Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of the Zeolites
2.2. Structure of the Zeolites
2.3. pH Changes
2.4. Concentration of Major Elements in Simulated Gastric Fluid after Immersion of Zeolites
3. Materials and Methods
3.1. Thermal Treatment
3.2. Characterization
3.3. Behaviour of the Zeolites in Simulated Gastric Fluid
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheong, Y.W.; Wong, K.L.; Ooi, B.S.; Ling, T.C.; Khoerunnisa, F.; Ng, E.P. Effects of synthesis parameters on crystallization behavior of k-mer zeolite and its morphological properties on catalytic cyanoethylation reaction. Crystals 2020, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. 2018, 144, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Sep. Pur. Technol. 2020, 235, 116152. [Google Scholar] [CrossRef]
- Ochiuz, L.; Ghiciuc, C.; Ignat, M.; Popa, M.; Peptu, C.A. Development of a modified-release drug delivery system with bexarotene loaded in clinoptilolite. Mater. Plast. 2017, 54, 581–585. [Google Scholar] [CrossRef]
- Neag, E.; Senila, M.; Torok, A.I.; Roman, M.; Puskas, F. Regeneration and reuse of natural zeolite for ammonium removal. In Proceedings of the 19th SGEM International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, 28 June–6 July 2019; Issue 5.2. pp. 651–656. [Google Scholar]
- Stocker, K.; Ellersdorfer, M.; Lehner, M.; Raith, J.G. Characterization and utilization of natural zeolites in technical applications. Berg Huettenmaenn. Monatsh. 2017, 162, 142–147. [Google Scholar] [CrossRef]
- Marantos, I.; Christidis, G.E.; Ulmanu, M. Zeolite formation and deposits. In Natural Zeolites Handbook; Inglezakis, V.J., Zorpas, A.A., Eds.; Bentham Science Publishers Ltd.: Soest, The Netherlands, 2011; Chapter 2.1; pp. 19–36. [Google Scholar]
- Akkoca, D.B.; Yilgin, M.; Ural, M.; Alcin, H.; Mergen, A. Hydrothermal and thermal treatment of natural clinoptilolite zeolite from Bigadic, Turkey: An experimental study. Geochem. Int. 2013, 51, 495–504. [Google Scholar] [CrossRef]
- Cadar, O.; Hoaghia, M.A.; Kovacs, E.; Senila, M.; Miu, I. Behavior of some clinoptilolite rich natural zeolites from Romania in simulated biological fluids. In Proceedings of the 19th SGEM International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, 28 June–6 July 2019; Issue 1.1. pp. 59–66. [Google Scholar]
- Li, Y.; Li, L.; Yu, J. Applications of Zeolites in Sustainable Chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef] [Green Version]
- Cruciani, G.; Gualtieri, A. Dehydration dynamics of analcime by in situ synchrotron powder diffraction. Am. Mineral. 1999, 84, 112–119. [Google Scholar] [CrossRef]
- Alberti, A.; Martucci, A. Reconstructive phase transitions in microporous materials: Rules and factors affecting them. Micropor. Mesopor. Mat. 2011, 141, 192–198. [Google Scholar] [CrossRef]
- Bish, D.L.; Carey, J.W. Thermal behavior of natural zeolites. In Natural Zeolites: Occurrence, Properties, Applications (Reviews in Mineralogy and Geochemistry); Bish, D.L., Ming, D.W., Eds.; Mineralogical Society of America: Washington, DC, USA, 2001; Volume 45, pp. 403–452. [Google Scholar]
- Doula, M.; Dimirkou, A. Copper adsorption and Si, Al, Ca and Na release from clinoptilolite. J. Colloid. Inter. Sci. 2002, 245, 237–250. [Google Scholar] [CrossRef]
- Christidis, G.E.; Kosiari, S.; Petavratzi, E. Acid activation and bleaching capacity of bentonites from the Troodos ophiolite, Cyprus. Appl. Clay Sci. 2003, 24, 79–91. [Google Scholar] [CrossRef]
- Wang, C.; Leng, S.; Guo, H.; Yu, J.; Li, W.; Cao, L.; Huang, J. Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment. Appl. Surf. Sci. 2019, 498, 143874. [Google Scholar] [CrossRef]
- Marc, S.; Tulcan, C. Zeolites applications in veterinary medicine. In Zeolites-New Challenges; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef]
- Kavak, D.D.; Ulku, S. Investigation of structural properties of clinoptilolite rich zeolites in simulated digestion conditions and their cytotoxicity against Caco-2 cells in vitro. J. Porous. Mat. 2013, 20, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Popovici, E.; Burtica, G.; Pode, R.; Bedelean, I.; Calb, I. Romanian volcanic tuffs exploitation in environmental protection. In Natural Microporous Materials in Environmental Technology; Misaelides, P., Macasek, F., Pinnavaia, T.J., Collela, C., Eds.; NATO Science Series, Series E: Applied Sciences; Springer: Dordrecht, Germany, 1999; Volume 362, pp. 345–352. [Google Scholar]
- Ceyhan, T.; Tatlier, M.; Akcakaya, H. In vitro evaluation of the use of zeolites as biomaterials: Effects on simulated body fluid and two types of cells. J. Mater. Sci. Mater. Med. 2007, 18, 1557–1562. [Google Scholar] [CrossRef]
- Ceeri, G.; Farina, M.; Brundu, A.; Dakovic, A.; Giunchedi, P.; Gavini, E.; Rassu, G. Natural zeolites for pharmaceutical formulations: Preparation and evaluation of a clinoptilolite-based material. Micropor. Mesopor. Mat. 2016, 223, 58–67. [Google Scholar] [CrossRef]
- Bish, D.; Boak, J. Clinoptilolite-heulandite nomenclature. Rev. Mineral. Geochem. 2001, 45, 207–216. [Google Scholar] [CrossRef]
- De Gennaro, R.; Cappelletti, P.; Cerri, G.; de Gennaro, M.; Dondi, M.; Guarini, G.; Langella, A.; Naimo, D. Influence of zeolites on the sintering and technological properties of porcelain stoneware tiles. J. Eur. Ceram. Soc. 2003, 23, 2237–2245. [Google Scholar] [CrossRef] [Green Version]
- Duvarci, O.C.; Akdeniz, Y.; Ozmihci, F.; Ulku, S.; Balkose, D.; Ciftcioglu, M. Thermal behavior of a zeolitic tuff. Ceram. Int. 2007, 33, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Arcoya, A.; Gonzalez, J.A.; Travieso, N.; Seoane, X.L. Physicochemical and catalytic properties of a modified natural clinoptilolite. Clay Miner. 1994, 29, 123–131. [Google Scholar] [CrossRef]
- Gevorkyan, R.G.; Sargsyan, H.H.; Karamyan, G.G.; Keheyan, Y.M.; Yeritsyan, H.N.; Hovhannesyan, A.S.; Sahakyan, A.A. Study of absorption properties of modified zeolites. Chem. Erde-Geochem. 2002, 62, 237–242. [Google Scholar] [CrossRef]
- Polatoglu, I.; Cakicioglu-Ozkan, F. Aqueous interactions of zeolitic material in acid and basic solutions. Micropor. Mesopor. Mat. 2010, 132, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Senila, M.; Cadar, O.; Senila, L.; Hoaghia, A.; Miu, I. Mercury determination in natural zeolites by thermal decomposition atomic absorption spectrometry: Method validation in compliance with requirements for use as dietary supplements. Molecules 2019, 24, 4023. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Baltazar, A.; Esparza, R.; Gonzales, M.; Rosas, G.; Perez, R. Preparation and characterization of natural zeolite modified with iron nanoparticles. J. Nanomater. 2015, 2015, 364763. [Google Scholar] [CrossRef] [Green Version]
- Ates, A.; Hardacre, C. The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatment. J. Colloid Interface Sci. 2012, 372, 130–140. [Google Scholar] [CrossRef]
- Wojciechowska, K. The influence of desilication/dealumination processes on the physicochemical properties of clinoptilolite. Clay Miner. 2019, 54, 111–119. [Google Scholar] [CrossRef]
- Abd-Elsatar, A.G.; Farag, M.M.; Youssef, H.F.; Salih, S.A.; ·Mounier, M.M.; ·El-Meliegy, E. Different zeolite systems for colon cancer therapy: Monitoring of ion release, cytotoxicity and drug release behavior. Prog. Biomater. 2019, 8, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Margeta, K.; Logar, N.Z.; Siljeg, M.; Farkas, A. Natural zeolites in water treatment–How effective is their use. In Water Treatment; Elshorbagy, W., Chowdhury, R.K., Eds.; IntechOpen: London, UK, 2013; Chapter 5; pp. 81–112. [Google Scholar]
- Selvam, T.; Schwieger, W.; Dathe, W. Natural Cuban zeolites for medical use and their histamine binding capacity. Clay Miner. 2014, 49, 501–512. [Google Scholar] [CrossRef]
- Munthali, M.W.; Elsheikh, M.A.; Johan, E.; Matsue, N. Proton adsorption selectivity of zeolites in aqueous media: Effect of Si/Al ratio of zeolites. Molecules 2014, 19, 20468–20481. [Google Scholar] [CrossRef]
- Sabadash, V.; Gumnitsky, J.; Hyvlyud, A. Mechanism of phosphates sorption by zeolites depending on degree of their substitution for potassium ions. Chem. Chem. Technol. 2016, 10, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos de Castro, P.; Baretto Maia, A.A.; Angelica, R.S. Study of the thermal stability of faujasite zeolite synthesized from kaolin waste from the Amazon. Mater. Res. 2020, 22, e20190321. [Google Scholar] [CrossRef]
- Moisa, C.; Vicas, L.G.; Ganea, M.; Levei, E.A.; Cadar, O.; Berce, C. Influence of magnesium compounds on sodium, potassium and calcium levels in different mice organs. Farmacia 2019, 67, 274–282. [Google Scholar] [CrossRef]
Sample Availability: Samples of the zeolites are available from the authors. |
Zeolite | Na2O | K2O | CaO | MgO | SiO2 | Al2O3 | Fe2O3 | MnO | TiO2 | Si:Al | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|
RZ | 0.92 | 3.12 | 1.66 | 0.87 | 72.95 | 12.79 | 1.05 | 0.03 | 0.18 | 7.90 | 6.42 |
TZ-450 | 1.09 | 3.33 | 1.71 | 0.83 | 73.40 | 12.84 | 0.96 | 0.04 | 0.17 | 7.92 | 5.57 |
TZ-500 | 1.08 | 3.63 | 1.81 | 0.93 | 72.91 | 12.95 | 1.06 | 0.03 | 0.18 | 7.80 | 5.39 |
TZ-600 | 1.06 | 3.76 | 1.96 | 1.02 | 72.80 | 13.52 | 1.04 | 0.04 | 0.17 | 7.46 | 4.58 |
TZ-750 | 1.21 | 3.68 | 2.09 | 1.15 | 73.40 | 13.50 | 1.09 | 0.03 | 0.16 | 7.53 | 3.66 |
TZ-800 | 1.25 | 3.76 | 1.98 | 1.23 | 73.62 | 14.06 | 1.10 | 0.04 | 0.19 | 7.25 | 2.72 |
CRM-c | 3.00 | 11.59 | 0.421 | - | 65.77 | 18.63 | 0.085 | - | - | - | - |
CRM-e | 2.96 | 11.51 | 0.413 | - | 65.63 | 18.70 | 0.079 | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadar, O.; Senila, M.; Hoaghia, M.-A.; Scurtu, D.; Miu, I.; Levei, E.A. Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids. Molecules 2020, 25, 2570. https://doi.org/10.3390/molecules25112570
Cadar O, Senila M, Hoaghia M-A, Scurtu D, Miu I, Levei EA. Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids. Molecules. 2020; 25(11):2570. https://doi.org/10.3390/molecules25112570
Chicago/Turabian StyleCadar, Oana, Marin Senila, Maria-Alexandra Hoaghia, Daniela Scurtu, Ion Miu, and Erika Andrea Levei. 2020. "Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids" Molecules 25, no. 11: 2570. https://doi.org/10.3390/molecules25112570
APA StyleCadar, O., Senila, M., Hoaghia, M.-A., Scurtu, D., Miu, I., & Levei, E. A. (2020). Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids. Molecules, 25(11), 2570. https://doi.org/10.3390/molecules25112570