Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2
Abstract
1. Introduction
2. Computational Method
3. Results and Discussion
3.1. Reaction Mechanism
3.2. Kinetic Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, Y.T.; Huang, Y.H.; Witek, H.A.; Lee, Y.P. Infrared Absorption Spectrum of the Simplest Criegee Intermediate CH2OO. Science 2013, 340, 174–176. [Google Scholar] [CrossRef]
- Taatjes, C.A.; Meloni, G.; Selby, T.M.; Trevitt, A.J.; Osborn, D.L.; Percival, C.J.; Shallcross, D.E. Direct Observation of the Gas-Phase Criegee Intermediate (CH2OO). J. Am. Chem. Soc. 2008, 130, 11883–11885. [Google Scholar] [CrossRef] [PubMed]
- Welz, O.; Savee, J.D.; Osborn, D.L.; Vasu, S.S.; Percival, C.J.; Shallcross, D.E.; Taatjes, C.A. Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I with O2. Science 2012, 335, 204–207. [Google Scholar] [CrossRef]
- Kjaergaard, H.G.; Kurtén, T.; Nielsen, L.B.; Jørgensen, S.; Wennberg, P.O. Criegee Intermediates React with Ozone. J. Phys. Chem. Lett. 2013, 4, 2525–2529. [Google Scholar] [CrossRef]
- Aplincourt, P.; Ruiz-López, M.F. Theoretical Investigation of Reaction Mechanisms for Carboxylic Acid Formation in the Atmosphere. J. Am. Chem. Soc. 2000, 122, 8990–8997. [Google Scholar] [CrossRef]
- Fenske, J.D.; Hasson, A.S.; Ho, A.W.; Paulson, S.E. Measurement of Absolute Unimolecular and Bimolecular Rate Constants for CH3CHOO Generated by the trans-2-Butene Reaction with Ozone in the Gas Phase. J. Phys. Chem. A 2000, 104, 9921–9932. [Google Scholar] [CrossRef]
- Ryzhkov, A.B.; Ariya, P.A. The Importance of Water Clusters (H2O)n (n = 2,...,4) in the Reaction of Criegee Intermediate with Water in the Atmosphere. Chem. Phys. Lett. 2006, 419, 479–485. [Google Scholar] [CrossRef]
- Anglada, J.M.; González, J.; Torrent-Sucarrat, M. Effects of the Substituents on the Reactivity of Carbonyl Oxides. A Theoretical Study on the Reaction of Substituted Carbonyl Oxides with Water. Phys. Chem. Chem. Phys. 2011, 13, 13034–13035. [Google Scholar] [CrossRef]
- Berndt, T.; Voigtländer, J.; Stratmann, F.; Junninen, H.; Mauldin, R.L., III; Sipilä, M.; Kulmala, M.; Herrmann, H. Competing Atmospheric Reactions of CH2OO with SO2 and Water Vapour. Phys. Chem. Chem. Phys. 2014, 16, 19130–19136. [Google Scholar] [CrossRef]
- Stone, D.; Blitz, M.; Daubney, L.; Howes, N.U.M.; Seakins, P. Kinetics of CH2OO Reactions with SO2, NO2, NO, H2O and CH3CHO as a Function of Pressure. Phys. Chem. Chem. Phys. 2014, 16, 1139–1149. [Google Scholar] [CrossRef]
- Newland, M.J.; Rickard, A.R.; Alam, M.S.; Vereecken, L.; Munoz, A.; Ródenas, M.; Bloss, W.J. Kinetics of Stabilized Criegee Intermediates Derived from Alkene Ozonolysis: Reactions with SO2, H2O and Decomposition under Boundary Layer Conditions. Phys. Chem. Chem. Phys. 2015, 17, 4076–4088. [Google Scholar] [CrossRef] [PubMed]
- Chao, W.; Hsieh, J.-T.; Chang, C.-H.; Lin, J.J.-M. Direct Kinetic Measurement of the Reaction of the Simplest Criegee Intermediate with Water Vapor. Science 2015, 347, 751–754. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Bao, J.L.; Truhlar, D.G. Atmospheric Chemistry of Criegee Intermediates. Unimolecular Reactions and Reactions with Water. J. Am. Chem. Soc. 2016, 138, 14409–14422. [Google Scholar] [CrossRef]
- Díaz-de-Mera, Y.; Aranda, A.; Martínez, E.; Rodríguez, A.A.; Rodríguez, D.; Rodríguez, A. Formation of Secondary Aerosols from the Ozonolysis of Styrene: Effect of SO2 and H2O. Atmos. Environ. 2017, 171, 25–31. [Google Scholar] [CrossRef]
- Long, B.; Tan, X.F.; Long, Z.W.; Wang, Y.B.; Ren, D.S.; Zhang, W.J. Theoretical Studies on Reactions of the Stabilized H2COO with HO2 and the HO2···H2O Complex. J. Phys. Chem. A 2011, 115, 6559–6567. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, Y.; Xue, Y.G.; Cao, J.J.; Wang, W.L. Competition between HO2 and H2O2 Reactions with CH2OO/anti-CH3CHOO in the Oligomer Formation: A Theoretical Perspective. J. Phys. Chem. A 2017, 121, 6981–6991. [Google Scholar] [CrossRef]
- Ouyang, B.; McLeod, M.W.; Jones, R.L.; Bloss, W.J. NO3 Radical Production from the Reaction between the Criegee Intermediate CH2OO and NO2. Phys. Chem. Chem. Phys. 2013, 15, 17070–17075. [Google Scholar] [CrossRef]
- Vereecken, L.; Nguyen, H.M.T. Theoretical Study of the Reaction of Carbonyl Oxide with Nitrogen Dioxide: CH2OO + NO2. Int. J. Chem. Kinet. 2017, 49, 752–760. [Google Scholar] [CrossRef]
- Chhantyal-Pun, R.; Welz, O.; Savee, J.D.; Eskola, A.J.; Lee, E.P.F.; Blacker, L.; Hill, H.R.; Ashcroft, M.; Khan, M.A.H.; Lloyd-Jones, G.C.; et al. Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH3)2COO. J. Phys. Chem. A 2017, 121, 4–15. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, Y.S.; Ding, A.Z. Reaction of Stabilized Criegee Intermediates from Ozonolysis of Limonene with Sulfur Dioxide: Ab Initio and DFT Study. J. Phys. Chem. A 2010, 114, 12452–12461. [Google Scholar] [CrossRef]
- Kurtén, T.; Lane, J.R.; Jørgensen, S.; Kjaergaard, H.G. A Computational Study of the Oxidation of SO2 to SO3 by Gas-Phase Organic Oxidants. J. Phys. Chem. A 2011, 115, 8669–8681. [Google Scholar] [CrossRef] [PubMed]
- Berndt, T.; Jokinen, T.; Mauldin, R.L., III; Petäjä, T.; Herrmann, H.; Junninen, H.; Paasonen, P.; Worsnop, D.R.; Sipilä, M. Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Reactivity toward SO2. J. Phys. Chem. Lett. 2012, 3, 2892–2896. [Google Scholar] [CrossRef]
- Vereecken, L.; Harder, H.; Novelli, A. The Reaction of Criegee Intermediates with NO, RO2, and SO2, and Their Fate in the Atmosphere. Phys. Chem. Chem. Phys. 2012, 14, 14682–14695. [Google Scholar] [CrossRef] [PubMed]
- Kuwata, K.T.; Guinn, E.J.; Hermes, M.R.; Fernandez, J.A.; Mathison, J.M.; Huang, K. A Computational Re-examination of the Criegee Intermediate−Sulfur Dioxide Reaction. J. Phys. Chem. A 2015, 119, 10316–10335. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Liu, F.H.; Liu, S.Y.; Dai, D.X.; Dong, W.R.; Yang, X.M. A Kinetic Study of the CH2OO Criegee Intermediate Reaction with SO2, (H2O)2, CH2I2 and I Atoms using OH Laser Induced Fluorescence. Phys. Chem. Chem. Phys. 2017, 19, 20786–20794. [Google Scholar] [CrossRef]
- Taatjes, C.A.; Welz, O.; Eskola, A.J.; Savee, J.D.; Scheer, A.M.; Shallcross, D.E.; Rotavera, B.; Lee, E.P.F.; Dyke, J.M.; Mok, D.K.W.; et al. Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH3CHOO. Science 2013, 340, 177–180. [Google Scholar] [CrossRef]
- Berndt, T.; Jokinen, T.; Sipilä, M.; Mauldin, R.L., III; Herrmann, H.; Stratmann, F.; Junninen, H.; Kulmala, M. H2SO4 Formation from the Gas-Phase Reaction of Stabilized Criegee Intermediates with SO2: Influence of Water Vapour Content and Temperature. Atmos. Environ. 2014, 89, 603–612. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Huang, Y.-H.; Wang, X.; Bowman, J.M.; Nishimura, Y.; Witek, H.A.; Lee, Y.-P. Infrared Identification of the Criegee Intermediates syn- and anti-CH3CHOO, and Their Distinct Conformation-Dependent Reactivity. Nat. Commun. 2015, 6, 7012–7018. [Google Scholar] [CrossRef]
- Boy, M.; Mogensen, D.; Smolander, S.; Zhou, L.; Nieminen, T.; Paasonen, P.; Plass-Dülmer, C.; Sipilä, M.; Petäjä, T.; Mauldin, L.; et al. Oxidation of SO2 by Stabilized Criegee Intermediate (sCI) Radicals as a Crucial Source for Atmospheric Sulfuric Acid Concentrations. Atmos. Chem. Phys. 2013, 13, 3865–3879. [Google Scholar] [CrossRef]
- Saheb, V.; Nazari, A. The Reaction of OH Radical with the Criegee Intermediate Propanone Oxide: Theoretical Investigations. Comput. Theor. Chem. 2020, 1175, 112726. [Google Scholar] [CrossRef]
- Cai, J.; Lu, Y.S.; Wang, W.N.; Chen, L.; Liu, F.Y.; Wang, W.L. Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with CH2=C(CH3)CHO. Comput. Theor. Chem. 2019, 1170, 112644. [Google Scholar] [CrossRef]
- Mauldin, R.L., III; Berndt, T.; Sipilä, M.; Paasonen, P.; Petäjä, T.; Kim, S.; Kurten, T.; Stratmann, F.; Kerminen, V.M.; Kulmala, M. A New Atmospherically Relevant Oxidant of Sulphur Dioxide. Nature 2012, 488, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Ehn, M.; Thornton, J.A.; Kleist, E.; Sipilä, M.; Junninen, J.; Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; et al. A Large Source of Low-Volatility Secondary Organic Aerosol. Nature 2014, 506, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Berresheim, H.; Adam, M.; Monahan, C.; O’Dowd, C.; Plane, J.M.C.; Bohn, B.; Rohrer, F. Missing SO2 Oxidant in the Coastal Atmosphere?–Observations from High-Resolution Measurements of OH and Atmospheric Sulfur Compounds. Atmos. Chem. Phys. 2014, 14, 12209–12223. [Google Scholar] [CrossRef]
- Sarwar, G.; Simon, H.; Fahey, K.; Mathur, R.; Goliff, W.; Stockwell, W. Impact of Sulfur Dioxide Oxidation by Stabilized Criegee Intermediate on Sulfate. Atmos. Environ. 2014, 85, 204–214. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, D.01; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.; Schlegel, H.B. An Improved Algorithm for Reaction Path Following. J. Chem. Phys. 1989, 90, 2154–2161. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. Reaction Path Following in Mass-Weighted Internal Coordinates. J. Phys. Chem. 1990, 94, 5523–5527. [Google Scholar] [CrossRef]
- Pople, J.A.; Head-Gordon, M.; Raghavachari, K. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies. J. Chem. Phys. 1987, 87, 5968–5975. [Google Scholar] [CrossRef]
- Merrick, J.P.; Moran, D.; Radom, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111, 11683–11700. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. A New Mixing of Hartree–Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Raghunath, P.; Lee, Y.-P.; Lin, M.C. Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH2OO with HNO3 and Its Catalytic Conversion to OH and HCO. J. Phys. Chem. A 2017, 121, 3871–3878. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.M.; Zheng, R.H.; Pan, Y.L.; Wu, Y.K.; Yang, F.; Hong, S. Ozone Dissociation to Oxygen Affected by Criegee Intermediate. J. Phys. Chem. A 2014, 118, 1644–1650. [Google Scholar] [CrossRef]
- Noodleman, L. Valence Bond Description of Antiferromagnetic Coupling in Transition Metal Dimers. J. Chem. Phys. 1981, 74, 5737–5743. [Google Scholar] [CrossRef]
- Karton, A.; Rabinovich, E.; Martin, J.M.L.; Ruscic, B. W4 Theory for Computational Thermochemistry: In Pursuit of Confident Sub-kJ/mol Predictions. J. Chem. Phys. 2006, 125, 144108–144125. [Google Scholar] [CrossRef]
- Karton, A. A Computational Chemist’s Guide to Accurate Thermochemistry for Organic Molecules. WIREs Comput. Mol. Sci. 2016, 6, 292–310. [Google Scholar] [CrossRef]
- Iuga, C.; Alvarez-Idaboy, J.R.; Reyes, L.; Vivier-Bunge, A. Can a Single Water Molecule Really Catalyze the Acetaldehyde + OH Reaction in Tropospheric Conditions? J. Phys. Chem. Lett. 2010, 1, 3112–3115. [Google Scholar] [CrossRef]
- Iuga, C.; Alvarez-Idaboy, J.R.; Vivier-Bunge, A. On the Possible Catalytic Role of a Single Water Molecule in the Acetone + OH Gas Phase Reaction: A Theoretical Pseudo-second-order Kinetics Study. Theor. Chem. Acc. 2011, 129, 209–217. [Google Scholar] [CrossRef]
- Asatryan, R.; da Silva, G.; Bozzelli, J.W. Quantum Chemical Study of the Acrolein (CH2CHCHO) + OH + O2 Reactions. J. Phys. Chem. A 2010, 114, 8302–8311. [Google Scholar] [CrossRef]
- da Silva, G. Reaction of Methacrolein with the Hydroxyl Radical in Air: Incorporation of Secondary O2 Addition into the MACR + OH Master Equation. J. Phys. Chem. A 2012, 116, 5317–5324. [Google Scholar] [CrossRef]
- Pilling, M.J.; Seakins, P.W. Reaction Kinetics; Oxford University Press Inc.: New York, NY, USA, 1999. [Google Scholar]
- Li, J.Y.; Tsona, N.T.; Du, L. The Role of (H2O)1-2 in the CH2O + ClO Gas-Phase Reaction. Molecules 2018, 23, 2240. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.S.; Gan, Q.; Yu, Q.; Zhang, X.M.; Li, R.; Qian, S.C.; Feng, C.G. Initial Mechanisms for the Unimolecular Thermal Decomposition of 2,6-Diamino-3,5-dinitropyrazine-1-oxide. Molecules 2019, 24, 125. [Google Scholar] [CrossRef] [PubMed]
- Wigner, E. Calculation of the Rate of Elementary Association Reactions. J. Chem. Phys. 1937, 5, 720–725. [Google Scholar] [CrossRef]
- Georgievskii, Y.; Klippenstein, S.J. Long-Range Transition State Theory. J. Chem. Phys. 2005, 122, 194103–194117. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, B.; Zhang, W. Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2. Molecules 2020, 25, 3041. https://doi.org/10.3390/molecules25133041
Du B, Zhang W. Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2. Molecules. 2020; 25(13):3041. https://doi.org/10.3390/molecules25133041
Chicago/Turabian StyleDu, Benni, and Weichao Zhang. 2020. "Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2" Molecules 25, no. 13: 3041. https://doi.org/10.3390/molecules25133041
APA StyleDu, B., & Zhang, W. (2020). Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2. Molecules, 25(13), 3041. https://doi.org/10.3390/molecules25133041