The N’-Substituted Derivatives of 5-Chloro-3-Methylisothiazole-4-Carboxylic Acid Hydrazide with Antiproliferative Activity
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Procedures for the Synthesis All the New Compounds and Their Spectroscopic Data (IR, 1H-NMR, 13C-NMR, 2D 1H-13C NMR, ESI-MS)
4.2.1. 5-Chloro-3-Methylisothiazole-4-Carbohydrazide 2
4.2.2. 5-Chloro-N’-[(1E,2E)-3-phenylprop-2-en-1-ylidene]-3-methylisothiazole-4-carbohydrazide 3
4.2.3. 5-Chloro-N’-[(E)-(3-chlorophenyl)methylidene]-3-methylisothiazole-4-carbohydrazide 4
4.2.4. 5-Chloro-N’-[(E)-(3-nitrophenyl)methylidene]-3-methylisothiazole-4-carbohydrazide 5
4.2.5. 5-Chloro-N’-[(E)-(4-ethylphenyl)methylidene]-3-methylisothiazole-4-carbohydrazide 6
4.2.6. 5-Chloro-N’-[(E)-(3-methoxyphenyl)methylidene]-3-methylisothiazole-4-carbohydrazide 7
4.2.7. 5-Chloro-N’-[(E)-phenylmethylidene]-3-methylisothiazole-4-carbohydrazide 8
4.2.8. 5-Chloro-N’-[(E)-(2,4-dimethylphenyl)methylidene]-3-methylisothiazole-4-carbohydrazide 9
4.2.9. 5-Chloro-N’-[(E)-(2-methylphenyl)methylidene]-3-methylisothiazole-4-carbohydrazide 10
4.2.10. 5-Chloro-N’-[(E)-(2-chlorophenyl)methylidene]-3-methylisothiazole-4-carbohydrazide 11
4.3. Single Crystal X-ray Structure Determination of 3, 4 and 8
4.4. Pharmacology
4.4.1. Cell Culture
4.4.2. Cells Preparing for Antiproliferative Assays
4.4.3. Cytotoxicity Assay In Vitro
MTT Assay (for MV4-11 Cell Line)
Sulforhodamine B Assay (for Other Cell Lines)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Si, W.; Shen, J.; Zheng, H.; Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenet. 2019, 11, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Pusuluri, A.; Krishnan, V.; Wu, D.; Wyatt Shields, C.W.; Wang, L.W.; Mitragotri, S. Role of synergy and immunostimulation in design of chemotherapy combinations: An analysis of doxorubicin and camptothecin. Bioeng. Transl. Med. 2019, 4, 10129–10140. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Chen, Z.; Sub, Q.; Ye, S.; Yuan, H.; Kuai, M.; Lv, M.; Tu, Z.; Yang, X.; Liue, R.; et al. Dual Inhibitors of RAF-MEK-ERK and PI3K-PDK1-AKT pathways: Design, Synthesis and Preliminary Anticancer Activity Studies of 3-Substituted-5-(phenylamino) indolone Derivatives. Bioorgan. Med. Chem. 2019, 27, 944–954. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.; Sallam, H.A.; Shaban, S.S.; Abdel-Wahab, S.S.; Amr, A.E.; Azab, M.E.; Nossier, E.S.; Al-OmaR, M.A. Design, Synthesis, and Molecular Docking Study of Novel Heterocycles Incorporating 1,3,4-Thiadiazole Moiety as Potential Antimicrobial and Anticancer Agents. Molecules 2019, 24, 1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsayed, N.M.Y.; Serya, R.A.T.; Tolba, M.F.; Ahmed, M.; Barakat, K.; Ella, K.D.A.A.E.; Abouzid, K.A.M. Design, synthesis, biological evaluation and dynamics simulation of indazole derivatives with antiangiogenic and antiproliferative anticancer activity. Bioorgan. Chem. 2019, 82, 340–359. [Google Scholar] [CrossRef] [PubMed]
- Tahlan, S.; Kumar, S.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.A.; Mani, V.; Pathania, R.; Narasimhan, B. In-silico molecular design of heterocyclic benzimidazole scafolds as prospective anticancer agents. BMC Chem. 2019, 13, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beebe, J.S.; Jani, J.P.; Knauth, E.; Goodwin, P.; Higdon, C.; Rossi, A.M.; Emerson, E.; Finkelstein, M.; Floyd, E.; Harriman, S.; et al. Pharmacological Characterization of CP-547,632, a Novel Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase Inhibitor for Cancer Therapy. Cancer Res. 2003, 63, 7301–7309. [Google Scholar]
- Sridevi, G.; Arul Antony, S.; Angayarkani, R. Schiff Base Metal Complexes as Anticancer Agents. Asian J. Chem. 2019, 31, 493–504. [Google Scholar] [CrossRef]
- Cohen, R.B.; Langer, C.J.; Simon, G.R.; Eisenberg, P.D.; Hainsworth, J.D.; Madajewicz, S.; Cosgriff, T.M.; Pierce, K.; Xu, H.; Liau, K.; et al. A phase I/randomized phase II, non-comparative, multicenter, open label trial of CP-547,632 in combination with paclitaxel and carboplatin or paclitaxel and carboplatin alone as first-line treatment for advanced non-small cell lung cancer (NSCLC). Cancer Chemother. Pharmacol. 2007, 60, 81–89. [Google Scholar] [CrossRef]
- Sierko, E.; Wojtukiewicz, M.Z. Podstawy terapii antyangiogennej u chorych na nowotwory. Nowotw. J. Oncol. 2008, 58, 349–357. [Google Scholar]
- Abdellaoui, H.E.; Varaprasad, C.V.N.S.; Barawkar, D.; Chakravarty, S.; Maderna, A.; Tam, R.; Chen, H.; Allan, M.; Wu, J.Z.; Appleby, T.; et al. Identification of isothiazole-4-carboxamidines derivatives as a novel class of allosteric MEK1 inhibitors. Bioorgan. Med. Chem. Lett. 2006, 16, 5561–5566. [Google Scholar] [CrossRef] [PubMed]
- Melagraki, G.; Afantitis, A.; Sarimveis, H.; Igglessi-Markopoulou, O.; Koutentis, P.A.; Kollias, G. In Silico Exploration for Identifying Structure–Activity Relationship of MEK Inhibition and Oral Bioavailability for Isothiazole Derivatives. Chem. Biol. Drug Des. 2010, 76, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, B.M.; Tanneeru, K.; Angamba Meetei, P.; Guruprasad, L. 3D-QSAR and Molecular Docking Studies on Substituted Isothiazole Analogs as Inhibitors Against MEK-1 Kinase. Chem. Biol. Drug Des. 2012, 79, 84–91. [Google Scholar] [CrossRef] [PubMed]
- AhmadPasha, F.; Muddassar, M.; JooCho, S. Molecular Docking and 3D QSAR Studies of Chk2 Inhibitors. Chem. Biol. Drug Des. 2009, 73, 292–300. [Google Scholar] [CrossRef]
- Velic, D.; Couturier, A.M.; Tedim Ferreira, M.; Rodrigue, A.; Poirier, G.G.; Fleury, F.; Masson, J. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles’ Heel of Cancer. Biomolecules 2015, 5, 3204–3259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, G.; Yan, S.; Chen, H.; Rong, F.; Hong, Z.; Wu, J.Z. Identification of novel, selective and potent Chk2 inhibitors. Bioorgan. Med. Chem. Lett. 2007, 17, 172–175. [Google Scholar] [CrossRef]
- Rao Ambati, S.; Gudala, S.; Sharma, A.; Penta, S.; Loka Reddy, V.; Bomma, Y.; RaoJanapala, V.; Pola, S. Facile Synthesis of Novel 3-(4-phenylisothiazol-5-yl)-2H-chromen-2-one Derivatives as Potential Anticancer Agents. J. Heterocycl. Chem. 2017, 54, 2333–2341. [Google Scholar] [CrossRef]
- Coffey, K.; Blackburn, T.J.; Cook, S.; Golding, B.T.; Griffin, R.J.; Hardcastle, I.R.; Hewitt, L.; Huberman, K.; McNeill, H.V.; Newell, D.R.; et al. Characterisation of a Tip60 Specific Inhibitor, NU9056, in Prostate Cancer. PLoS ONE 2012, 7, e45539. [Google Scholar] [CrossRef]
- Kuczyński, L.; Kuriata, M.; Ciupka, B. Synthesis of new 4 and 5 disubstituted isothiazoles. Pol. J. Pharmacol. Pharm. 1984, 36, 485–491. [Google Scholar]
- Machoń, Z. Synthesis and cytostatic properties of some isothiazole derivatives. Diss. Pharm. Pharmacol. 1969, 21, 135–144. [Google Scholar]
- Demirbas, N.; Karaoglu, S.A.; Demirbas, A.; Sancak, K. Synthesis and antimicrobial activities of some new 1-(5-phenylamino-[1,3,4]thiadiazol-2-yl)methyl-5-oxo-[1,2,4]triazole and 1-(4-phenyl-5-thioxo-[1,2,4]triazol-3-yl)methyl-5-oxo-[1,2,4]triazole derivatives. Eur. J. Med. Chem. 2004, 39, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, H.; Demirbas, A.; Karaoglu, S.I.A.; Demirbas, N. Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur. J. Med. Chem. 2009, 44, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Vicini, P.; Incerti, M.; La Colla, P.; Loddo, R. Anti-HIV evaluation of benzo[d]isothiazole hydrazones. Eur. J. Med. Chem. 2009, 44, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Vicini, P.; Incerti, M.; Doytchinova, I.A.; La Colla, P.; Busonera, B.; Loddo, R. Synthesis and antiproliferative activity of benzo[d]isothiazole hydrazones. Eur. J. Med. Chem. 2006, 41, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Dongare, S.B.; Bandgar, B.P.; Bhale, P.S.; Shringare, S.N.; Chavan, H.V. Design, Synthesis, and Spectroscopic Study of 7-Azaindolyl Hydrazones with Anti-Breast Cancer Activity. Croat. Chem. Acta 2019, 92, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mamolo, M.G.; Falagiani, V.; Zampieri, D.; Vio, L.; Banfi, E. Synthesis and antimycobacterial activity of [5-(pyridin-2-yl)-1,3,4-thiadiazol-2-ylthio]acetic acid arylidene-hydrazide derivatives. Farmaco 2001, 56, 587–592. [Google Scholar] [CrossRef]
- Wyrzykiewicz, E.; Prukah, D. New Isomeric N-substituted Hydrazones of 2-, 3- and 4-Pyridinecarboxaldehydes. J. Heterocycl. Chem. 1998, 35, 381–387. [Google Scholar] [CrossRef]
- Galic, N.; Peric, B.; Kojic-Prodic, B.; Cimerman, Z. Structural and spectroscopic characteristics of aroylhydrazones derived from nicotinic acid hydrazide. J. Mol. Stuct. 2001, 559, 187–194. [Google Scholar] [CrossRef]
- Jęśkowiak, I.; Mączyński, M.; Trynda, J.; Wietrzyk, J.; Ryng, S. The 5-hydrazino-3-methylisothiazole-4-carboxylic acid, its new 5-substituted derivatives and their antiproliferative activity. Bioorgan. Chem. 2019, 91, 103082–103091. [Google Scholar] [CrossRef]
- Shahnawaz Khan, M.; Parveen Siddiqui, S.; Tarannum, N. A systematic review on the synthesis and biological activity of hydrazide derivatives. Hygeia 2017, 9, 61–79. [Google Scholar] [CrossRef]
- Sreenivasulu, R.; Reddy, K.T.; Sujitha, P.; Kumar, C.G.; Raju, R.R. Synthesis, antiproliferative and apoptosis induction potential activities of novel Bis(indolyl)hydrazide-hydrazone derivatives. Bioorgan. Med. Chem. 2019, 27, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Bingul, M.; Gardner, C.R.; Kumar, N.; Black, D.; Bingul, M.; Tan, O.; Gardner, C.R.; Sutton, K.S.; Arndt, M.G.; Marshall, M.G.; et al. Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety. Molecules 2016, 21, 916. [Google Scholar] [CrossRef] [PubMed]
- Agilent Technologies; Rigaku Oxford Diffraction. CrysAlisPro; Agilent Technologies: Yarnton, UK, 2012; Rigaku Oxford Diffraction: Yarnton, UK, 2018. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Brandenburg, K. Diamond, Version 3.2i; Crystal Impact GbR: Bonn, Germany, 2012. [Google Scholar]
- Gliszczyńska, A.; Niezgoda, N.; Gładkowski, W.; Czarnecka, M.; Świtalska, M.; Wietrzyk, J. Synthesis and Biological Evaluation of Novel Phosphatidylcholine Analogues Containing Monoterpene Acids as Potent Antiproliferative Agents. PLoS ONE 2016, 11, e0157278. [Google Scholar] [CrossRef]
- Harker, W.G.; Slade, D.L.; Dalton, W.S.; Meltzer, P.S.; Trent, J.M. Multidrug resistance in mitoxantrone-selected HL-60 leukemia cells in the absence of P-glycoprotein overexpression. Cancer Res. 1989, 49, 4542–4549. [Google Scholar]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Wakelee, H.A.; Schiller, J.H. Targeting Angiogenesis with Vascular Endothelial Growth Factor Receptor Small-Molecule Inhibitors: Novel Agents with Potential in Lung Cancer. Clin. Lung Cancer 2005, 7, S31–S38. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
MV4-11 | |||||
---|---|---|---|---|---|
Name of Compound | IC50 ± SD | Name of Compound | IC50±SD | ||
[µg/mL] | μM | [µg/mL] | μΜ | ||
Cisplatin | 0.38 ± 0.14 | 1.28 ± 0.45 | 6 | 21.3 ± 8.2 | 69.4 ± 26.8 |
1 | n.a. | 7 | 22.4 ± 8.6 | 72.3 ± 27.8 | |
2 | n.a. [45%] * | 8 | 36.6 ± 11.6 | 131.2 ± 41.7 | |
3 | 4.3 ± 1.9 | 14 ± 6.4 | 9 | n.a. [42.5%] * | |
4 | 15.2 ± 2.4 | 48.4 ± 7.8 | 10 | n.a. [47%] * | |
5 | 18.7 ± 1.7 | 57.7 ± 5.3 | 11 | n.a | |
DMSO (0.5%) | 9% ** |
Name of Compound | IC50 ± SD | RI | |||||||
---|---|---|---|---|---|---|---|---|---|
MCF-7 | MCF-10A | LoVo | LoVoDX | ||||||
[µg/mL] | μM | [µg/mL] | μM | [µg/mL] | μM | [µg/mL] | μM | ||
Cisplatin | 1.56 ± 0.3 | 5.2 ± 1.0 | 2.9 ± 0.4 | 9.7 ± 1.4 | 1.7 ± 0.8 | 5.6 ± 2.6 | 0.84 ± 0.17 | 2.8 ± 0.6 | 0.49 |
3 | 12 ± 1.9 | 39.3 ± 6.3 | 20.9 ± 2.2 | 68.6 ± 7.3 | 7.64 ± 1.7 | 25 ± 5.5 | 10.4 ± 0.7 | 34.2 ± 2.3 | 1.37 |
4 | 15.2 ± 1.8 | 48.6 ± 5.7 | 24.6 ± 2.2 | 78.5 ± 7.1 | 18.6 ± 1.1 | 59.4 ± 3.4 | 15 ± 1.1 | 47.9 ± 3.7 | 0.81 |
5 | 20.1 ± 2.6 | 65.1 ± 8.4 | 60.8 ± 5.1 | 196.6 ± 16.6 | 22.7 ± 0.3 | 73.4 ± 0.8 | 29.2 ± 5.3 | 94.6 ± 17.3 | 1.29 |
6 | 13.9 ± 1.9 | 42.9 ± 5.9 | 40.6 ± 3.7 | 125.4 ± 11.3 | 31.7 ± 6.7 | 97.7 ± 20.8 | 28.8 ± 2.7 | 88.8 ± 8.4 | 0.91 |
7 | 17.8 ± 3.1 | 58 ± 10.2 | 56 ± 14.1 | 182.5 ± 48.9 | 27.8 ± 10.4 | 90.5 ± 34 | 20 ± 1.1 | 65 ± 3.5 | 0.72 |
DMSO (0.5%) | 16% ** | 5.3% ** | 10% ** | 2.7% ** | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jęśkowiak, I.; Ryng, S.; Świtalska, M.; Wietrzyk, J.; Bryndal, I.; Lis, T.; Mączyński, M. The N’-Substituted Derivatives of 5-Chloro-3-Methylisothiazole-4-Carboxylic Acid Hydrazide with Antiproliferative Activity. Molecules 2020, 25, 88. https://doi.org/10.3390/molecules25010088
Jęśkowiak I, Ryng S, Świtalska M, Wietrzyk J, Bryndal I, Lis T, Mączyński M. The N’-Substituted Derivatives of 5-Chloro-3-Methylisothiazole-4-Carboxylic Acid Hydrazide with Antiproliferative Activity. Molecules. 2020; 25(1):88. https://doi.org/10.3390/molecules25010088
Chicago/Turabian StyleJęśkowiak, Izabela, Stanisław Ryng, Marta Świtalska, Joanna Wietrzyk, Iwona Bryndal, Tadeusz Lis, and Marcin Mączyński. 2020. "The N’-Substituted Derivatives of 5-Chloro-3-Methylisothiazole-4-Carboxylic Acid Hydrazide with Antiproliferative Activity" Molecules 25, no. 1: 88. https://doi.org/10.3390/molecules25010088
APA StyleJęśkowiak, I., Ryng, S., Świtalska, M., Wietrzyk, J., Bryndal, I., Lis, T., & Mączyński, M. (2020). The N’-Substituted Derivatives of 5-Chloro-3-Methylisothiazole-4-Carboxylic Acid Hydrazide with Antiproliferative Activity. Molecules, 25(1), 88. https://doi.org/10.3390/molecules25010088