Novel Treatment for Mitigating Condensate Bank Using a Newly Synthesized Gemini Surfactant
Abstract
:1. Introduction
2. Results and Discussion
2.1. Condensate Removal
2.2. Wettability Alteration
2.3. Phase Behavior
2.4. Pore Size Characterizations
3. Materials and Methods
3.1. Rocks and Fluids
3.2. Experiments
4. Conclusions
- Flushing the tight rock with a gemini surfactant can remove more than 84% of the condensate liquid.
- Injection of GS can decrease the capillary forces by 40% and increase the condensate mobility by more than 80%.
- Injection of GS into the condensate region will not induce any emulsions, at different salinity levels.
- GS does not affect the pore system; no changes were observed in the T2 relaxation profiles with and without the GS injection.
- Finally, the new treatment showed an attractive performance in reducing liquid saturation and increasing the condensate relative permeability.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmed, T. Reservoir Engineering Handbook; Gulf Professional Publishing: Houston, TX, USA, 2018. [Google Scholar]
- Ayub, M.; Ramadan, M. Mitigation of near wellbore gas-condensate by CO2 huff-n-puff injection: A simulation study. J. Petrol. Sci. Eng. 2019, 175, 998–1027. [Google Scholar] [CrossRef]
- Sayed, M.A.; Al-Muntasheri, G.A. Mitigation of the effects of condensate banking: A critical review. SPE Prod. Oper. 2016, 31, 85–102. [Google Scholar] [CrossRef]
- Hassan, A.; Mahmoud, M.; Al-Majed, A.; Alawi, M.B.; Elkatatny, S.; BaTaweel, M.; Al-Nakhli, A. Gas condensate treatment: A critical review of materials, methods, field applications, and new solutions. J. Pet. Sci. Eng. 2019, 177, 602–613. [Google Scholar] [CrossRef]
- Ghanaatpisheh, E.; Vahdani, H.; Jahromi, K.B. A New Correlation to Predict Dew Point Pressure in Wet Gas Reservoirs. Arab. J. Sci. Eng. 2014, 39, 8341–8346. [Google Scholar] [CrossRef]
- Kniazeff, V.J.; Naville, S.A. Two-phase flow of volatile hydrocarbons. SPE J. 1965, 5, 37–44. [Google Scholar] [CrossRef]
- Maleki, M.R.; Rashidi, F.; Mahani, H.; Khamehchi, E. A simulation study of the enhancement of condensate recovery from one of the Iranian naturally fractured condensate reservoirs. J. Petrol. Sci. Eng. 2012, 92, 158–166. [Google Scholar] [CrossRef]
- Havlena, Z.G.; Griffith, J.D.; Pot, R.; Kiel, O.G. Condensate recovery by cycling at declining pressure. In Proceedings of the Annual Technical Meeting of Petroleum Society of Canada, Banff, AB, Canada, 24–26 May 1967. [Google Scholar]
- Muskat, M. Complete-Water-Drive Reservoirs (1949 PPOP Chapter 11). In Physical Principles of Oil Production; Society of Petroleum Engineers: Richardson, TX, USA, 1981; pp. 528–644. [Google Scholar]
- Liu, X.; Kang, Y.; Luo, P.; You, L.; Tang, Y.; Kong, L. Wettability modification by fluoride and its application in aqueous phase trapping damage removal in tight sandstone reservoirs. J. Pet. Sci. Eng. 2015, 133, 201–207. [Google Scholar] [CrossRef]
- Asgari, A.; Dianatirad, M.; Ranjbaran, M.; Sadeghi, A.R.; Rahimpour, M.R. Methanol treatment in gas condensate reservoirs: A modeling and experimental study. Chem. Eng. Res. Des. 2014, 92, 876–890. [Google Scholar] [CrossRef]
- Linderman, J.T.; Al-Jenaibi, F.S.; Ghori, S.G.; Putney, K.; Lawrence, J.; Gallat, M.; Hohensee, K. Feasibility Study of Substituting Nitrogen for Hydrocarbon in a Gas Recycle Condensate Reservoir. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 3–6 November 2018. [Google Scholar] [CrossRef]
- Einstein, M.A.; Castillo, G.; Caridad, Y.; Gil, J.C. A novel improved condensate-recovery method by cyclic supercritical CO2 injection. In Proceedings of the SPE Latin American & Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 15–18 April 2007. [Google Scholar]
- Meng, X.; Sheng, J.J. Experimental and numerical study of huff-n-puff gas injection to re-vaporize liquid dropout in shale gas condensate reservoirs. J. Nat. Gas. Sci. Eng. 2016, 35, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Fevang, Ø.; Whitson, C.H. Modeling gas-condensate well deliverability. SPE Res. Eng. 1996, 11, 221–230. [Google Scholar] [CrossRef]
- Odi, U. Analysis and potential of CO2 huff-n-puff for near Wellbore condensate removal and enhanced gas recovery. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 8–10 October 2012. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.S.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, P.; Yan, M.; Liu, B.; Liu, H.; Wang, H. Model of Effective Width and Fracture Conductivity for Hydraulic Fractures in Tight Reservoirs. Arab. J. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Mahdiyar, H.; Jamiolahmady, M. Optimization of hydraulic fracture geometry in gas condensate reservoirs. Fuel 2014, 119, 27–37. [Google Scholar] [CrossRef]
- Khan, M.N.; Siddiqui, F.I.; Mansur, S.; Ali, S.D. Hydraulic Fracturing in Gas Condensate Reservoirs: Successes, Setbacks and Lessons Learnt. In Proceedings of the SPE/PAPG Annual Technical Conference, Islamabad, Pakistan, 10–11 November 2010. [Google Scholar] [CrossRef]
- Li, L.; Sheng, G.; Su, Y. Water-Gas Two-Phase Flow Behavior of Multi-Fractured Horizontal Wells in Shale Gas Reservoirs. Processes 2019, 7, 664. [Google Scholar] [CrossRef] [Green Version]
- Hou, B.; Chen, M.; Cheng, W.; Diao, C. Investigation of hydraulic fracture networks in shale gas reservoirs with random fractures. Arab. J. Sci. Eng. 2016, 41, 2681–2691. [Google Scholar] [CrossRef]
- Al-Anazi, H.A.; Xiao, J.J.; Al-Eidan, A.A.; Buhidma, I.M.; Ahmed, M.S.; Al-Faifi, M.; Assiri, W.J. Gas productivity enhancement by wettability alteration of gas-condensate reservoirs. In Proceedings of the European Formation Damage Conference, Scheveningen, The Netherlands, 30 May–1 June 2007. [Google Scholar]
- Ajagbe, O.; Fahes, M. Establishing screening criteria for field application of wettability alteration in gas-condensate reservoirs. J. Pet. Sci. Eng. 2020, 193, 107342. [Google Scholar] [CrossRef]
- Al-Yami, A.M.; Gomez, F.A.; Al-Hamed, K.I.; Al-Buali, M.H. A Successful Field Application of a New Chemical Treatment in a Fluid Blocked Well in Saudi Arabia. In Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 19–22 May 2013. [Google Scholar] [CrossRef]
- Bang, V. Development of a Successful Chemical Treatment for Gas Wells with Condensate or Water Blocking Damage. Ph.D. Thesis, The University of Texas, Austin, TX, USA, December 2007. [Google Scholar]
- Strazza, C.; Del Borghi, A.; Gallo, M. Development of specific rules for the application of life cycle assessment to carbon capture and storage. Energies 2013, 6, 1250–1265. [Google Scholar] [CrossRef]
- Ali, N.E.C.; Zoghbi, B.; Fahes, M.; Nasrabadi, H.; Retnanto, A. The impact of near-wellbore wettability on the production of gas and condensate: Insights from experiments and simulations. J. Petrol. Sci. Eng. 2019, 175, 215–223. [Google Scholar]
- Schultz, M.M.; Barofsky, D.F.; Field, J.A. Fluorinated alkyl surfactants. Environ. Eng. Sci. 2003, 20, 487–501. [Google Scholar] [CrossRef]
- Sharifzadeh, S.; Hassanajili, S.; Rahimpour, M.R.; Mousavi, M.A. Preparation of the modified limestone possessing higher permeability of gas well based on fluorinated silica: Effect of catalyst. J. Fluor. Chem. 2015, 173, 35–46. [Google Scholar] [CrossRef]
- Karandish, G.R.; Rahimpour, M.R.; Sharifzadeh, S.; Dadkhah, A.A. Wettability alteration in gas-condensate carbonate reservoir using anionic fluorinated treatment. Chem. Eng. Res. Des. 2015, 93, 554–564. [Google Scholar] [CrossRef]
- Owolabi, O.O.; Watson, R.W. Effects of rock-pore characteristics on oil recovery at breakthrough and ultimate oil recovery in water-wet sandstones. In Proceedings of the SPE Eastern Regional Meeting, Pittsburgh, PA, USA, 2–4 November 1993. [Google Scholar]
- Wu, S.; Firoozabadi, A. Effect of salinity on wettability alteration to intermediate gas-wetting. SPE Reserv. Eval. Eng. 2010, 13, 228–245. [Google Scholar] [CrossRef] [Green Version]
- Fahes, M.M.; Firoozabadi, A. Wettability Alteration to Intermediate Gas-Wetting in Gas/condensate Reservoirs at High Temperatures. SPE J. 2007, 12, 397–407. [Google Scholar] [CrossRef]
- Kumar, V.; Bang, V.S.S.; Pope, G.A.; Sharma, M.M.; Ayyalasomayajula, P.S.; Kamath, J. Chemical stimulation of gas/condensate reservoirs. SPE 102669. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–27 September 2006. [Google Scholar]
- Li, K.; Abbas, F. Experimental study of wettability alteration to preferential gas-wetting in porous media and its effects. SPE Res. Eval. Eng. 2000, 3, 139–149. [Google Scholar]
- Safaei, A.; Esmaeilzadeh, F.; Sardarian, A.; Mousavi, S.M.; Wang, X. Experimental investigation of wettability alteration of carbonate gas-condensate reservoirs from oil-wetting to gas-wetting using Fe3O4 nanoparticles coated with Poly (vinyl alcohol),(PVA) or Hydroxyapatite (HAp). J. Petrol. Sci. Eng. 2020, 184, 106530. [Google Scholar] [CrossRef]
- Mohammed, M.; Babadagli, T. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems. Adv. Coll. Inter. Sci. 2015, 220, 54–77. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Rao, D.N. Experimental Study of Spreading and Wettability Effects by Surfactants in Condensate Reservoirs at Reservoir Conditions. In Proceedings of the SPE International Symposium on Oilfield Chemistry, The Woodlands, TX, USA, 11–13 April 2011. [Google Scholar]
- Jadhunandan, P.P.; Morrow, N.R. Spontaneous imbibition of water by crude oil/brine/rock systems. In Situ (United States) 1991, 15, 40–46. [Google Scholar]
- Li, K.; Liu, Y.; Zheng, H.; Huang, G.; Li, G. Enhanced gas-condensate production by wettability alteration to gas wetness. J. Pet. Sci. Eng. 2011, 78, 505–509. [Google Scholar] [CrossRef]
- Aminnaji, M.; Fazeli, H.; Bahramian, A.; Gerami, S.; Ghojavand, H. Wettability alteration of reservoir rocks from liquid wetting to gas wetting using nanofluid. Transp. Porous Media 2015, 109, 201–216. [Google Scholar] [CrossRef]
- Erfani Gahrooei, H.R.; Ghazanfari, M.H.; Karimi Malekabadi, F. Wettability alteration of reservoir rocks to gas wetting condition: A comparative study. Can. J. Chem. Eng. 2017, 96, 997–1004. [Google Scholar] [CrossRef]
- Sayed, M.; Liang, F.; Ow, H. Novel surface modified nanoparticles for mitigation of condensate and water blockage in gas reservoirs. In Proceedings of the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, LA, USA, 7–9 February 2018. [Google Scholar]
- Sayed, M.; Liang, F.; Ow, H. Novel surface modified nanoparticles for long-lasting mitigation of water and condensate blockage in gas reservoirs. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2018. [Google Scholar]
- Khalilinezhad, S.S.; Cheraghian, G.; Karambeigi, M.S.; Tabatabaee, H.; Roayaei, E. Characterizing the role of clay and silica nanoparticles in enhanced heavy oil recovery during polymer flooding. Arab. J. Sci. Eng. 2016, 41, 2731–2750. [Google Scholar] [CrossRef]
- Johnson, E.F.; Bossler, D.P.; Bossler, V.O. Calculation of relative permeability from displacement experiments. Trans. AIME 1959, 216, 370–372. [Google Scholar] [CrossRef]
- Bi, Z.C.; Qi, L.Y.; Liao, W.S. Dynamic surface properties, wettability and mimic oil recovery of ethanediyl-α, β-bis (cetyldimethylammonium bromide) on dodecane modified silica powder. J. Mater. Sci. 2005, 40, 2783–2788. [Google Scholar] [CrossRef]
- Salehi, M.; Johnson, S.J.; Liang, J.T. Enhanced wettability alteration by surfactants with multiple hydrophilic moieties. J. Surfactants Deterg. 2010, 13, 243–246. [Google Scholar] [CrossRef]
- Kamal, M.S. A review of gemini surfactants: Potential application in enhanced oil recovery. J. Surfactants Deterg. 2016, 19, 223–236. [Google Scholar] [CrossRef]
- Pisárčik, M.; Polakovičová, M.; Markuliak, M.; Lukáč, M.; Devínsky, F. Self-Assembly Properties of Cationic Gemini Surfactants with Biodegradable Groups in the Spacer. Molecules 2019, 24, 1481. [Google Scholar] [CrossRef] [Green Version]
- Labena, A.; Hegazy, M.A.; Sami, R.M.; Hozzein, W.N. Multiple applications of a novel cationic gemini surfactant: Anti-microbial, anti-biofilm, biocide, salinity corrosion inhibitor, and biofilm dispersion (Part II). Molecules 2020, 25, 1348. [Google Scholar] [CrossRef] [Green Version]
- Tiab, D.; Donaldson, E.C. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties; Gulf professional publishing: Houston, TX, USA, 2015. [Google Scholar]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Hydrology Papers No. 3; Colorado State University: Fort Collins, CO, USA, 1964; pp. 22–27. [Google Scholar]
- Hussain, S.M.S.; Kamal, M.S.; Murtaza, M. Effect of aromatic spacer groups and counterions on aqueous micellar and thermal properties of the synthesized quaternary ammonium gemini surfactants. J. Mol. Liq. 2019, 296, 111837–111844. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available. |
Minerals | Chemical Formula | wt% |
---|---|---|
Calcium Feldspar | CaAl2Si2O8 | 5 |
Chlorite | (Fe, Mg)5Al(Si3Al)O10(OH)8 | 4 |
Illite | K0.65Al2[Al0.65Si3.35O10](OH)2 | 18 |
Potassium Feldspar | KAlSi3O8 | 2 |
Quartz | SiO2 | 71 |
Total | 100 |
Sample Index | Length (in) | Diameter (in) | Pore Volume (ml) | Porosity (%) | Permeability (mD) |
---|---|---|---|---|---|
Core 1 | 6 | 1.5 | 22.59 | 13 | 0.27 |
Core 2 | 6 | 1.5 | 21.72 | 12.5 | 0.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.; Mahmoud, M.; Kamal, M.S.; Hussain, S.M.S.; Patil, S. Novel Treatment for Mitigating Condensate Bank Using a Newly Synthesized Gemini Surfactant. Molecules 2020, 25, 3030. https://doi.org/10.3390/molecules25133030
Hassan A, Mahmoud M, Kamal MS, Hussain SMS, Patil S. Novel Treatment for Mitigating Condensate Bank Using a Newly Synthesized Gemini Surfactant. Molecules. 2020; 25(13):3030. https://doi.org/10.3390/molecules25133030
Chicago/Turabian StyleHassan, Amjed, Mohamed Mahmoud, Muhammad Shahzad Kamal, Syed Muhammad Shakil Hussain, and Shirish Patil. 2020. "Novel Treatment for Mitigating Condensate Bank Using a Newly Synthesized Gemini Surfactant" Molecules 25, no. 13: 3030. https://doi.org/10.3390/molecules25133030
APA StyleHassan, A., Mahmoud, M., Kamal, M. S., Hussain, S. M. S., & Patil, S. (2020). Novel Treatment for Mitigating Condensate Bank Using a Newly Synthesized Gemini Surfactant. Molecules, 25(13), 3030. https://doi.org/10.3390/molecules25133030