Photoluminescent Detection of Human T-Lymphoblastic Cells by ZnO Nanorods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of ZnO Nanorods
2.2. CD5 Expression in the Leukemic Cell Line MOLT-4
2.3. ZnO NRs Optical Properties after Antibodies Immobilization
2.4. MOLT-4 Cell Culture Testing with ZnO NRs Platforms
3. Materials and Methods
3.1. Chemical Reagents
3.2. Flow Cytometry Analysis of Cell Surface Marker CD5 Expression in the Leukemic Cell Line
3.3. ZnO Nanorods Deposition for Platform Preparation and Its Structural Properties
3.4. Modification of ZnO NRs Based Platform by Antibody and Antibody-Pre-Treated Cells
3.5. Optical Characterization of ZnO NRs Based Platform
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical biosensors based on ZnO nanostructures: Advantages and perspectives. A review. Sens. Actuators B Chem. 2016, 229, 664–677. [Google Scholar] [CrossRef]
- Jang, Y.; Park, J.; Pak, Y.K.; Pak, J. Immunosensor based on the ZnO nanorod networks for the detection of H1N1 swine influenza virus. J. Nanosci. Nanotechnol. 2012, 12, 5173–5177. [Google Scholar] [CrossRef]
- Silina, Y.; Gernaey, K.V.; Semenova, D.; Iatsunskyi, I. Application of Organic-Inorganic Hybrids in Chemical Analysis, Bio- and Environmental Monitoring. Appl. Sci. 2020, 10, 1458. [Google Scholar] [CrossRef][Green Version]
- Park, J.; You, X.; Jang, Y.; Nam, Y.; Kim, M.J.; Min, N.K.; Pak, J. ZnO nanorod matrix based electrochemical immunosensors for sensitivity enhanced detection of Legionella pneumophila. Sens. Actuators B Chem. 2014, 200, 173–180. [Google Scholar] [CrossRef]
- Damberga, D.; Viter, R.; Fedorenko, V.; Iatsunskyi, I.; Coy, E.; Graniel, O.; Balme, S.; Miele, P.; Bechelany, M. Photoluminescence Study of Defects in ZnO-Coated Polyacrylonitrile Nanofibers. J. Phys. Chem. C 2020, 124, 9434–9441. [Google Scholar] [CrossRef]
- Sanguino, P.; Monteiro, T.; Bhattacharyya, S.; Dias, C.; Igreja, R.; Franco, R. ZnO nanorods as immobilization layers for interdigitated capacitive immunosensors. Sens. Actuators B Chem. 2014, 204, 211–217. [Google Scholar] [CrossRef]
- Marie, M.; Mandal, S.; Manasreh, O. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods. Sensors 2015, 15, 18714–18723. [Google Scholar] [CrossRef]
- Sarangi, S.N.; Nozaki, S.; Sahu, S.N. ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor. J. Biomed. Nanotechnol. 2015, 11, 988–996. [Google Scholar] [CrossRef]
- Sodzel, D.; Khranovskyy, V.; Beni, V.; Turner, A.P.F.; Viter, R.; Eriksson, M.O.; Holtz, P.-O.; Janot, J.-M.; Bechelany, M.; Balme, S.; et al. Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles. Microchim. Acta 2015, 182, 1819–1826. [Google Scholar] [CrossRef]
- Mai, H.H.; Pham, V.T.; Nguyen, V.T.; Sai, C.D.; Hoang, C.H. Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods. J. Electron. Mater. 2017, 46, 3714–3719. [Google Scholar] [CrossRef]
- Viter, R.; Khranovskyy, V.; Starodub, N.; Ogorodniichuk, Y.; Gevelyuk, S.; Gertnere, Z.; Poletaev, N.; Yakimova, R.; Erts, D.; Smyntyna, V.; et al. Application of room temperature photoluminescence from zno nanorods for salmonella detection. IEEE Sens. J. 2014, 14, 2028–2034. [Google Scholar] [CrossRef][Green Version]
- Viter, R.; Savchuk, M.; Starodub, N.; Balevicius, Z.; Tumėnas, S.; Ramanaviciene, A.; Jevdokimovs, D.; Erts, D.; Iatsunskyi, I.; Ramanavicius, A. Photoluminescence immunosensor based on bovine leukemia virus proteins immobilized on the ZnO nanorods. Sens. Actuators B Chem. 2019, 285, 601–606. [Google Scholar] [CrossRef][Green Version]
- Viter, R.; Savchuk, M.; Iatsunskyi, I.; Pietralik, Z.; Starodub, N.; Shpyrka, N.; Ramanaviciene, A.; Ramanavicius, A. Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosens. Bioelectron. 2018, 99, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, W.; Lu, Z.; Li, C.M. ZnO Nanomulberry and Its Significant Nonenzymatic Signal Enhancement for Protein Microarray. ACS Appl. Mater. Interfaces 2014, 6, 7728–7734. [Google Scholar] [CrossRef] [PubMed]
- Gasparotto, G.; Costa, J.P.C.; Costa, P.I.; Zaghete, M.A.; Mazon, T. Electrochemical immunosensor based on ZnO nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA-125 detection. Mater. Sci. Eng. C 2017, 76, 1240–1247. [Google Scholar] [CrossRef][Green Version]
- Paul, K.B.; Singh, V.; Vanjari, S.R.K.; Singh, S.G. One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125. Biosens. Bioelectron. 2017, 88, 144–152. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, S.-B.; Cao, P.; Qiu, Q.-F.; Chen, Y.; Xu, Y.; Xie, M.; Huang, W.-H. Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Biosens. Bioelectron. 2018, 122, 211–216. [Google Scholar] [CrossRef]
- Viter, R.; Jekabsons, K.; Kalnina, Z.; Poletaev, N.; Hsu, S.H.; Riekstina, U. Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods. Nanotechnology 2016, 27, 465101. [Google Scholar] [CrossRef]
- Tamashevski, A.; Harmaza, Y.; Viter, R.; Jevdokimovs, D.; Poplausks, R.; Slobozhanina, E.; Mikoliunaite, L.; Erts, D.; Ramanaviciene, A.; Ramanavicius, A. Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells. Talanta 2019, 200, 378–386. [Google Scholar] [CrossRef][Green Version]
- Chopra, A.; Bakhshi, S.; Pramanik, S.K.; Pandey, R.M.; Singh, S.; Gajendra, S.; Gogia, A.; Chandramohan, J.; Sharma, A.; Kumar, L.; et al. Immunophenotypic analysis of T-acute lymphoblastic leukemia. A CD5-based ETP-ALL perspective of non-ETP T-ALL. Eur. J. Haematol. 2014, 92, 211–218. [Google Scholar] [CrossRef]
- Bikah, G.; Lynd, F.M.; A Aruffo, A.; A Ledbetter, J.; Bondada, S. A role for CD5 in cognate interactions between T cells and B cells, and identification of a novel ligand for CD5. Int. Immunol. 1998, 10, 1185–1196. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, K.; Wada, M.; Pinz, K.G.; Liu, H.; Lin, K.-W.; Jares, A.; Firor, A.; Shuai, X.; Salman, H.; Golightly, M.; et al. Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia 2017, 31, 2151–2160. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hahm, J.-I. Zinc oxide nanomaterials for biomedical fluorescence detection. J. Nanosci. Nanotechnol. 2014, 14, 475–486. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ansari, A.; Singh, R.; Sumana, G.; Malhotra, B. Sol–gel derived nano-structured zinc oxide film for sexually transmitted disease sensor. Analyst 2009, 134, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Horejsi, V.; Angelisova, P. Comparatives biochemical studies on the Workshop CD5 and CD3 panel antibodies. In Leucocyte Typing III, White Cell Differentiation Antigens; Oxford University Press: Oxford, UK, 1987; p. 197. [Google Scholar]
- Nebrin, Z.M.; Majidi, J.; Maleki, L.A.; Kazemi, T.; Dadashi, S.; Eyvazi, S.; Ahmadi, M.; Abdolalizadeh, J.; Zolbanin, N.M. Polyclonal antibody production against mouse purified IgG2a towards use in basic research. Res. Mol. Med. 2016, 4, 30–35. [Google Scholar]
- Myndrul, V.; Viter, R.; Savchuk, M.; Koval, M.; Starodub, N.; Silamiķelis, V.; Smyntyna, V.; Ramanavicius, A.; Iatsunskyi, I. Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1. Talanta 2017, 175, 297–304. [Google Scholar] [CrossRef]
- Myndrul, V.; Viter, R.; Savchuk, M.; Shpyrka, N.; Erts, D.; Jevdokimovs, D.; Silamiķelis, V.; Smyntyna, V.; Ramanavicius, A.; Iatsunskyi, I. Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosens. Bioelectron. 2018, 102, 661–667. [Google Scholar] [CrossRef]
- Chen, J.; Ruther, R.E.; Tan, Y.; Bishop, L.M.; Hamers, R.J. Molecular Adsorption on ZnO(1010) Single-Crystal Surfaces: Morphology and Charge Transfer. Langmuir 2012, 28, 10437–10445. [Google Scholar] [CrossRef]
- Singh, J.; Im, J.; Watters, E.J.; Whitten, J.E.; Soares, J.W.; Steeves, D.M. Thiol dosing of ZnO single crystals and nanorods: Surface chemistry and photoluminescence. Surf. Sci. 2013, 609, 183–189. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamashevski, A.; Harmaza, Y.; Slobozhanina, E.; Viter, R.; Iatsunskyi, I. Photoluminescent Detection of Human T-Lymphoblastic Cells by ZnO Nanorods. Molecules 2020, 25, 3168. https://doi.org/10.3390/molecules25143168
Tamashevski A, Harmaza Y, Slobozhanina E, Viter R, Iatsunskyi I. Photoluminescent Detection of Human T-Lymphoblastic Cells by ZnO Nanorods. Molecules. 2020; 25(14):3168. https://doi.org/10.3390/molecules25143168
Chicago/Turabian StyleTamashevski, Alexander, Yuliya Harmaza, Ekaterina Slobozhanina, Roman Viter, and Igor Iatsunskyi. 2020. "Photoluminescent Detection of Human T-Lymphoblastic Cells by ZnO Nanorods" Molecules 25, no. 14: 3168. https://doi.org/10.3390/molecules25143168