Synergistic Effects of Thiosemicarbazides with Clinical Drugs against S. aureus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rationale and Synthesis
2.2. Cytotoxicity Assay
2.3. Synergy Assay
2.4. Enzymatic Assay
3. Materials and Methods
3.1. Chemistry
3.2. General Procedure for Synthesis of the Thiosemicarbazides 1–9
3.3. In Vitro Evaluation of Antibacterial Activity
3.4. Fractional Inhibitory Concentration Indices (FICIs)
3.5. Cytotoxicity Assay
3.6. Inhibition of Bacterial type IIA Topoisomerases
3.7. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–34310. [Google Scholar] [CrossRef]
- Antibiotic/Antimicrobial Resistance (AR/AMR). Centers for Disease Control and Prevention, Atlanta, GA. 2019. Available online: https://www.cdc.gov/drugresistance/biggest_threats.html (accessed on 2 January 2020).
- Vicetti Miguel, C.P.; Mejias, A.; Leber, A.; Sanchez, P.J. A decade of antimicrobial resistance in Staphylococcus aureus: A single center experience. PLoS ONE 2019, 14, e0212029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craft, K.M.; Nguyen, J.M.; Berg, L.J.; Townsend, S.D. Methicillin-resistant Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. Med. Chem. Commun. 2019, 10, 1231–1241. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler Jr, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- O’brien, W.J.; Gupta, K.; Itani, K.M.F.; Longitudinal, A. Study of S. aureus infection in a national cohort of surgical patients. Open Forum Infect. Dis. 2019, 6, ofz350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavanagh, K.T. Control of MSSA and MRSA in the United States: Protocols, policies, risk adjustment and excuses. Antimicrob. Resist. Infect. Control 2019, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Archer, G.L. Staphylococcus aureus: A well-armed pathogen. Clin. Infect. Dis. 1998, 26, 1179–1181. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler Jr, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Sinha, B.; Fraunholz, M. Staphylococcus aureus host cell invasion and post-invasion events. Int. J. Med. Microbiol. 2010, 300, 170–175. [Google Scholar] [CrossRef]
- Foster, T.J. Colonization and infection of the human host by staphylococci: Adhesion, survival and immune evasion. Vet. Dermatol. 2009, 20, 456–470. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: Executive summary. Clin. Infect. Dis. 2011, 52, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Drebes, J.; Künz, M.; Pereira, C.A.; Betzel, C.; Wrenger, C. MRSA infections: From classical treatment to suicide drugs. Curr. Med. Chem. 2014, 21, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Kalita, S.; Kandimalla, R.; Bhowal, A.C.; Kotoky, J.; Kundu, S. Functionalization of Β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci. Rep. UK 2018, 8, 5778. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, T.N.; Malani, P.N. Combination therapy for methicillin-resistant Staphylococcus aureus bacteremia: Not ready for prime time. JAMA 2020, 323, 515–516. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, H.; Mayhoub, A.S.; Ghafoor, A.; Soofi, M.; Alajlouni, R.A.; Cushman, M.; Seleem, M.N. Discovery and characterization of potent thiazoles versus methicillin-and vancomycin-resistant Staphylococcus aureus. J. Med. Chem. 2014, 57, 1609–1615. [Google Scholar] [CrossRef] [Green Version]
- Rybak, M.; Lomaestro, B.; Rotschafer, J.C.; Moellering, R.; Craig, W., Jr.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2009, 66, 82–98. [Google Scholar] [CrossRef]
- Han, J.H.; Edelstein, P.H.; Lautenbach, E. Reduced vancomycin susceptibility and staphylococcal cassette chromosome mec (SCCmec) type distribution in methicillin-resistant Staphylococcus aureus bacteraemia. J. Antimicrob. Chemother. 2012, 67, 2346–2349. [Google Scholar] [CrossRef] [Green Version]
- Cong, Y.; Yang, S.; Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2020, 21, 169–176. [Google Scholar] [CrossRef]
- Kullar, R.; Casapao, A.M.; Davis, S.L.; Levine, D.P.; Zhao, J.J.; Crank, C.W.; Segreti, J.; Sakoulas, G.; Cosgrove, S.E.; Rybak, M.J. A multicentre evaluation of the effectiveness and safety of high-dose daptomycin for the treatment of infective endocarditis. J. Antimicrob. Chemother. 2013, 68, 2921–2926. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Riederer, K.; Chase, P.; Khatib, R. High rate of decreasing daptomycin susceptibility during the treatment of persistent Staphylococcus aureus bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 433–437. [Google Scholar] [CrossRef]
- Paneth, A.; Stączek, P.; Plech, T.; Strzelczyk, A.; Janowska, D.; Stefańska, J.; Dzitko, K.; Wujec, M.; Kosiek, S.; Paneth, P. Synthesis and antibacterial activity of 1,4-dibenzoylthiosemicarbazide derivatives. Biomed. Pharmacother. 2017, 88, 1235–1242. [Google Scholar] [CrossRef]
- Paneth, A.; Plech, T.; Kaproń, B.; Hagel, D.; Kosikowska, U.; Kuśmierz, E.; Dzitko, K.; Paneth, P. Design, synthesis and biological evaluation of 4-benzoyl-1-dichlorobenzoylthiosemicarbazides as potent Gram-positive antibacterial agents. J. Enzym. Inhib. Med. Chem. 2016, 31, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, A.; Christena, R.C.; Subbarao, H.M.V.; Venkatasubramanian, U.; Thiagarajan, R.; Sivaramakrishnan, V.; Kasilingam, K.; Saisubramanian, N.; Ganesan, S.S. Identification of benzochromene derivatives as a highly specific NorA efflux pump inhibitor to mitigate the drug resistant strains of S. aureus. RSC Adv. 2016, 6, 30258–30267. [Google Scholar] [CrossRef]
- Paneth, A.; Stączek, P.; Plech, T.; Strzelczyk, A.; Dzitko, K.; Wujec, M.; Kuśmierz, E.; Kosikowska, U.; Grzegorczyk, A.; Paneth, P. Biological evaluation and molecular modelling study of thiosemicarbazide derivatives as bacterial type IIA topoisomerases inhibitors. J. Enzym. Inhib. Med. Chem. 2016, 31, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Janowska, D. Synthesis and Antibacterial Screening of New Thiosemicarbazide Derivatives. Ph.D. Thesis, Medical University of Lublin, Lublin, Poland, 2018. [Google Scholar]
- Nageeb, W.; Metwally, L.; Kamel, M.; Zakaria, S. In vitro antimicrobial synergy studies of carbapenem-resistant Acinetobacter baumannii isolated from intensive care units of a tertiary care hospital in Egypt. J. Infect. Public. Heal. 2015, 8, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Meletiadis, J.; Pournaras, S.; Roilides, E.; Walsh, T.J. Defining Fractional Inhibitory Concentration Index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2010, 54, 602–609. [Google Scholar]
- Brochmann, R.P.; Helmfrid, A.; Jana, B.; Magnowska, Z.; Guardabassi, L. Antimicrobial synergy between carprofen and doxycycline against methicillin-resistant Staphylococcus pseudintermedius ST71. BMC Vet. Res. 2016, 12, 126. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Li, Z.; Li, X.; Tian, Y.; Fan, Y.; Yu, C.; Zhou, B.; Liu, Y.; Xiang, R.; Yang, L. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des. Dev. Ther. 2017, 11, 939–946. [Google Scholar] [CrossRef] [Green Version]
- Coleman, J.P.; Smith, C.J. Microbial nucleic acid and protein synthesis. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Plech, T.; Paneth, A.; Kaproń, B.; Kosikowska, U.; Malm, A.; Strzelczyk, U.; Stączek, P. Structure-activity relationship studies of microbiologically active thiosemicarbazides derived from hydroxybenzoic acid hydrazides. Chem. Biol. Drug Des. 2015, 85, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Siwek, A.; Stączek, P.; Wujec, M.; Bielawski, K.; Bielawska, A.; Paneth, P. Cytotoxic effect and molecular docking of 4-ethoxycarbonylmethyl-1-(piperidin-4-ylcarbonyl)-thiosemicarbazide-a novel topoisomerase II inhibitor. J. Mol. Model. 2013, 19, 1319–1324. [Google Scholar] [CrossRef] [Green Version]
- Joshi, K.C.; Mehta, D.S. Synthesis of some 3-(fluorinated aryl)-4-alkyl-/aryl-5-mercapto-1,2,4-triazoles and related compounds as possible CNS [central nervous system] depressants. J. Indian Chem. Soc. 1974, 51, 613–615. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Zuo, G.Y.; Zhang, X.J.; Han, J.; Li, Y.Q.; Wang, G.C. In vitro synergism of magnolol and honokiol in combination with antibacterial agents against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). BMC Complement. Altern. Med. 2015, 15, 425. [Google Scholar] [CrossRef] [Green Version]
- Hauser, C.; Hirzberger, L.; Unemo, M.; Furrer, H.; Endimiani, A. In vitro activity of fosfomycin alone and in combination with ceftriaxone or azithromycin against clinical Neisseria gonorrhoeae isolates. Antimicrob. Agents Chemother. 2015, 59, 1605–1611. [Google Scholar] [CrossRef] [Green Version]
- Zawadzka, K.; Marta Nowak, M.; Piwoński, I.; Lisowska, K. The synergy of ciprofloxacin and carvedilol against Staphylococcus aureus—Prospects of a new treatment strategy? Molecules 2019, 24, 4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paneth, A.; Stefańska, J.; Stępień, K.; Plech, T.; Janowska, D.; Trotsko, N.; Wujec, M. The synergy of thiosemicarbazide derivatives with antibiotics in the perspective of their potential applications in bacterial deseases. Presented at the Third Symposium “School of Medicinal Chemistry”, Wroclaw, Poland, 6–8 September 2017. [Google Scholar]
- Siwek, A.; Świderek, K.; Jankowski, S. Problems with molecular mechanics implementations on the example of 4-benzoyl-1-(4-methyl-imidazol-5-yl)-carbonylthiosemicarbazide. J. Mol. Model. 2012, 18, 843–849. [Google Scholar] [CrossRef] [PubMed]
- HyperCube Inc. Hyperchem 8.0.3; HyperCube Inc.: Gainsville, FL, USA, 2007. [Google Scholar]
Sample Availability: Samples of the compounds 1–9 are available from the authors. |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | AMX | GN | LEV | LZD | VA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. a. ATCC 6538 | 15.63 | 7.81 | 15.63 | 15.63 | 1.95 | 250 | 31.25 | 15.63 | 62.50 | 0.12 | 0.98 | 0.24 | 0.98 | 0.49 |
S. a. ATCC 25923 | 15.63 | 7.81 | 15.63 | 31.25 | 1.95 | 500 | 62.50 | 15.63 | 62.50 | 0.12 | 1.95 | 0.24 | 1.95 | 0.98 |
S. e. ATCC 12228 | 7.81 | 3.91 | 7.81 | 7.81 | 1.95 | 250 | 31.25 | 7.82 | 31.25 | 7.81 | 0.12 | 0.12 | 0.49 | 0.98 |
B. s. ATCC 6633 | 3.91 | 0.49 | 3.91 | 0.98 | 0.98 | 500 | 15.63 | 7.82 | 15.63 | 0.12 | 0.24 | 0.12 | 0.98 | 0.24 |
B. c. ATCC 10876 | 3.91 | 1.95 | 3.91 | 3.91 | 0.98 | 31.25 | 31.25 | 7.82 | 15.63 | >250 | 15.63 | 0.12 | 0.98 | 0.98 |
M. l. ATCC 10240 | 1.95 | 0.98 | 0.98 | 1.95 | 0.49 | 7.82 | 7.82 | 7.82 | 7.82 | 0.24 | 0.98 | 0.98 | 0.98 | 0.24 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | LEV | |
---|---|---|---|---|---|---|---|---|---|---|
IC50 (µg/Ml) | >25 | >25 | >25 | >25 | >25 | >25 | >25 | >25 | >25 | >25 |
Viability at 25 µg/mL (%) * | 78.48 | 76.68 | 80.97 | 80.72 | 70.91 | 96.84 | 93.21 | 65.24 | 63.11 | 100.51 |
Compound | + AMX | + GN | + LEV | + LZD | + VA |
---|---|---|---|---|---|
FIC Effect | FIC Effect | FIC Effect | FIC Effect | FIC Effect | |
| 0.750 additive | 1.125 indifferent | 1.490 Indifferent | 0.750 additive | 1.500 indifferent |
| 0.562 additive | 1.062 indifferent | 1.031 indifferent | 0.281 synergistic | 1.063 indifferent |
| 0.750 additive | 0.750 additive | 1.000 additive | 0. 563 additive | 1.250 indifferent |
| 0.508 additive | 1.500 indifferent | 0.498 synergistic | 0.563 additive | 1.500 indifferent |
| 1.250 indifferent | 2.125 indifferent | 1.500 indifferent | 0.375 synergistic | 3.000 indifferent |
| 0.563 additive | 0.375 synergistic | 0. 625 additive | 0.500 synergistic | 0.625 additive |
| 0.750 additive | 1.125 indifferent | 0.373 synergistic | 1.031 indifferent | 31.254 antagonistic |
| 1.500 indifferent | 1.266 indifferent | 1.000 additive | 0.750 additive | 1.500 indifferent |
| 1.250 indifferent | 1.125 indifferent | 0.748 additive | 0.750 additive | 1.500 indifferent |
Compound | S. aureus Gyrase DNA Inhibition (%) ± SD | |
---|---|---|
50 µM | 100 µM | |
6 | 30.76 ± 3.19 | 49.22 ± 3.18 |
7 | 23.84 ± 5.02 | 33.14 ± 1.04 |
LEV | n.d. | 92.38 ± 3.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chudzik-Rząd, B.; Malm, A.; Trotsko, N.; Wujec, M.; Plech, T.; Paneth, A. Synergistic Effects of Thiosemicarbazides with Clinical Drugs against S. aureus. Molecules 2020, 25, 2302. https://doi.org/10.3390/molecules25102302
Chudzik-Rząd B, Malm A, Trotsko N, Wujec M, Plech T, Paneth A. Synergistic Effects of Thiosemicarbazides with Clinical Drugs against S. aureus. Molecules. 2020; 25(10):2302. https://doi.org/10.3390/molecules25102302
Chicago/Turabian StyleChudzik-Rząd, Beata, Anna Malm, Nazar Trotsko, Monika Wujec, Tomasz Plech, and Agata Paneth. 2020. "Synergistic Effects of Thiosemicarbazides with Clinical Drugs against S. aureus" Molecules 25, no. 10: 2302. https://doi.org/10.3390/molecules25102302
APA StyleChudzik-Rząd, B., Malm, A., Trotsko, N., Wujec, M., Plech, T., & Paneth, A. (2020). Synergistic Effects of Thiosemicarbazides with Clinical Drugs against S. aureus. Molecules, 25(10), 2302. https://doi.org/10.3390/molecules25102302