Grouping, Spectrum–Effect Relationship and Antioxidant Compounds of Chinese Propolis from Different Regions Using Multivariate Analyses and Off-Line Anti-DPPH Assay
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Analysis of 49 Chinese Propolis
2.2. Similarity of HPLC Fingerprints among 49 Chinese Propolis
2.3. Contents of Flavonoids and Phenolics of 49 Chinese Propolis
2.4. DPPH Scavenging Activity of 49 Chinese Propolis
2.5. Spectrum–Effect Relationship of 49 Chinese Propolis
2.6. Determination of Antioxidant Compounds in Propolis by Off-Line Anti-DPPH Assay
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Samples Collection and Preparation
3.3. HPLC Procedures
3.4. Determinations of Total Flavonoids and Total Phenolics
3.5. Antioxidant Capacity
3.6. Off-line Anti-DPPH Assay
3.7. Statistical Analysis and Chemometric Application
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burdock, G. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Wagh, V.D. Propolis: A wonder bees product and its pharmacological potentials. Adv. Pharm. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef]
- Marcucci, M. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent advances in the chemical composition of propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valencia, D.; Alday, E.; Robles-Zepeda, R.; Garibay-Escobar, A.; Galvez-Ruiz, J.C.; Salas-Reyes, M.; Jiménez-Estrada, M.; Velazquez-Contreras, E.; Hernandez, J.; Velazquez, C. Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food Chem. 2012, 131, 645–651. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, S.; Wei, W.; Ping, S.; Shen, X.; Li, Y.; Hu, F. Development of high-performance liquid chromatographic for quality and authenticity control of Chinese propolis. J. Food Sci. 2014, 79, 1315–1322. [Google Scholar] [CrossRef]
- Ristivojević, P.; Trifković, J.; Andrić, F.; Milojković-Opsenica, D. Poplar-type propolis: Chemical composition, botanical origin and biological activity. Nat. Prod. Commun. 2015, 10, 1934578X1501001117. [Google Scholar] [CrossRef] [Green Version]
- Sawicka, D.; Car, H.; Borawska, M.H.; Nikliński, J. The anticancer activity of propolis. Folia Histochem. Cytobiol. 2012, 50, 25–37. [Google Scholar] [CrossRef]
- Demir, S.; Aliyazicioglu, Y.; Turan, I.; Misir, S.; Mentese, A.; Yaman, S.O.; Akbulut, K.; Kilinc, K.; Deger, O. Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line. Nutr. Cancer 2016, 68, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Xuan, H.; Yuan, W.; Chang, H.; Liu, M.; Hu, F. Anti-inflammatory effects of Chinese propolis in lipopolysaccharide-stimulated human umbilical vein endothelial cells by suppressing autophagy and MAPK/NF-κB signaling pathway. Inflammopharmacology 2019, 27, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharm. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Zhu, C.-S.; Lin, Z.-J.; Xiao, M.-L.; Niu, H.-J.; Zhang, B. The spectrum–effect relationship—A rational approach to screening effective compounds, reflecting the internal quality of Chinese herbal medicine. Chin. J. Nat. Med. 2016, 14, 177–184. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, H.; Wu, H.; Pan, Y.; Wang, K.; Liu, L.; Jin, Y.; Zhang, C. A Novel Reduplicate Strategy for Tracing Hemostatic Compounds from Heating Products of the Flavonoid Extract in Platycladi cacumen by Spectrum–effect Relationships and Column Chromatography. Molecules 2015, 20, 16970–16986. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, Q.; Sun, Z.; Chen, Z.; Zhao, Y.; Wang, Z.; Yang, H.; Li, J.; Li, Y.; Xiao, X. Fingerprint–efficacy study of Radix Aconiti Lateralis Preparata (Fuzi) in quality control of Chinese herbal medicine. J. Therm. Anal. Calorim. 2014, 118, 1763–1772. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, J.; Zheng, Y.; Zhang, Y.; Wu, Y.; Zhang, C.; Zheng, H.; Hu, F. A New Propolis Type from Changbai Mountains in North-east China: Chemical Composition, Botanical Origin and Biological Activity. Molecules 2019, 24, 1369. [Google Scholar] [CrossRef]
- Zhang, C.-P.; Zheng, H.-Q.; Liu, G.; Hu, F.-L. Development and validation of HPLC method for determination of salicin in poplar buds: Application for screening of counterfeit propolis. Food Chem. 2011, 127, 345–350. [Google Scholar] [CrossRef]
- Popova, M.P.; Bankova, V.S.; Bogdanov, S.; Tsvetkova, I.; Naydenski, C.; Marcazzan, G.L.; Sabatini, A.-G. Chemical characteristics of poplar type propolis of different geographic origin. Apidologie 2007, 38, 306–311. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Lu, Q.; Decock, C.; Li, Y.-X.; Zhang, X.-Y. Cytospora species from Populus and Salix in China with C. davidiana sp. nov. Fungal Biol. 2015, 119, 420–432. [Google Scholar] [CrossRef]
- Xu, X.; Yang, F.; Xiao, X.; Zhang, S.; Korpelainen, H.; Li, C. Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant Cell Environ. 2008, 31, 850–860. [Google Scholar] [CrossRef]
- Teixeira, E.W.; Negri, G.; Meira, R.M.; Message, D.; Salatino, A. Plant Origin of Green Propolis: Bee Behavior, Plant Anatomy and Chemistry. Evid. Based Complement Altern. Med. 2005, 2, 85–92. [Google Scholar] [CrossRef]
- Tapas, A.R.; Sakarkar, D.; Kakde, R. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res. 2008, 7, 1089–1099. [Google Scholar] [CrossRef]
- Lafay, S.; Gil-Izquierdo, A. Bioavailability of phenolic acids. Phytochem. Rev. 2007, 7, 301–311. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2004, 15, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shen, X.; Chen, J.; Jiang, X.; Hu, F. Identification of Free Radical Scavengers from Brazilian Green Propolis Using Off-Line HPLC-DPPH Assay and LC-MS. J. Food Sci. 2017, 82, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Kumazawa, S.; Usui, Y.; Nakamura, J.; Matsuka, M.; Zhu, F.; Nakayama, T. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem. 2007, 101, 1383–1392. [Google Scholar] [CrossRef]
- Foti, M.C. Use and Abuse of the DPPH* Radical. J. Agric. Food Chem. 2015, 63, 8765–8776. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yang, H.; Zhang, X.; Yu, L. Identification and quantification of phytochemical composition and anti-inflammatory and radical scavenging properties of methanolic extracts of Chinese propolis. J. Agric. Food Chem. 2012, 60, 12403–12410. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 2014, 19, 78–101. [Google Scholar]
- Gülcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar]
- Wang, J.; Tong, X.; Li, P.; Liu, M.; Peng, W.; Cao, H.; Su, W. Bioactive components on immuno-enhancement effects in the traditional Chinese medicine Shenqi Fuzheng Injection based on relevance analysis between chemical HPLC fingerprints and in vivo biological effects. J. Ethnopharmacol. 2014, 155, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Kaski, S. Dimensionality reduction by random mapping: Fast similarity computation for clustering. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36227); IEEE: Anchorage, AK, USA, 1998; pp. 413–418. [Google Scholar]
- Schölkopf, B.; Smola, A.; Müller, K.-R. Kernel principal component analysis, In International Conference on Artificial Neural Networks; Springer: Berlin, Germany, 1997; pp. 583–588. [Google Scholar]
- Li, Q.; Guan, H.; Wang, X.; He, Y.; Sun, H.; Tan, W.; Luo, X.; Su, M.; Shi, Y. Fingerprint–efficacy study of the quaternary alkaloids in Corydalis yanhusuo. J. Ethnopharmacol. 2017, 207, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yan, T.; Yang, L.; Zhang, K.; Jia, J. Monitoring the consistency quality and antioxidant activity of Da Hong Pao teas by HPLC fingerprinting. J. Chromatogr. Sci. 2017, 55, 528–535. [Google Scholar] [CrossRef]
- Kong, W.; Wang, J.; Zang, Q.; Xing, X.; Zhao, Y.; Liu, W.; Jin, C.; Li, Z.; Xiao, X. Fingerprint–efficacy study of artificial Calculus bovis in quality control of Chinese materia medica. Food Chem. 2011, 127, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Dong, Y.; Du, H.; Shi, H.; Peng, Y.; Li, X. Antioxidant compounds from propolis collected in Anhui, China. Molecules 2011, 16, 3444–3455. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Longo, R.; Vanella, A. Antioxidant activity of propolis: Role of caffeic acid phenethyl ester and galangin. Fitoterapia 2002, 73, S21–S29. [Google Scholar] [CrossRef]
- Niederlander, H.A.; van Beek, T.A.; Bartasiute, A.; Koleva, I.I. Antioxidant activity assays on-line with liquid chromatography. J. Chromatogr. A 2008, 1210, 121–134. [Google Scholar] [CrossRef]
- Simonetti, P.; Pietta, P.; Testolin, G. Polyphenol content and total antioxidant potential of selected Italian wines. J. Agric. Food Chem. 1997, 45, 1152–1155. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 2015, 37, 99–105. [Google Scholar] [CrossRef]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. Lwt-Food Sci. Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Matsuda, A.H.; de Almeida-Muradian, L.B. Validated method for the quantification of artepillin-C in Brazilian propolis. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2008, 19, 179–183. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: The propolis samples are available from the authors. |
Samples No. | Collected Site (city, province) | Correlation Coefficients | Samples No. | Collected Site (City, Province) | Correlation Coefficients |
---|---|---|---|---|---|
S1 | Lujiang, Anhui | 0.891 | S26 | Yichun, Heilongjiang | 0.822 |
S2 | Tongcheng, Anhui | 0.861 | S27 | Yilan, Heilongjiang | 0.407 |
S3 | Shouxian, Anhui | 0.675 | S28 | Baoqing, Heilongjiang | 0.892 |
S4 | Mingcong, Anhui | 0.896 | S29 | Muling, Heilongjiang | 0.499 |
S5 | Huaibei, Anhui | 0.887 | S30 | Xinye, Henan | 0.924 |
S6 | Fuyang, Anhui | 0.914 | S31 | Shangqiu, Henan | 0.881 |
S7 | Mengcheng, Guizhou | 0.533 | S32 | Fangcheng, Henan | 0.915 |
S8 | Meishan, Sichuan | 0.926 | S33 | Shangshui, Henan | 0.861 |
S9 | Xicuan, Sichuan | 0.890 | S34 | Nanyang, Henan | 0.889 |
S10 | Qixia, Shandong | 0.880 | S35 | Huaibin, Henan | 0.875 |
S11 | Dezhou, Shandong | 0.825 | S36 | Liutai, Jiangsu | 0.894 |
S12 | Heze, Shandong | 0.878 | S37 | Jianhu, Jiangsu | 0.901 |
S13 | Longkou, Shandong | 0.921 | S38 | Yicheng, Hubei | 0.818 |
S14 | Donge, Shandong | 0.890 | S39 | Gucheng, Hubei | 0.895 |
S15 | Penglai, Shandong | 0.879 | S40 | Dongkou, Hubei 1 | 0.796 |
S16 | Yanbailou, Shaanxi | 0.811 | S41 | Dongkou, Hubei 2 | 0.789 |
S17 | Mizhi, Shaanxi | 0.869 | S42 | Xianju, Zhejiang | 0.767 |
S18 | Fusong, Jilin | 0.906 | S43 | Jinyun, Zhejiang | 0.829 |
S19 | Baishan, Jilin | 0.846 | S44 | Penghu, Ningxia | 0.889 |
S20 | Jian, Jilin | 0.848 | S45 | Gongliu, Xinjiang | 0.836 |
S21 | Dashiqiao, Liaoning | 0.512 | S46 | Beijing | 0.826 |
S22 | Faku, Liaoning | 0.930 | S47 | Baotou, Inner Mongolia | 0.926 |
S23 | Suizhong, Liaoning | 0.306 | S48 | Huailai, Hebei | 0.687 |
S24 | Shuangyashan, Heilongjiang | 0.921 | S49 | Qiuxian, Hebei | 0.910 |
S25 | Gannan, Heilongjiang | 0.356 |
Samples No. | TPC (mg/g, GAE) | TFC (mg/g, QE) | DPPH Scavenging Activity (IC50,μg/mL) | Samples No. | TPC (mg/g, GAE) | TFC (mg/g, QE) | DPPH Scavenging Activity (IC50,μg/mL) |
---|---|---|---|---|---|---|---|
S1 | 404.47 ± 10.72 | 361.59 ± 8.54 | 90.51 ± 0.89 | S26 | 232.59 ± 3.18 | 146.63 ± 3.33 | 294.04 ± 10.26 |
S2 | 249.95 ± 4.52 | 162.39 ± 13.93 | 113.19 ± 5.93 | S27 | 199.70 ± 3.83 | 75.43 ± 4.19 | 216.06 ± 3.30 |
S3 | 223.12 ± 1.69 | 110.56 ± 1.24 | 101.21 ± 1.87 | S28 | 275.54 ± 2.91 | 167.16 ± 6.34 | 83.47 ± 3.55 |
S4 | 248.62 ± 2.22 | 135.56 ± 4.49 | 122.88 ± 1.73 | S29 | 208.31 ± 2.45 | 77.76 ± 4.67 | 171.61 ± 8.54 |
S5 | 529.49 ± 4.10 | 427.56 ± 17.03 | 124.35 ± 1.36 | S30 | 231.11 ± 2.03 | 141.17 ± 2.84 | 112.14 ± 5.71 |
S6 | 556.3 ± 5.55 | 454.92 ± 32.67 | 113.10 ± 4.67 | S31 | 170.67 ± 0.94 | 106.06 ± 1.34 | 171.52 ± 8.21 |
S7 | 236.4 ± 3.17 | 102.50 ± 1.17 | 92.45 ± 8.31 | S32 | 219.01 ± 2.30 | 204.76 ± 4.05 | 233.6 ± 10.59 |
S8 | 257.15 ± 3.76 | 191.19 ± 1.55 | 104.17 ± 6.69 | S33 | 232.35 ± 5.43 | 210.53 ± 4.05 | 153.93 ± 3.81 |
S9 | 236.92 ± 6.38 | 205.32 ± 6.12 | 164.27 ± 7.47 | S34 | 242.33 ± 1.11 | 149.68 ± 2.55 | 119.5 ± 4.51 |
S10 | 276.21 ± 4.99 | 190.72 ± 12.24 | 108.17 ± 5.66 | S35 | 228.94 ± 2.76 | 192.23 ± 6.62 | 165.23 ± 4.23 |
S11 | 272.91 ± 3.51 | 186.96 ± 5.35 | 73.56 ± 2.61 | S36 | 223.90 ± 2.22 | 216.31 ± 4.29 | 241.85 ± 11.63 |
S12 | 210.23 ± 4.14 | 205.95 ± 1.68 | 308.11 ± 6.36 | S37 | 228.39 ± 2.45 | 223.83 ± 1.15 | 269.08 ± 1.94 |
S13 | 242.81 ± 2.60 | 197.64 ± 2.02 | 124.54 ± 5.94 | S38 | 197.97 ± 1.84 | 203.46 ± 6.06 | 303.87 ± 6.00 |
S14 | 237.32 ± 3.06 | 179.05 ± 7.48 | 124.16 ± 9.21 | S39 | 252.31 ± 5.44 | 167.96 ± 4.77 | 100.20 ± 1.46 |
S15 | 246.23 ± 5.42 | 159.25 ± 1.50 | 109.00 ± 3.77 | S40 | 231.12 ± 4.63 | 143.61 ± 5.02 | 132.98 ± 3.55 |
S16 | 254.92 ± 5.02 | 143.97 ± 3.06 | 76.06 ± 3.15 | S41 | 205.82 ± 5.02 | 208.93 ± 3.23 | 404.56 ± 11.9 |
S17 | 216.69 ± 2.12 | 158.80 ± 3.48 | 133.82 ± 2.93 | S42 | 150.83 ± 2.75 | 70.08 ± 4.15 | 354.31 ± 5.12 |
S18 | 256.96 ± 3.37 | 163.24 ± 5.62 | 122.64 ± 9.30 | S43 | 234.55 ± 5.82 | 126.88 ± 7.89 | 146.45 ± 6.61 |
S19 | 217.37 ± 3.40 | 133.04 ± 4.02 | 352.75 ± 9.75 | S44 | 268.44 ± 2.77 | 194.49 ± 4.98 | 124.45 ± 6.19 |
S20 | 139.92 ± 1.90 | 63.75 ± 1.92 | 432.08 ± 6.42 | S45 | 312.01 ± 4.34 | 207.96 ± 9.33 | 132.46 ± 4.53 |
S21 | 223.74 ± 1.30 | 100.90 ± 0.42 | 197.34 ± 6.78 | S46 | 252.51 ± 1.40 | 149.41 ± 9.75 | 91.01 ± 9.85 |
S22 | 302.55 ± 6.12 | 219.2 ± 2.56 | 87.14 ± 7.38 | S47 | 251.63 ± 0.80 | 172.76 ± 9.53 | 125.20 ± 5.37 |
S23 | 178.37 ± 0.89 | 53.45 ± 3.41 | 277.77 ± 10.99 | S48 | 274.21 ± 2.41 | 134.62 ± 3.64 | 71.19 ± 5.31 |
S24 | 240.99 ± 4.03 | 171.38 ± 6.69 | 124.92 ± 6.32 | S49 | 247.34 ± 4.43 | 173.99 ± 7.50 | 113.08 ± 6.15 |
S25 | 188.86 ± 1.80 | 73.51 ± 9.97 | 309.97 ± 10.23 |
The Loading | |||||
---|---|---|---|---|---|
Peak No. | Compound | PC1 (35.44%) | PC2 (25.81%) | PC3 (10.10%) | PC4 (8.64%) |
5 | Isoferulic acid | 0.911 | 0.083 | −0.211 | 0.064 |
2 | Caffeic acid | 0.869 | 0.115 | 0.032 | 0.015 |
17 | CAPE | 0.825 | −0.069 | −0.009 | 0.312 |
6 | 3,4-Dimethoxycinnamic acid | 0.745 | 0.277 | −0.292 | 0.236 |
4 | Ferulic acid | −0.034 | −0.914 | −0.119 | 0.087 |
19 | Benzyl p-coumarate | −0.238 | −0.850 | 0.090 | −0.357 |
3 | p-Coumaric acid | −0.249 | −0.849 | 0.015 | −0.354 |
11 | Kaempferol | −0.041 | 0.659 | 0.587 | 0.169 |
13 | Pinobanksin | −0.386 | 0.599 | 0.398 | 0.427 |
14 | Benzyl caffeate | 0.063 | 0.092 | −0.769 | −0.024 |
18 | Galangin | −0.396 | 0.242 | 0.709 | 0.370 |
15 | 3-O-acetylpinobanksin | 0.496 | 0.486 | 0.589 | 0.015 |
8 | Pinocembrin | −0.218 | 0.127 | 0.541 | −0.495 |
16 | Chrysin | 0.103 | 0.356 | 0.023 | 0.829 |
12 | Apigenin | 0.309 | 0.170 | 0.198 | 0.757 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Tao, L.; Li, C.; You, M.; Li, G.Q.; Zhang, C.; Hu, F. Grouping, Spectrum–Effect Relationship and Antioxidant Compounds of Chinese Propolis from Different Regions Using Multivariate Analyses and Off-Line Anti-DPPH Assay. Molecules 2020, 25, 3243. https://doi.org/10.3390/molecules25143243
Jiang X, Tao L, Li C, You M, Li GQ, Zhang C, Hu F. Grouping, Spectrum–Effect Relationship and Antioxidant Compounds of Chinese Propolis from Different Regions Using Multivariate Analyses and Off-Line Anti-DPPH Assay. Molecules. 2020; 25(14):3243. https://doi.org/10.3390/molecules25143243
Chicago/Turabian StyleJiang, Xiasen, Linchen Tao, Chunguang Li, Mengmeng You, George Q. Li, Cuiping Zhang, and Fuliang Hu. 2020. "Grouping, Spectrum–Effect Relationship and Antioxidant Compounds of Chinese Propolis from Different Regions Using Multivariate Analyses and Off-Line Anti-DPPH Assay" Molecules 25, no. 14: 3243. https://doi.org/10.3390/molecules25143243
APA StyleJiang, X., Tao, L., Li, C., You, M., Li, G. Q., Zhang, C., & Hu, F. (2020). Grouping, Spectrum–Effect Relationship and Antioxidant Compounds of Chinese Propolis from Different Regions Using Multivariate Analyses and Off-Line Anti-DPPH Assay. Molecules, 25(14), 3243. https://doi.org/10.3390/molecules25143243