X. Determination of 255 pesticides in edible vegetable oils using QuEChERS method and as gas chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 1017–1030. [Google Scholar] [CrossRef]
- López-Blanco, R.; Nortes-Méndez, R.; Robles-Molina, J.; Moreno-González, D.; Gilbert-López, B.; García-Reyes, J.F.; Molina-Díaz, A. Evaluation of different cleanup sorbents for multiresidue pesticide analysis in fatty vegetable matrices by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1456, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Lesueur, C. Comparing d-SPE sorbents of the QuEChERS extraction method and EMR-Lipid for the determination of polycyclic aromatic hydrocarbons (PAH4) in food of animal and plant origin. Food Anal. Methods 2017, 10, 2111–2124. [Google Scholar] [CrossRef]
- Barganska, Z.; Slebioda, M.; Namiesnik, J. Determination of pesticide residues in honeybees using modified QUEChERS sample work-up and liquid chromatography-tandem mass spectrometry. Molecules 2014, 19, 2911–2924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobhanzadeh, E.; Abu Bakar, N.K.; Bin Abas, M.R.; Nemati, K. A simple and efficient multi-residue method based on QuEChERS for pesticides determination in palm oil by liquid chromatography time-of-flight mass spectrometry. Environ. Monit Assess. 2012, 184, 5821–5828. [Google Scholar] [CrossRef]
- Chamkasem, N. Analysis of pesticides in olive oil using a modified QuEChERS method with LC-MS/MS and GC-MS/MS. J. Regul. Sci. 2015, 1, 15–35. [Google Scholar]
- Koesukwiwat, U.; Lehotay, S.; Leepipatpiboon, N. Fast, low-pressure gas chromatography triple quadrupole tandem mass spectrometry for analysis of 150 pesticide residues in fruits and vegetables. J. Chromatogr. A 2011, 1218, 7039–7050. [Google Scholar] [CrossRef]
- Sapozhnikova, Y. Evaluation of low-pressure gas chromatography–tandem mass spectrometry method for the analysis of >140 pesticides in fish. J. Agric. Food Chem. 2014, 62, 3684–3689. [Google Scholar] [CrossRef]
- Maštovská, K.; Lehotay, S.J. Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues. J. Chromatogr. A 2004, 1040, 259–272. [Google Scholar] [CrossRef]
- Bernardi, G.; Kemmerich, M.; Ribeiro, L.C.; Adaime, M.B.; Zanella, R.; Prestes, O.D. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta 2016, 161, 40–47. [Google Scholar] [CrossRef]
- European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed on 29 July 2020).
- Cunha, S.C.; Lehotay, S.J.; Mastovska, K.; Fernandes, J.O.; Beatriz, M.; Oliveira, P.P. Evaluation of the QuEChERS sample preparation approach for the analysis of pesticide residues in olives. J. Sep. Sci. 2007, 30, 620–632. [Google Scholar] [CrossRef]
- Lohani, U.; Fallahi, P.; Muthukumarappan, K. Comparison of ethyl acetate with hexane for oil extraction from various oilseeds. J. Am. Oil Chem. Soc. 2015, 92, 743–754. [Google Scholar] [CrossRef]
- Cho, J.; Lee, J.; Lim, C.U.; Ahn, J. Quantification of pesticides in food crops using QuEChERS approaches and GC-MS/MS. Food Addit Contam Part. A Chem Anal. Control. Expo. Risk Assess. 2016, 33, 1803–1816. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Samples/ Weight | Analytes | QuEChERS1 Packet/Solvent | Clean-Up (Sample Amount) | Instrument | Reference |
---|---|---|---|---|---|
Peanut oil/5 g | 9 OP2 | 0.50 g Na2SO4/10 mL MeCN3 | 100 mg MWCNTs10/1 g neutral alumina | GC–MS16 | [18] |
Palm oil/3 g | 7 pesticides | Original4 7 g DW5 + 10 mL MeCN | d-SPE11 (15 mL) 750 mg MgSO4 + 250 mg PSA12 + 250 mg C18 + 250 mg GCB13 | LC–TOF–MS17 | [24] |
Honeybee/1 g | 19 pesticides | Original 10 mL DW + 10 mL MeCN + 3 mL n-hexane | d-SPE (1 mL) 150 mg MgSO4 + 25 mg PSA | LC–MS/MS18 | [23] |
Cereals/5 g | 200 pesticides | (1) AOAC6 / (2) EN7 10 mL DW + 15 mL MeCN (1% AA8) | d-SPE (8 mL/6 mL) (1) 1200 mg MgSO4 + 400 mg PSA + 400 mg C18 (2) 900 mg MgSO4 + 150 mg PSA + 150 mg C18 | GC–MS/MS19 | [16] |
Olive oil/0.5 g | 138 pesticides | AOAC 5 mL DW + 30 mL MeCN (1% AA) | d-SPE (2 mL) 150 mg MgSO4 + 50 mg PSA + 50 mg C18 | GC–MS/MSLC–MS/MS | [25] |
Edible vegetable oils/0.5, 1, 2, 5 g | 255 pesticides | 4 g NaCl 5 mL DW + 10 mL MeCN | d-SPE (6.5 mL) (1) 150 mg PSA + 150 mg C18 (2) 250 mg PSA + 250 mg C18 (3) 250 mg PSA + 250 mg C18 + 15 mg GCB (4) 250 mg PSA + 250 mg C18 + 50 mg GCB (5) EMR-lipid14 | GC–MS/MS | [20] |
Salmon, shrimps, mussels, cutlet, bacon/5 g | 4 PAHs9 | EN 5 mL DW + 10 mL MeCN | d-SPE (6.5 mL) (1) 900 mg MgSO4 + 150 mg PSA + 150 mg C18, (2) Z-Sep15 (3) EMR-lipid | GC–MS/MS | [22] |
Target Pesticide | Spiking Level (mg/kg) | Mean (%) | RSD1 (%) |
---|---|---|---|
Chlorpyrifos-methyl | 0.01 | 82.5 | 3.0 |
0.1 | 114.8 | 1.6 | |
Deltamethrin | 0.01 | 93.8 | 6.5 |
0.1 | 84.9 | 5.7 | |
Fenoxanil | 0.005 | 87.6 | 4.6 |
0.01 | 112.9 | 4.2 | |
Thiobencarb | 0.005 | 87.6 | 4.6 |
0.01 | 83.3 | 1.3 | |
Fludioxonil | 0.005 | 82.0 | 7.2 |
0.01 | 76.9 | 3.4 |
No | Sorbent Compositions | Sample Volume | Product Name |
---|---|---|---|
1 | 150 mg MgSO4, 25 mg PSA1, 25 mg C18 | 1 mL | EN |
2 | 150 mg MgSO4, 50 mg PSA, 50 mg C18 | 1 mL | AOAC |
3 | 2 | 5 mL | EMR-lipidTM.3 |
4 | 10 mL n-hexane | 10 mL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, L.; Baek, S.; Son, K.; Kim, E.; Noh, H.H.; Kim, D.; Oh, M.-s.; Moon, B.-c.; Ro, J.-H. Optimization of a Simplified and Effective Analytical Method of Pesticide Residues in Mealworms (Tenebrio molitor Larvae) Combined with GC–MS/MS and LC–MS/MS. Molecules 2020, 25, 3518. https://doi.org/10.3390/molecules25153518
Kim L, Baek S, Son K, Kim E, Noh HH, Kim D, Oh M-s, Moon B-c, Ro J-H. Optimization of a Simplified and Effective Analytical Method of Pesticide Residues in Mealworms (Tenebrio molitor Larvae) Combined with GC–MS/MS and LC–MS/MS. Molecules. 2020; 25(15):3518. https://doi.org/10.3390/molecules25153518
Chicago/Turabian StyleKim, Leesun, Sujin Baek, Kyungae Son, Eunsun Kim, Hyun Ho Noh, Danbi Kim, Min-seok Oh, Byeong-chul Moon, and Jin-Ho Ro. 2020. "Optimization of a Simplified and Effective Analytical Method of Pesticide Residues in Mealworms (Tenebrio molitor Larvae) Combined with GC–MS/MS and LC–MS/MS" Molecules 25, no. 15: 3518. https://doi.org/10.3390/molecules25153518
APA StyleKim, L., Baek, S., Son, K., Kim, E., Noh, H. H., Kim, D., Oh, M.-s., Moon, B.-c., & Ro, J.-H. (2020). Optimization of a Simplified and Effective Analytical Method of Pesticide Residues in Mealworms (Tenebrio molitor Larvae) Combined with GC–MS/MS and LC–MS/MS. Molecules, 25(15), 3518. https://doi.org/10.3390/molecules25153518